A Stable Layer Stripping Algorithm for Electrical Impedance Tomography

Erkki Somersalo

Collaboration with Daniela Calvetti and Sumanth Nakkireddy

Case Western Reserve University Department of Mathematics, Applied Mathematics and Statistics

June 26, 2019

EIT inverse problem

• Let $\Omega \subset \mathbb{R}^n$, $\sigma \in C^1(\Omega) \cap C(\overline{\Omega})$, and let $u \in H^2(\Omega)$ be the solution of

$$\begin{aligned} \nabla \cdot (\sigma \nabla u) &= 0 \text{ in } \Omega, \\ \sigma \frac{\partial u}{\partial n} \Big|_{\partial \Omega} &= f \in H_0^{1/2}(\partial \Omega), \end{aligned}$$

where

$$H_0^{1/2}(\partial\Omega) = \{f \in H^{1/2}(\partial\Omega) \mid \int_{\partial\Omega} f dS = 0\}.$$

Neumann-to-Dirichlet map,

$$W = W[\sigma] : H^{1/2}(\partial \Omega) \to H^{3/2}(\partial \Omega), \quad \sigma \frac{\partial u}{\partial n}\Big|_{\partial \Omega} \mapsto u\Big|_{\partial \Omega}$$

• Calderón problem: From the knowledge of W_{σ} , reconstruct σ

Background: One-dimensional (zero energy) Schrödinger equation:

$$-\psi''(x)+V(x)\psi(x)=0.$$

Define the wave impedance $\eta(x)$,

$$\eta(\mathbf{x}) = rac{\psi'(\mathbf{x})}{\psi(\mathbf{x})}.$$

Differentiate:

$$\eta'(x) = \frac{\psi''(x)}{\psi(x)} - \left(\frac{\psi'(x)}{\psi(x)}\right)^2 = V(x) - \eta(x)^2.$$

• The wave impedance satisfies a Riccati equation

$$\eta'(x) = V(x) - \eta(x)^2.$$

• The wave impedance represents the Dirichlet-to-Neumann map:

$$\psi'\big|_{x=a} = \eta(a)\psi\big|_{x=a}.$$

- Moving the boundary $\{x = a\}$ is tantamount to solving the Riccati equation.
- The Neumann-to-Dirichlet map $\nu = 1/\eta$ (wave admittance) satisfies also a Riccati equation:

$$\nu'(x) = 1 - V(x)\nu(x)^2.$$

A B A B A B A

Extension to EIT: Let

$$D = \{(r, heta) \mid 0 \leq r < 1\} \subset \mathbb{R}^2,$$

and u satisfies

$$\nabla \cdot (\sigma \nabla u) = 0 \text{ in } D,$$

$$\sigma \frac{\partial u}{\partial r} \Big|_{r=1} = f.$$

Neumann-to-Dirichlet map

$$W_1: H^s(\partial D) \to H^{s+1}(\partial D), \quad f \mapsto u\Big|_{r=1},$$

where $s \ge -1/2$.

・ロン ・回 と ・ ヨン・

- **O** Define a family W_R of NtD operators over circles of radius R
- 2 Propagate the boundary data W_1
- Sevaluate the conductivity while marching in

1. Extension of the boundary data: Define

$$u_R(t, \theta) = u(Rt, \theta), \quad \sigma_R(t, \theta) = \sigma(Rt, \theta), \quad 0 < R \leq 1,$$

satisfying

$$abla_{\xi} \cdot (\sigma_R
abla_{\xi} u_R) = 0$$
 in D ,

where $\xi = (t \cos \theta, t \sin \theta)$.

$$W_R: H^{1/2}(\partial D) \to H^{3/2}(\partial D), \quad W_R\left[\sigma_R \frac{\partial u_R}{\partial t}\right]_{t=1} = u_R(1).$$

Image: A math a math

2. Propagation: Define

$$U = U(R, \theta) = \left[egin{array}{c} v \\ w \end{array}
ight] \in H^{3/2}(\partial D) imes H^{1/2}(\partial D),$$

where

$$v = [u_R]_{t=1}, \quad w = \left[\sigma_R \frac{\partial u_R}{\partial t}\right]_{t=1}$$

٠

Image: A math a math

Differentiate with respect to R:

$$\dot{v} = \frac{\partial v}{\partial R} = \frac{1}{R\sigma(R,\theta)} \left[\sigma(Rt,\theta) \frac{\partial}{\partial t} u(tR,\theta) \right]_{t=1} = \frac{1}{R\sigma(R,\theta)} w_{t}$$

or

$$\dot{\mathbf{v}}=rac{1}{R}\mathbf{G}\mathbf{w},\quad \mathbf{G}:H^{1/2}(\partial\Omega)
ightarrow H^{1/2}(\partial\Omega).$$

$$\dot{w} = \frac{\partial w}{\partial R} = \frac{\partial}{\partial R} \left[\sigma(R,\theta) R \frac{\partial u}{\partial R}(R,\theta) \right] \dot{w}$$

$$= -\frac{1}{R} \frac{\partial}{\partial \theta} \left[\sigma(R,\theta) \frac{\partial}{\partial \theta} u(R,\theta) \right]$$

$$= -\frac{1}{R} \frac{\partial}{\partial \theta} \left[\sigma(R,\theta) \frac{\partial}{\partial \theta} v \right],$$

or

$$\dot{w} = -rac{1}{R}Sv, \quad S: H^{3/2}(\partial\Omega) o H^{-1/2}(\partial\Omega).$$

Hence,

$$\boxed{R\dot{U} = \left[\begin{array}{cc} 0 & G \\ -S & 0 \end{array}\right]U}.$$

・ロト ・回ト ・ヨト

Differentiate

$$v = W_R w$$
,

giving

$$\dot{W}_R w = \dot{v} - W_R \dot{w} = \frac{1}{R} (Gw + W_R Sv)$$
$$= \frac{1}{R} (G + W_R SW_R) w$$

Riccati equation:

$$R\dot{W_R} = G + W_R S W_R.$$

$$H_0^{1/2}(\partial D) \xrightarrow{W_{\mathcal{R}}} H_0^{3/2}(\partial D) \xrightarrow{S_{\mathcal{R}}} H_0^{-1/2}(\partial D) \xrightarrow{W_{\mathcal{R}}} H_0^{1/2}(\partial D),$$

Image: A math a math

3. Reconstruction: High frequency asymptotics:

$$(W_R)_{jk} = \langle e^{ij\theta}, W_R e^{ik\theta} \rangle,$$

we have

$$\lim_{|k|\to\infty} |k|(W_R)_{n+k,k} = \frac{1}{2\pi R} \int e^{in\theta} \frac{1}{\sigma(R,\theta)} d\theta = \widehat{\rho}_n,$$

where $\rho=1/\sigma$ is the resistivity.

Layer stripping algorithm:

• Fix radii $1 = r_0 > r_1 > ... > r_J > 0$. Denote

$$A_j = \{(r, \theta) \mid r_j < r < r_{j-1}\}, \quad 1 \le j \le J.$$

Somersalo E, Isaacson D, Cheney M and Isaacson E (1991) Layer stripping: A direct numerical method for impedance imaging. Inverse Problems **7** 899–926. Cheney M, Isaacson D, Somersalo E and Isaacson E (1995) Layer stripping process for impedance imaging. U.S. Patent no. 5 390 110, February 14, 1995.

イロト 不得下 イヨト イヨト

III-posedness: The ill-posed nature of the EIT inverse problem shows up as instability of the (backwards) Riccati equation.

Special case: Radial conductivity $\sigma = \sigma(r)$: The Fourier modes of W_R decouple. With $\sigma = 1$, we have

$$(W_R)_{kk} = w_k(R) = \frac{1}{|k|}.$$

The backwards Riccati initial value problem:

$$R\frac{dw_k}{dR} = 1 - k^2 w_k^2, \quad w_k(1) = b = \text{data.}$$

Explicit solution:

$$w_k(R) = rac{1}{|k|} rac{R^{2|k|} - M(|k|b)}{R^{2|k|} + M(|k|b)}, \quad M(|k|b) = rac{1 - |k|b}{1 + |k|b}.$$

- Exact solution is recovered if the data are noiseless, that is, b = 1/|k|, implying that M(|k|b) = 0.
- Noisy data with relative error $\varepsilon \neq 0$,

$$b=rac{1}{|k|}(1\pmarepsilon), \quad |arepsilon|<1.$$

The solution either becomes singular ($\varepsilon > 0$) or negative ($\varepsilon < 0$) at a radial value

$$R \propto rac{1}{ert arepsilon ert^{1/2ert k ert}} o 1, ext{ as } ert k ert o \infty.$$

Solutions $|k|w_k(R)$ of the backwards Riccati equation, with positive (red) and negative (blue) error. $|\varepsilon| = 0.01$. On the left, k = 2, and on the right, k = 10. The correct solution is $|k|w_k(R) = 1$.

< 🗇 🕨

Reformulation

Forward problem in an annular domain: Given an R < 1, denote $A_R = \{(r, \theta) \mid R < r < 1\}$. Consider the mapping

$$\Psi_R: (W_R, \sigma\big|_{A_R}) \mapsto W_1.$$

The forward problem is well-posed, as the forward Riccati propagation is stable.

Inverse problem: Given a noisy observation of W_1 , estimate $(W_R, \sigma|_{A_p})$.

A D > A B > A B >

- Sequence of radii $1 > R_1 > R_2 > \ldots$
- Using W_1 , estimate (W_{R_1}, σ_1) , where $\sigma_1 = \sigma \big|_{A_{R_1}}$
- Using W_1 and the estimate for σ_1 , estimate (W_{R_2}, σ_2) , where $\sigma_2 = \sigma|_{A_{R_2}}$ • ...

Discretization

Radii

$$1=R_0>R_1>\ldots>R_J>0,$$

defining rings

$$A_j = \{(r, \theta) \mid R_j < r < R_{j-1}\}, \quad 1 \le j \le J.$$

• Approximation:

$$\sigma|_{A_j}(r,\theta) = \sigma_j(\theta), \quad R_j < r < R_{j-1}.$$

• Logarithmic parametrization of each σ_j :

$$(\lambda_j)_\ell = \log rac{\sigma_j(heta_\ell)}{\sigma_0}, \quad 1 \leq \ell \leq n_j, \,\, \lambda_{J+1} = \log rac{\sigma(0)}{\sigma_0},$$

where

$$n_j = \left\lfloor \frac{2\pi r_j}{h} \right\rfloor.$$

Discretization

イロト イヨト イヨト イヨ

• Parametrization of the conductivity in $R_j \leq r \leq 1$:

$$\lambda_{(j)} = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_j \end{bmatrix} \in \mathbb{R}^{N_j}, \quad N_j = n_1 + \ldots + n_j,$$

where $1 \leq j \leq J$.

• Interior boundary value:

 $w_j = \operatorname{vec}(W_{R_j})$ (stack the columns in a vector)

• Exterior boundary value: Numerical Riccati solver,

$$\psi_j(w_j,\lambda_{(j)})=w_0.$$

イロト イヨト イヨト イ

State vectors, evolution model

$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$$

Indirect observations,

$$b_j = F(x_j) + \varepsilon_j.$$

() Given the probability distribution $\pi_k(x_k)$, propagate (push forward)

$$\pi_k(x_k) \to \widetilde{\pi}_{k+1}(x_{k+1})$$

2 Using $\widetilde{\pi}_{k+1}$ as prior, use Bayes' formula to update

$$\pi_{k+1}(x_{k+1}) \propto \widetilde{\pi}_{k+1}(x_{k+1})\pi(b_{k+1} \mid x_{k+1})$$

3 Repeat

A B A B A B A

Define the state vector

$$x_k = \left[\begin{array}{c} w_0 \\ w_k \\ \lambda_{(k)} \end{array} \right]$$

.

For Bayesian filtering algorithm, we need

State evolution model: A stochastic model

 $x_k \rightarrow x_{k+1}$.

Observation model: A stochastic model

$$x_k \rightarrow b_k$$
.

A B A B A B A

1. State evolution model:

$$x_{k} = \begin{bmatrix} w_{0} \\ w_{k} \\ \lambda_{(k)} \end{bmatrix} \xrightarrow{(a)} \begin{bmatrix} w_{k+1} \\ \lambda_{(k+1)} \end{bmatrix} \xrightarrow{(b)} \begin{bmatrix} w_{0} \\ w_{k+1} \\ \lambda_{(k+1)} \end{bmatrix} = x_{k+1}.$$

- (a) Given the current λ_(k), draw λ_{k+1} from the conditional prior distribution π_{pr}(λ_{k+1} | λ_(k)) (smoothness prior for σ), Draw w_{k+1} from the prior distribution π'_{pr}(w_{k+1}).
- (b) Propagate w_{k+1} through the k+1 layers using the first order Möbius propagator.

Add innovation with variance estimated from the second order Möbius propagator (numerical modeling error).

2. Observation model:

$$b_k = \mathsf{P} x_k + \varepsilon_k,$$

where

$$\mathsf{P} = \left[\begin{array}{ccc} \mathsf{I} & \mathsf{O} & \mathsf{O} \end{array} \right] : \left[\begin{array}{c} w_0 \\ w_k \\ \lambda_{(k)} \end{array} \right] \mapsto w_0.$$

Gaussian observation error:

 $\varepsilon_k \sim \mathcal{N}(0, \Sigma).$

・ロン ・回 と ・ ヨン・

Ensemble Kalman Filtering (EnKF)

Propagation step: Given a sample

$$\{x_k^{(1)}, x_k^{(2)}, \dots, x_k^{(N)}\}$$

from the current posterior, generate a predictive sample using the propagation model,

$$\{\widehat{x}_{k+1}^{(1)}, \widehat{x}_{k+1}^{(2)}, \dots, \widehat{x}_{k+1}^{(N)}\}$$

② Calculate the empirical mean \overline{x}_{k+1} and covariance G_{k+1} .

• Given the observation b_{k+1} , generate a data ensemble

$$\{b_{k+1}^{(1)}, b_{k+1}^{(2)}, \ldots, b_{k+1}^{(N)}\}, \quad b_{k+1}^{(j)} = b_{k+1} + e^{(j)}, \quad e^{(j)} \sim \mathcal{N}(0, \Sigma).$$

Analysis step: Generate a sample from the posterior by setting

$$x_{k+1}^{(j)} = \operatorname{argmin} \left\{ \|x - \widehat{x}_{k+1}^{(j)}\|_{\mathsf{G}_{k+1}}^2 + \|\mathsf{P}x - b_{k+1}^{(j)}\|_{\Sigma}^2 \right\}.$$

A D > A P > A B > A

Ensemble Kalman Filtering (EnKF)

Some observations:

• The forward model P is linear, and therefore the solution $x_{k+1}^{(j)}$ is obtained by a linear operation,

$$x_{k+1}^{(j)} = \widehat{x}_{k+1}^{(j)} + \mathsf{K}(b_{k+1}^{(j)} - \mathsf{P}\widehat{x}_{k+1}^{(j)}),$$

where K is the Kalman gain matrix

• The information about $b_{k+1}^{(j)}$ is passed to the parameter $\lambda_{(k+1)}$ through the cross covariance matrix

$$\operatorname{cov}(w_0, \lambda_{(k+1)}).$$

• The algorithm, despite of nonlinearity, is **derivative-free**.

Likelihood model revisited

- The data *b* are formally used *J* times.
- A family of forward models,

$$b = \psi_j(\lambda_{(j)}, w_j) + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}(0, \mathsf{C}).$$

• Mean likelihood model (cf. Sequential Monte Carlo),

$$egin{aligned} \pi_{ ext{lkh}}(b \mid \lambda_{(J)}, \textbf{\textit{w}}_{(J)}) & \propto & \exp\left(-rac{1}{2J}\sum_{j=1}^{J}\|b-\psi_j(\lambda_{(j)}, \textbf{\textit{w}}_j)\|_{\mathsf{C}}^2
ight) \ & \propto & \prod_{j=1}^{J}\pi_{ ext{lkh}}^j(b \mid \lambda_{(j)}, \textbf{\textit{w}}_j), \end{aligned}$$

where

$$\pi^j_{\mathrm{lkh}}(b\mid\lambda_{(j)}, w_j)\propto \exp\left(-rac{1}{2J}\|b-\psi_j(\lambda_{(j)}, w_j)\|_{\mathsf{C}}^2
ight).$$

Image: A math a math

Bayes' theorem: (posterior \propto prior \times likelihood):

$$\pi_{\mathrm{post}}(w_{(J)},\lambda_{(J)}\mid b)\propto \pi_{\mathrm{pr}}(w_{(J)},\lambda_{(J)})\prod_{j=1}^{J}\pi_{\mathrm{lkh}}^{j}(b\mid\lambda_{(j)},w_{j}).$$

Introduce the *k*th approximation of the posterior:

$$\pi_{\mathrm{post}}^k(w_{(k)},\lambda_{(k)}\mid b)\propto \pi_{\mathrm{pr}}(w_{(k)},\lambda_{(k)})\prod_{j=1}^k\pi_{\mathrm{lkh}}^j(b\mid\lambda_{(j)},w_j).$$

- (a) A priori, w_{k+1} is independent of $w_{(k)}$ and $\lambda_{(k+1)}$.
- (b) A priori, λ_{k+1} is independent of $w_{(k)}$ but may not be independent of $\lambda_{(k)}$.

$$\pi_{\rm pr}(w_{(k+1)}, \lambda_{(k+1)}) = \pi'(w_{k+1})\pi(\lambda_k \mid \lambda_{(k)})\pi_{\rm pr}(w_{(k)}, \lambda_{(k)}),$$

イロト イヨト イヨト イ

Recursive updating:

$$\pi_{\text{post}}^{k+1}(w_{(k+1)}, \lambda_{(k+1)} \mid b) \propto \pi_{\text{pr}}(w_{(k+1)}, \lambda_{(k+1)}) \prod_{j=1}^{k+1} \pi_{\text{lkh}}^{j}(b \mid \lambda_{(j)}, w_{j})$$

$$= \pi_{\text{pr}}'(w_{k+1}) \pi_{\text{pr}}(\lambda_{k+1} \mid \lambda_{(k)}) \pi_{\text{pr}}(w_{(k)}, \lambda_{(k)}) \prod_{j=1}^{k+1} \pi_{\text{lkh}}^{j}(b \mid \lambda_{(j)}, w_{j})$$

$$= \pi_{\text{pr}}'(w_{k+1}) \pi_{\text{pr}}(\lambda_{k+1} \mid \lambda_{(k)}) \pi_{\text{lkh}}^{j}(b \mid \lambda_{(k+1)}, w_{k+1}) \pi_{\text{post}}^{k}(w_{(k)}, \lambda_{(k)} \mid b)$$

$$= \underbrace{\{\pi_{\text{pr}}'(w_{k+1}) \pi_{\text{pr}}(\lambda_{k+1} \mid \lambda_{(k)}) \pi_{\text{post}}^{k}(w_{(k)}, \lambda_{(k)} \mid b)\}}_{(*)} \pi_{\text{lkh}}^{j}(b \mid \lambda_{(k+1)}, w_{k+1}).$$

where (*) can be thought of as an updated prior for the next round.

・ロン ・回 と ・ ヨン・

Marginalize with respect to the initial values:

$$\overline{\pi}_{\mathrm{post}}^k(\lambda_{(k)}\mid b) = \int \pi_{\mathrm{post}}^k(w_{(k)},\lambda_{(k)}\mid b) dw_{(k)}.$$

Integrating the recursive formula with respect to w_i :

$$egin{aligned} \overline{\pi}^{k+1}_{ ext{post}}(\lambda_{(k+1)}\mid b) &= \pi_{ ext{pr}}(\lambda_{k+1}\mid \lambda_{(k)})\overline{\pi}^k_{ ext{post}}(\lambda_{(k)}\mid b) \ & imes \left(\int \pi'_{ ext{pr}}(w_{k+1})\pi^j_{ ext{lkh}}(b\mid \lambda_{(k+1)},w_{k+1})dw_{k+1}
ight). \end{aligned}$$

Basis of the EnKF updating.

Solver for the Riccati equation

Action of GL(2n) in the symplectic space \mathbb{R}^{2n} ,

$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \mapsto z' = \mathsf{A}z = \begin{bmatrix} \mathsf{A}_{11} & \mathsf{A}_{12} \\ \mathsf{A}_{21} & \mathsf{A}_{22} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}.$$

Assume that

 $z_1 = W z_2$.

We have

$$\begin{aligned} z_1' &= A_{11}z_1 + A_{12}z_2 = (A_{11}W + A_{12})z_2 \\ z_2' &= A_{21}z_1 + A_{22}z_2 = (A_{21}W + A_{22})z_2, \end{aligned}$$

implying that

$$z'_1 = (A_{11}W + A_{12})(A_{21}W + A_{22})^{-1}z'_2.$$

Solver for the Riccati equation

Conclusion: The action of $A \in GL(2n)$ induces a transformation

$$\mathsf{W}\mapsto\mathsf{W}'=(\mathsf{A}_{11}\mathsf{W}+\mathsf{A}_{12})(\mathsf{A}_{21}\mathsf{W}+\mathsf{A}_{22})^{-1}$$

on the Grassmannian $Gr_n(2n)$.

Differential equations: Assume that $z = z(R) \in \mathbb{R}^{2n}$ satisfies

$$\dot{z} = \mathsf{C}z = \left[egin{array}{ccc} \mathsf{C}_{11} & \mathsf{C}_{12} \\ \mathsf{C}_{21} & \mathsf{C}_{22} \end{array}
ight] \left[egin{array}{ccc} z_1 \\ z_2 \end{array}
ight], \quad z_1 = \mathsf{W}z_2.$$

Then,

$$\dot{z}_1 = \dot{W}z_2 + W\dot{z_2},$$

or

$$\dot{\mathsf{W}}z_2=\dot{z}_1-\mathsf{W}\dot{z}_2.$$

Substitution:

that is, W satisfies the Riccati equation

V

$$\dot{W} = C_{12} + C_{11}W - WC_{22} - WC_{21}W.$$

Conclusion: A linear evolution model in \mathbb{R}^{2n} induces a Riccati a flow on the Grassmannian $\operatorname{Gr}_n(2n)$.

Solver for the Riccati equation

First order scheme: Set

$$z(R+h) \approx z(R) + Cz(R)h = \underbrace{(I+hC)}_{=A} z(R).$$

Then, by the previous analysis, the first order propagation of W is obtained by

$$W(h) \approx (A_{12} + A_{11}W)(A_{22} + A_{21}W)^{-1} = (hC_{12} + (I + hC_{11})W(R))(I + hC_{22} + hC_{21}W(R))^{-1}$$

For the NtD problem, comparing the Riccati equations,

$$\mathsf{C} = rac{1}{R} \left[egin{array}{cc} \mathsf{0} & \mathsf{G} \ -\mathsf{S} & \mathsf{0} \end{array}
ight].$$

Image: Image:

First order Möbius propagation scheme:

$$W(R+h) = \left(W(R) + \frac{h}{R}G(R)\right) \left(I - \frac{h}{R}S(R)W(R)\right)^{-1}.$$

Theorem

The eigenvalues of the matrix matrix S(R)W(R) are all real and negative.

Forward propagation (h > 0) stable, while backwards propagation (h < 0) may encounter singularities.

- The Grassmannian is a compact manifold, so the singularities of the Riccati equation are removable coordinate singularities.
- The Möbius solver, unlike standard RK of LMM solvers, have no problems going through the singularities.
- It is easy to define higher order solvers (error control for modeling approximation errors).

A B A B A B A

Computed examples

- EnKF with 1000 particles
- Number of frequencies = 60 (30 sines, 30 cosines)
- NtD map generated using a FEM approximation
- Additive white noise added
- Forward map: First order Möbius solver, accuracy controlled by using a second order Möbius solver.
- Radial case: Second order AR model to generate $\lambda_{j+1} \mid \lambda_{(j)}$.
- Non-Radial case: Use second order Gaussian smoothness prior, conditioning.

Computed examples

Radial conductivity

・ロト ・回ト ・ヨト ・

Results

イロト イロト イヨト イヨト

Results

イロト イロト イヨト イヨト

Results

イロト イロト イヨト イヨト

- The layer stripping assumes that the data consist of the continuous Neumann-to-Dirichlet operator
- In reality, the EIT data is collected by using a finite number of contact electrodes
- Passing from electrode data to continuous data is in itself an ill-posed problem.

A B A B A B A

Complete Electrode Model (CEM)

$$\begin{cases} \nabla \cdot (\sigma \nabla v) = 0 & \text{in } \Omega, \\ \sigma \frac{\partial v}{\partial n} = 0 & \text{on } S_1 \setminus \cup e_\ell \text{ and } S_2 \\ v + z_\ell \sigma \frac{\partial v}{\partial n} = V_\ell & \text{on } e_\ell, \ 1 \le \ell \le L \\ \int_{e_\ell} \sigma \frac{\partial v}{\partial n} dS = J_\ell, \quad 1 \le \ell \le L, \end{cases}$$
(1)

Conservation of charge requires

$$\sum_{\ell=1}^{L} J_{\ell} = 0.$$
 (2)

A B A B A B A

Data: Give $J \in \mathbb{R}^{L}$, measure $V \in \mathbb{R}^{L}$. Resistance matrix $\mathsf{R}_{\sigma} : J \mapsto V$.

Connection with DtN

Theorem

Given $J \in \mathbb{R}_0^L$ and $f \in H^{1/2}(\partial \Omega)$, let $(v, V) \in \mathscr{H} = H^1(\Omega) \times \mathbb{R}_0^L$ be the solution of the CEM problem with applied current pattern J. Then

$$\int_{\partial\Omega} v \Lambda_{\sigma} f dS + \sum_{\ell=1}^{L} \frac{1}{z_{\ell}} \int_{e_{\ell}} (f - W_{\ell}) (v - V_{\ell}) dS - \sum_{\ell=1}^{L} J_{\ell} W_{\ell} = 0, \quad (3)$$

for all $W \in \mathbb{R}_0^L$.

Connection with DtN, Matrix form

Orthonormal basis in $H^{1/2}(\partial \Omega)$:

$$\varphi_0(\theta) = \frac{1}{\sqrt{2\pi}}, \quad \varphi_{2j}(\theta) = \frac{1}{\sqrt{\pi j}}\cos j\theta, \quad \varphi_{2j-1}\theta = \frac{1}{\sqrt{\pi j}}\sin j\theta, \quad j = 1, 2, \dots$$

Matrix representation of Λ_{σ} :

$$(L_{\sigma})_{jk} = \int_{\partial\Omega} \varphi_j \Lambda_{\sigma} \varphi_k dS = \langle \varphi_j, \Lambda_{\sigma} \varphi_k \rangle, \quad 0 \leq j, k < \infty,$$

where

$$\mathsf{L}_{\sigma}:\ell^{2}\to\ell^{2}.$$

イロト イヨト イヨト

Connection with DtN, Matrix form

Orthonormal basis for current/voltage patterns:

$$(\Phi_m)_\ell = \sqrt{\frac{(2-\delta_{m,L/2})}{L}}\cos\frac{2\pi}{L}m(\ell-1), \quad 1 \leq \ell \leq L,$$

Representation of the resistance map in the basis Φ :

$$\widetilde{\mathsf{R}}_{\sigma} = \Phi^{\mathsf{T}}\mathsf{R}_{\sigma}\Phi \in \mathbb{R}^{(L-1) \times (L-1)},$$

Image: A match the second s

Some auxiliary matrices:

$$\begin{split} \mathsf{D}_{\ell\ell} &= \frac{|\boldsymbol{e}_{\ell}|}{z_{\ell}}, \quad 1 \leq \ell \leq L, \\ \mathsf{Y}_{j\ell} &= \frac{1}{|\boldsymbol{e}_{\ell}|} \int_{\boldsymbol{e}_{\ell}} \varphi_{j} dS, \quad 1 \leq \ell \leq L, \quad 0 \leq j < \infty, \\ \mathsf{M}_{jk} &= \sum_{\ell=1}^{L} \frac{1}{z_{\ell}} \int_{\boldsymbol{e}_{\ell}} \varphi_{j} \varphi_{k} dS, \quad 0 \leq j, k < \infty. \end{split}$$

・ロト ・回ト ・ヨト

Connection with DtN, Matrix form

Theorem

The matrices $L_{\sigma}: \ell^2 \to \ell^2$ and $R_{\sigma} \in \mathbb{R}^{L \times L}$ satisfy the identity

$$\Phi^{\mathsf{T}} \mathsf{D} \Phi - (\mathsf{Y} \mathsf{D} \Phi)^{\mathsf{T}} (\mathsf{L}_{\sigma} + \mathsf{M})^{-1} \mathsf{Y} \mathsf{D} \Phi = \widetilde{\mathsf{R}}_{\sigma}^{-1}, \tag{4}$$

where R_{σ} is the representation of the resistance map in the basis Φ ,

$$\widetilde{\mathsf{R}}_{\sigma} = \Phi^{\mathsf{T}} \mathsf{R}_{\sigma} \Phi \in \mathbb{R}^{(L-1) \times (L-1)},$$

- Computing R_{σ} from L_{σ} or its inverse is a well-posed problem
- The converse, estimating L_{σ} from R_{σ} is an ill-posed problem.
- For the stable layer stripping algorithm, only the stable form is necessary:

$$(\lambda_{(k)}, w_k) \mapsto w_0 \mapsto \mathsf{L}_{\sigma} \mapsto \mathsf{R}_{\sigma}.$$

• • • • • • • • • • • •

- Arnold A, Calvetti D and Somersalo E (2014) Parameter estimation for stiff deterministic systems via ensemble Kalman filter. Inverse Problems 30 : 105008.
- Calvetti D, Nakkireddy S and Somersalo E (2019) Layer stripping revisited: A Bayesian extension using sequential particle methods. Manuscript.
- Calvetti D, Nakkireddy S and Somersalo E (2019) Approximation of continuous EIT data from electrode measurements with Bayesian methods. Inverse Problems 35: 045012 (25pp).
- Schiff J and Shnider S (1999) A natural approach to the numerical integration of Riccati differential equations. SIAM J Num Anal 36:1392-1413.
- Somersalo E, Isaacson D, Cheney M and Isaacson E (1991) Layer stripping: A direct numerical method for impedance imaging. Inverse Problems 7 899–926.

イロト イ団ト イヨト イヨト