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Summary

» Motivations

» Calderon’s problem with a finite number of measurements:
global uniqueness and Lipschitz stability

» A general Lipschitz stability and reconstruction result.

G. S. Alberti, M. Santacesaria
Calderon’s inverse problem with a finite number of measurements,
preprint arXiv:1803.04224.

G. S. Alberti, M. Santacesaria
Infinite-dimensional inverse problems with finite measurements,

preprint arXiv (today at 18:00, Banff time),
ResearchGate DOI: 10.13140/RG.2.2.17756.03205.
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Given y = F(x), determine x.

» F: X — Y, where X, Y are Banach spaces.
» Assume the inverse problems can be solved.
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Given y = F(x), determine x.

» F: X — Y, where X, Y are Banach spaces.
» Assume the inverse problems can be solved.

[l — x2lx < gUIF(x1) — F(x2)]ly), © gt)~t, well-posed problem.

el O © g(t) ~ |log(t~1)|, ill-posed problem.

» Impose (reasonable) conditions on a ill-posed problem to make it well-posed.
» Study uniqueness from a discrete approximation of the data.
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EIT for brain stroke imaging
Joint project: Univ. Helsinki, Aalto, Tampere, Kuopio and Helsinki Hospital.

e ischemic stroke: lower conductivity.
Left: MRI image of ischemia (Hellerhoff
2010).

e haemorrhagic stroke: higher
conductivity.

e Same symptoms!
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EIT for brain stroke imaging
Joint project: Univ. Helsinki, Aalto, Tampere, Kuopio and Helsinki Hospital.

e ischemic stroke: lower conductivity.
Left: MRI image of ischemia (Hellerhoff
2010).

e haemorrhagic stroke: higher
conductivity.

e Same symptoms!

Challenges: resistive skull layer, unknown background.

Some existing work:

e Holder 1992,
e Shi et al, 2009,
e Malone et al., 2014.
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» Dc RY, d > 2: bounded Lipschitz domain
» o€ L*®(D), o(x) > op > 0: unknown conductivity
» Conductivity equation:

—div(oVu) =0 inD,
{ u=f on oD. M)
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» Dc RY, d > 2: bounded Lipschitz domain
» o€ L*®(D), o(x) > op > 0: unknown conductivity
» Conductivity equation:

—div(oVu) =0 inD,
{ u=f on oD. M)

» Dirichlet-to-Neumann (DN) map Ag : HY2(dD) — H-1/2(3D):
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» Dc RY, d > 2: bounded Lipschitz domain
» o€ L*®(D), o(x) > op > 0: unknown conductivity
» Conductivity equation:

—div(oVu) =0 inD,
{ u=f on oD. M)

» Dirichlet-to-Neumann (DN) map Ag : HY2(dD) — H-1/2(3D):

f:—)Ga

oD

Given Ay, determine o in D.
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Some known results

Basic questions:
» Uniqueness: injectivity of o — Ag
> stability estimates: continuity of Ag — o
> reconstruction algorithm

Theoretical contributions by: Calderén, Sylvester—Uhlmann, Nachman, Novikov,
Alessandrini, Astala-Pdivarinta, Haberman, Caro—Rogers and many others.
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Some known results

Basic questions:
» Uniqueness: injectivity of o — Ag
> stability estimates: continuity of Ag — o
> reconstruction algorithm

Theoretical contributions by: Calderén, Sylvester—Uhlmann, Nachman, Novikov,
Alessandrini, Astala-Pdivarinta, Haberman, Caro—Rogers and many others.

Usual reduction to the Gel’fand-Calderén inverse problem for the Schrédinger
equation
ou

(—A+ L])M =0 in D, /\q(u‘aD) = — ,
oV|ap

which will be considered for the next few slides.
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(~<A+qu=0 inD, o
{ u=f on oD, Aqglf) = V|5p

» Most results need an infinite number of measurement.
» The only exception is the reconstruction of a polygon from one measurement
[Friedman-Isakov 1989].

A=, v~ g

7/22



A finite number of measurements
(—A+qu=0 inD, _ Ou
{u:f on oD, Aq(f)_av oD

> Most results need an infinite number of measurement.
» The only exception is the reconstruction of a polygon from one measurement
[Friedman-Isakov 1989].

“Realistic” Calderén’s problem

A priori assumptions: g € Wy if
> g € W: known finite dimensional subspace of L*°(D);
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A finite number of measurements

(-A+qu=0 inD, _ Ou
{u:f on 0D, Aq(f)_aivaD'

> Most results need an infinite number of measurement.
» The only exception is the reconstruction of a polygon from one measurement
[Friedman-Isakov 1989].

“Realistic” Calderén’s problem

A priori assumptions: g € Wy if
> g € W: known finite dimensional subspace of L*°(D);
» 0 is not a Dirichlet eigenvalue for —A + g in D;

> [|gl[;(py < R for some R > 0. .



Nonlinear prolem - global uniqueness

Theorem 1 (G.S. Alberti, M.S. (2018))

Take d > 3 and let D C R be a bounded Lipschitz domain and W C L*°(D) be a finite
dimensional subspace. There exists N € IN such that for any R > 0 and q; € Wy, the
following is true.

There exist {fi)Y |, C H/2(3D) such that for any q» € W, if

Apfi=Apfi  1=1,...,N,

then
q1 = 92.

Similar result for Calderén’s problem as well.
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» Alessandrini’s identity to go from the boundary to the interior.

(& (A= No)f) q uguj‘l dx

H3(0D)xH 3(aD) JD
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» Alessandrini’s identity to go from the boundary to the interior.

(& (A= No)f) q uguj'l dx

H3(0D)xH 3(aD) JD

» Sylvester-Uhlmann CGO solutions: the complex parameters belong to a
countable subset of C“.
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Ideas of the proof

» Alessandrini’s identity to go from the boundary to the interior.

(& (Ag=Mof) s

0,4
H2(2D)xH 2 (2D) J ughy dx

» Sylvester-Uhlmann CGO solutions: the complex parameters belong to a
countable subset of C?. For k € Z%, take 1°(x) = e%* and CGO solution
uwi(x) = e“¥(1 4 ¥ (x)), with ¢, & € € such that

- =0, &+ =—2mik, |2y < /b
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Ideas of the proof

» Alessandrini’s identity to go from the boundary to the interior.

(& (Ag=Mof) s

0,4
H2(2D)xH 2 (2D) J {ugity dx

» Sylvester-Uhlmann CGO solutions: the complex parameters belong to a
countable subset of C?. For k € Z%, take 1°(x) = e%* and CGO solution
uwi(x) = e“¥(1 4 ¥ (x)), with ¢, & € € such that

- =0, &+ =—2mik, |2y < /b

> Order the frequencies: p: [ € N — k; € Z% (bijection)
> Define the nonlinear measurement operator U: L*([0, 1)) — {>° by

(Ulg) = jD gx)e X (1 4 4(x)) dx

» U = F + B, where, F Fourier transform, B is a contraction (t large)
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» The number of measurements N depends only on W through
[[(I = PN)FPwl[gc— 2 < 1/4.

> Relation with sampling theory: how many Fourier measurements does one
need to reconstruct a function in W?
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On the number of measurements N

» The number of measurements N depends only on W through
I —=PN)EPwl|gey 2 < 1/4.

» Relation with sampling theory: how many Fourier measurements does one
need to reconstruct a function in W?
» It allows for an explicit calculation of N:

> bandlimited potentials
N =dimW

> piecewise constant potentials
N = O((dim'W)*)

(up to log factors, and possibly not optimal)
> low-scale wavelets
N =0(dim'W)

(up to log factors, proven only in 1D, but easy generalization)
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On the number of measurements N

» The number of measurements N depends only on W through
I —=PN)EPwl|gey 2 < 1/4.

» Relation with sampling theory: how many Fourier measurements does one
need to reconstruct a function in W?
» It allows for an explicit calculation of N:

> bandlimited potentials
N =dimW

> piecewise constant potentials
N = O((dim'W)*)

(up to log factors, and possibly not optimal)
> low-scale wavelets
N = O(dim W)
(up to log factors, proven only in 1D, but easy generalization)
> The ordering of Z¢ is crucial
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(a) Linear ordering (b) Hyperbolic ordering (Jones,
Adcock, Hansen, 2017)
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Under the same assumptions, there exist {f}}; C H'/?(dD) such that for every q, € Wk,

we have :
CTJTAF“

|(Afi = A |

for some C > 0 depending only on D, R and «.

||q2 - q1||L2(D) <e H-1/2(aD)N
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Lipschitz stability

Theorem 2 (G.S. Alberti, M.S. (2018))

Under the same assumptions, there exist {fi}\_, C H'/2(dD) such that for every g, € Wg,

we have .
DR
CN

‘(qufl - Afhfl)llH
for some C > 0 depending only on D, R and .

92 — q1llr2(p)y < H-1/2(aD)N

> Several authors studied stability estimates with piece-wise constant
unknowns with the full DN map (Alessandrini, Beretta, Francini, Gaburro, de
Hoop, Scherzer, Sincich, Vessella...).

1
» The exponential N2 is consistent with previous work (Mandache) and is
related to the severe ill-posedness of this IP.
> We have also obtained a nonlinear reconstruction algorithm based on Banach
fixed point theorem.
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Intermezzo — open questions

» Two-dimensional case.

v

Is it possible to choose {f;}; independently of q? Yes [Harrach 2019]

v

More realistic models (e.g. complete electrode model), numerical
implementation.

v

Extensions to other infinite dimensional IP, e.g. inverse scattering, elasticity.
[Riiland-Sincich 2018] fractional Calderén problem.

v

General Lipschitz stability result for a class of ill-posed inverse problems.
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» Take a finite dimensional subset of piecewise analytic conductivities: the data
comes from the complete electrode model (CEM) and the input currents are
independent on the conductivities.
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[Harrach 2019] result

> Take a finite dimensional subset of piecewise analytic conductivities: the data
comes from the complete electrode model (CEM) and the input currents are
independent on the conductivities.

For the continuum model,

o1 — 02ll12(p) < Cl|Pgy (Ao, — Ac,)Poylli2(ap)—12(aD)

where PGN/\chGN is a finite dimensional Galerkin projection, /\U], is the
Neumann-to-Dirichlet map.
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[Harrach 2019] result

> Take a finite dimensional subset of piecewise analytic conductivities: the data
comes from the complete electrode model (CEM) and the input currents are
independent on the conductivities.

For the continuum model,

o1 — 02ll12(p) < Cl|Pgy (Ao, — Ac,)Poylli2(ap)—12(aD)

where PGN/\G]-PGN is a finite dimensional Galerkin projection, /\U]. is the
Neumann-to-Dirichlet map.

» No estimate on the number of measurements/projections N.

Can this be extended to more general inverse problems?
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» X, Y Banach spaces, A C X open set
» F: A — Y Fréchet differentiable with F’ continuous,
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Lipschitz stability with finite measurements: setting

> X, Y Banach spaces, A C X open set
» F: A — Y Fréchet differentiable with F’ continuous,

Discretization: Qn : Y — Y, N € IN, uniformly bounded (sup,, [|Qn|| < +00).

Examples:

> Y Hilbert space, {G;}jen exhaustive sequence of finite dimensional and nested
subspaces.

Qn = Pg, orthogonal projection onto Gy.
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> X, Y Banach spaces, A C X open set
» F: A — Y Fréchet differentiable with F’ continuous,

Discretization: Qn : Y — Y, N € IN, uniformly bounded (sup,, [|Qn|| < +00).

Examples:

> Y Hilbert space, {G;}jen exhaustive sequence of finite dimensional and nested
subspaces.

Qn = Pg, orthogonal projection onto Gy.

> Y = L(Y?', Y?) with Y!, Y2 Banach spaces. P%\, — Iy» and (le\])* — I1 strongly.
Qnl(y) = PZyPL.
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Let K C A be convex. Suppose there exists C > 0 such that

lx1 — x2l|x < CJ|F(x1) — F(x2)]|y, for xq,x, € K.
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Lipschitz stability with finite measurements: main result

Theorem 3 (G.S. Alberti, M.S. (2019))
Let K C A be convex. Suppose there exists C > 0 such that

l|lx1 — x2||x < C||F(x1) — F(x2) ||y, for xq,x, € K.

(i) If K € WnN A iscompact, where W is a finite dimensional subset of X and
lim (I—Qu)F'(§)t=0, EcATEW,
N—+o00

then

lim sy =0, sy = sup [|(I — Qn)F'(&)lw—y-
N—+o00 £ekK

(i) Ifsy < zc, then

llx1 — x2]|x <2C||Qn(F(x1)) — Qn(F(x2))|ly, x1,Xx € K.
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> Y Hilbert space, {G;}jcn exhaustive sequence of finite dimensional and nested
subspaces. Qn = Pg,, orthogonal projection onto Gy.

Since Qn — Iy strongly, the condition is satisfied.

17/22



The smoothing condition: limy_ (I — On)F'(E)T =0

> Y Hilbert space, {Gj}jen exhaustive sequence of finite dimensional and nested
subspaces. Qn = Pg,, orthogonal projection onto Gy.

Since Qn — Iy strongly, the condition is satisfied.

> Y = L.(Y!, Y?) with Y!, Y2 Banach spaces. P% — Iy» and (P};)* — Iy1 strongly.
Qnl(y) = PZyPL.

Assuming that F/(£)t: Y! — Y? is compact for every & € A, T € W then the
condition is satisfied.

17/22



N depends on the Lipschitz constant C for the full data and on the subspace W:

1
sup ||(I — QN)F' (&) lw—y < 2
€K

which can be explicitly computed in several cases.
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Example I: electrical impedance tomography
Let N be the Neumann-to-Dirichlet map and assume

log — GZHLOO(Q) < CHNdl - N02|’Lg(ag)_>Lg(aQ)r 01,02 € K,

where K is a compact subset of a finite dimensional subspace of L* conductivities
(L2(0Q) ={f € L*(0Q) : [ f ds = 0}). Then there exists N € IN such that

HO'l — 0'2”0O < 2C ||PN:N01PN _PNNUZPN|’L%(6Q)—>L%(6Q)’ 01,07 € K.
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Example I: electrical impedance tomography
Let N be the Neumann-to-Dirichlet map and assume

log — GZHLOO(Q) < CHNcrl - N02|’Lg(ag)_>Lg(aQ)r 01,02 € K,

where K is a compact subset of a finite dimensional subspace of L* conductivities
(L2(0Q) ={f € L*(0Q) : [ f ds = 0}). Then there exists N € IN such that

HO'l — 0'2”0O < 2C ||PNNU]PN _PNNUZPN|’L%(6Q)—>L%(6Q)' 01,07 € K.

Q C R? unit disk. Let Py be the projection on the trigonometric current patterns
sin(n0), cos(nb), forn < N, 0 € 0Q).

Then we have N = O(C?) (recall that for EIT C = O(exp(dim W))).

Note that this is significantly worse than reconstructing from traces of CGO
solutions, where N = O(dim W) in many cases.

19/22



Example II: inverse scattering

Au+KPn(x)u=0 inR3,
u=eked s in R3,
radiation condition for u®

> k > 01is the (fixed) wavenumber, d € S?,

» n e L*(R3; C) is the refractive index with Im(n) > 0 in R3 and
supp (1 —n) C B for some open ball B.

Problem. Given the far field u°(&,d) € L?(S? x S?) at fixed k > 0, find 7 in B.
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Example II: inverse scattering

Au+KPn(x)u=0 inR3,
u=eked s in R3,
radiation condition for u®

> k > 01is the (fixed) wavenumber, d € S?,

» n e L*(R3; C) is the refractive index with Im(n) > 0 in R3 and
supp (1 —n) C B for some open ball B.

Problem. Given the far field u°(&,d) € L?(S? x S?) at fixed k > 0, find 7 in B.

Assuming Lipschitz stability we can prove the same my measuring u* on a finite
number of points (%,d) € S* x S2.
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Reconstruction

Thanks to [de Hoop, Qiu, Scherzer 2012] we can show global convergence of
Landweber iteration in our setting.

Key idea: build a sufficiently fine lattice in the set of unknowns and find a good
initial guess for local convergence using the Lipschitz stability.
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Conclusions and open questions

» This can be applied to many inverse problems where the unknown belongs to
a finite dimensional space

> EIT for piecewise analytic conductivities,

> polygonal inclusions,

> piecewise constant on polygonal partition,

> Inverse boundary value problems for other PDEs,
> Inverse scattering.

» Some inverse problems where the unknown belong to a compact subspace,
> Increasing stability-type estimates for the Schrédinger equation.

» Connections with regularization by discretization.
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Conclusions and open questions

» This can be applied to many inverse problems where the unknown belongs to
a finite dimensional space

> EIT for piecewise analytic conductivities,

> polygonal inclusions,

> piecewise constant on polygonal partition,

> Inverse boundary value problems for other PDEs,
> Inverse scattering.

» Some inverse problems where the unknown belong to a compact subspace,
> Increasing stability-type estimates for the Schrédinger equation.

» Connections with regularization by discretization.

Thank you!
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