Infinite-dimensional inverse problems with finite measurements

Matteo Santacesaria

Department of Mathematics, University of Genoa

Reconstruction Methods in Inverse Problems Banff June 24, 2019

Joint with Giovanni S. Alberti

 Calderon's problem with a finite number of measurements: global uniqueness and Lipschitz stability

• A general Lipschitz stability and reconstruction result.

G. S. Alberti, M. Santacesaria *Calderón's inverse problem with a finite number of measurements,* preprint arXiv:1803.04224.

G. S. Alberti, M. Santacesaria *Infinite-dimensional inverse problems with finite measurements,* preprint arXiv (today at 18:00, Banff time), ResearchGate DOI: 10.13140/RG.2.2.17756.03205.

Inverse problem

Given y = F(x), determine x.

- $F: X \to Y$, where *X*, *Y* are Banach spaces.
- Assume the inverse problems can be solved.

Inverse problem

Given y = F(x), determine x.

- $F: X \to Y$, where *X*, *Y* are Banach spaces.
- Assume the inverse problems can be solved.

Stability estimate

 $||x_1 - x_2||_X \leq g(||F(x_1) - F(x_2)||_Y),$

where $g(t) \rightarrow 0$ as $t \mapsto 0^+$.

Inverse problem

Given y = F(x), determine x.

- ▶ $F: X \to Y$, where X, Y are Banach spaces.
- Assume the inverse problems can be solved.

Stability estimate

$$||x_1 - x_2||_X \leq g(||F(x_1) - F(x_2)||_Y),$$

where $g(t) \rightarrow 0$ as $t \mapsto 0^+$.

Two scenarios: \bigcirc $g(t) \approx t$, well-posed problem. (\dot{z})

$$g(t) \approx |\log(t^{-1})|^{-1}$$
, ill-posed problem.

Inverse problem

Given y = F(x), determine x.

- $F: X \to Y$, where *X*, *Y* are Banach spaces.
- Assume the inverse problems can be solved.

Stability estimate

$$||x_1 - x_2||_X \leq g(||F(x_1) - F(x_2)||_Y)$$

where $g(t) \rightarrow 0$ as $t \mapsto 0^+$.

Two scenarios: $\bigcirc g(t) \approx t$, well-posed problem. $\bigcirc g(t) \approx |\log(t^{-1})|^{-1}$, ill-posed problem.

- ► Impose (reasonable) conditions on a ill-posed problem to make it well-posed.
- Study uniqueness from a discrete approximation of the data.

EIT for brain stroke imaging

Joint project: Univ. Helsinki, Aalto, Tampere, Kuopio and Helsinki Hospital.

- ischemic stroke: lower conductivity. Left: MRI image of ischemia (Hellerhoff 2010).
- haemorrhagic stroke: higher conductivity.
- Same symptoms!

EIT for brain stroke imaging

Joint project: Univ. Helsinki, Aalto, Tampere, Kuopio and Helsinki Hospital.

- ischemic stroke: lower conductivity. Left: MRI image of ischemia (Hellerhoff 2010).
- haemorrhagic stroke: higher conductivity.
- Same symptoms!

Challenges: resistive skull layer, unknown background.

Some existing work:

- Holder 1992,
- Shi et al, 2009,
- Malone et al., 2014.

Calderón's problem for EIT

- $D \subset \mathbb{R}^d$, $d \ge 2$: bounded Lipschitz domain
- $\sigma \in L^{\infty}(D)$, $\sigma(x) \ge \sigma_0 > 0$: unknown conductivity
- Conductivity equation:

$$\begin{cases} -\operatorname{div}(\sigma\nabla u) = 0 & \text{ in } D, \\ u = f & \text{ on } \partial D. \end{cases}$$
(1)

Calderón's problem for EIT

- $D \subset \mathbb{R}^d$, $d \ge 2$: bounded Lipschitz domain
- $\sigma \in L^{\infty}(D)$, $\sigma(x) \ge \sigma_0 > 0$: unknown conductivity
- Conductivity equation:

$$\begin{cases} -\operatorname{div}(\sigma\nabla u) = 0 & \text{ in } D, \\ u = f & \text{ on } \partial D. \end{cases}$$
(1)

► Dirichlet-to-Neumann (DN) map Λ_{σ} : $H^{1/2}(\partial D) \rightarrow H^{-1/2}(\partial D)$:

$$f\longmapsto\sigma\left.\frac{\partial u}{\partial\nu}\right|_{\partial D}$$

Calderón's problem for EIT

- $D \subset \mathbb{R}^d$, $d \ge 2$: bounded Lipschitz domain
- $\sigma \in L^{\infty}(D)$, $\sigma(x) \ge \sigma_0 > 0$: unknown conductivity
- Conductivity equation:

$$\begin{cases} -\operatorname{div}(\sigma\nabla u) = 0 & \text{ in } D, \\ u = f & \text{ on } \partial D. \end{cases}$$
(1)

► Dirichlet-to-Neumann (DN) map Λ_{σ} : $H^{1/2}(\partial D) \rightarrow H^{-1/2}(\partial D)$:

$$f\longmapsto\sigma\left.\frac{\partial u}{\partial\nu}\right|_{\partial D}$$

Calderón's problem

Given Λ_{σ} , determine σ in *D*.

Basic questions:

- Uniqueness: injectivity of $\sigma \mapsto \Lambda_{\sigma}$
- stability estimates: continuity of $\Lambda_{\sigma} \mapsto \sigma$
- reconstruction algorithm

Theoretical contributions by: Calderón, Sylvester–Uhlmann, Nachman, Novikov, Alessandrini, Astala–Päivärinta, Haberman, Caro–Rogers and many others.

Basic questions:

- Uniqueness: injectivity of $\sigma \mapsto \Lambda_{\sigma}$
- stability estimates: continuity of $\Lambda_{\sigma} \mapsto \sigma$
- reconstruction algorithm

Theoretical contributions by: Calderón, Sylvester–Uhlmann, Nachman, Novikov, Alessandrini, Astala–Päivärinta, Haberman, Caro–Rogers and many others.

Usual reduction to the Gel'fand-Calderón inverse problem for the Schrödinger equation

$$(-\Delta + q)u = 0$$
 in D , $\Lambda_q(u|_{\partial D}) = \frac{\partial u}{\partial v}\Big|_{\partial D}$,

which will be considered for the next few slides.

$$\begin{cases} (-\Delta + q)u = 0 & \text{in } D, \\ u = f & \text{on } \partial D, \end{cases} \qquad \Lambda_q(f) = \frac{\partial u}{\partial \nu} \Big|_{\partial D}$$

- Most results need an infinite number of measurement.
- The only exception is the reconstruction of a polygon from one measurement [Friedman-Isakov 1989].

"Realistic" Calderón's problem

$$\{(f_l, \Lambda_q(f_l))\}_{l=1,\dots,N} \longrightarrow q$$

$$\begin{cases} (-\Delta + q)u = 0 & \text{in } D, \\ u = f & \text{on } \partial D, \end{cases} \qquad \Lambda_q(f) = \frac{\partial u}{\partial \nu} \Big|_{\partial D}$$

- Most results need an infinite number of measurement.
- The only exception is the reconstruction of a polygon from one measurement [Friedman-Isakov 1989].

"Realistic" Calderón's problem

$$\{(f_l, \Lambda_q(f_l))\}_{l=1,\dots,N} \longrightarrow q$$

A priori assumptions: $q \in W_R$ if

▶ $q \in W$: known finite dimensional subspace of $L^{\infty}(D)$;

$$\begin{cases} (-\Delta + q)u = 0 & \text{in } D, \\ u = f & \text{on } \partial D, \end{cases} \qquad \Lambda_q(f) = \frac{\partial u}{\partial \nu} \Big|_{\partial D}$$

- Most results need an infinite number of measurement.
- The only exception is the reconstruction of a polygon from one measurement [Friedman-Isakov 1989].

"Realistic" Calderón's problem

$$\{(f_l, \Lambda_q(f_l))\}_{l=1,\dots,N} \longrightarrow q$$

A priori assumptions: $q \in W_R$ if

- ▶ $q \in W$: known finite dimensional subspace of $L^{\infty}(D)$;
- 0 is not a Dirichlet eigenvalue for $-\Delta + q$ in *D*;

$$\begin{cases} (-\Delta + q)u = 0 & \text{in } D, \\ u = f & \text{on } \partial D, \end{cases} \qquad \Lambda_q(f) = \frac{\partial u}{\partial \nu} \Big|_{\partial D}$$

- Most results need an infinite number of measurement.
- The only exception is the reconstruction of a polygon from one measurement [Friedman-Isakov 1989].

"Realistic" Calderón's problem

$$\{(f_l, \Lambda_q(f_l))\}_{l=1,\dots,N} \quad \rightsquigarrow \quad q$$

A priori assumptions: $q \in W_R$ if

- ▶ $q \in W$: known finite dimensional subspace of $L^{\infty}(D)$;
- 0 is not a Dirichlet eigenvalue for $-\Delta + q$ in *D*;
- $||q||_{L^{\infty}(D)} \leq R$ for some R > 0.

Theorem 1 (G.S. Alberti, M.S. (2018))

Take $d \ge 3$ and let $D \subseteq \mathbb{R}^d$ be a bounded Lipschitz domain and $\mathcal{W} \subseteq L^{\infty}(D)$ be a finite dimensional subspace. There exists $N \in \mathbb{N}$ such that for any R > 0 and $q_1 \in \mathcal{W}_R$, the following is true.

There exist $\{f_l\}_{l=1}^N \subseteq H^{1/2}(\partial D)$ *such that for any* $q_2 \in W_R$ *, if*

$$\Lambda_{q_1}f_l=\Lambda_{q_2}f_l, \qquad l=1,\ldots,N,$$

then

$$q_1 = q_2.$$

Similar result for Calderón's problem as well.

• Alessandrini's identity to go from the boundary to the interior.

$$\langle g, (\Lambda_q - \Lambda_0) f \rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)} = \int_D q \, u_g^0 u_f^q \, dx$$

• Alessandrini's identity to go from the boundary to the interior.

$$\langle g, (\Lambda_q - \Lambda_0) f \rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)} = \int_D q \, u_g^0 u_f^q \, dx$$

► Sylvester-Uhlmann CGO solutions: the complex parameters belong to a *countable* subset of C^d.

Alessandrini's identity to go from the boundary to the interior.

$$\langle g, (\Lambda_q - \Lambda_0) f \rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)} = \int_D q \, u_g^0 u_f^q \, dx$$

► Sylvester-Uhlmann CGO solutions: the complex parameters belong to a *countable* subset of \mathbb{C}^d . For $k \in \mathbb{Z}^d$, take $u^0(x) = e^{\zeta_2^k \cdot x}$ and CGO solution $u^q(x) = e^{\zeta_1^k \cdot x}(1 + r^k(x))$, with $\zeta_1^k, \zeta_2^k \in \mathbb{C}^d$ such that $\zeta_j^k \cdot \zeta_j^k = 0$, $\zeta_1^k + \zeta_2^k = -2\pi i k$, $\|r^k\|_{L^2(\mathbb{T}^d)} \leq c/t_k$

Alessandrini's identity to go from the boundary to the interior.

$$\langle g, (\Lambda_q - \Lambda_0) f \rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)} = \int_D q \, u_g^0 u_f^q \, dx$$

- ► Sylvester-Uhlmann CGO solutions: the complex parameters belong to a *countable* subset of \mathbb{C}^d . For $k \in \mathbb{Z}^d$, take $u^0(x) = e^{\zeta_2^k \cdot x}$ and CGO solution $u^q(x) = e^{\zeta_1^k \cdot x}(1 + r^k(x))$, with $\zeta_1^k, \zeta_2^k \in \mathbb{C}^d$ such that $\zeta_j^k \cdot \zeta_j^k = 0$, $\zeta_1^k + \zeta_2^k = -2\pi i k$, $||r^k||_{L^2(\mathbb{T}^d)} \leq c/t_k$
- Order the frequencies: $\rho \colon l \in \mathbb{N} \mapsto k_l \in \mathbb{Z}^d$ (bijection)

Alessandrini's identity to go from the boundary to the interior.

$$\langle g, (\Lambda_q - \Lambda_0) f \rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)} = \int_D q \, u_g^0 u_f^q \, dx$$

- ► Sylvester-Uhlmann CGO solutions: the complex parameters belong to a *countable* subset of \mathbb{C}^d . For $k \in \mathbb{Z}^d$, take $u^0(x) = e^{\zeta_2^k \cdot x}$ and CGO solution $u^q(x) = e^{\zeta_1^k \cdot x}(1 + r^k(x))$, with $\zeta_1^k, \zeta_2^k \in \mathbb{C}^d$ such that $\zeta_j^k \cdot \zeta_j^k = 0$, $\zeta_1^k + \zeta_2^k = -2\pi i k$, $\|r^k\|_{L^2(\mathbb{T}^d)} \leq c/t_k$
- Order the frequencies: $\rho \colon l \in \mathbb{N} \mapsto k_l \in \mathbb{Z}^d$ (bijection)
- Define the nonlinear measurement operator $U: L^{\infty}([0, 1]^d) \to \ell^{\infty}$ by

$$(U(q))_{l} = \int_{D} q(x)e^{-2\pi i k_{l} \cdot x} (1 + r^{k_{l}}(x)) \, dx$$

• U = F + B, where, *F* Fourier transform, *B* is a contraction (t_k large)

On the number of measurements N

► The number of measurements *N* depends only on *W* through

 $\|(I-P_N)FP_{\mathcal{W}}\|_{\mathcal{H}\to\ell^2}\leqslant 1/4.$

Relation with sampling theory: how many Fourier measurements does one need to reconstruct a function in W?

On the number of measurements N

► The number of measurements *N* depends only on *W* through

 $\|(I-P_N)FP_{\mathcal{W}}\|_{\mathcal{H}\to\ell^2}\leqslant 1/4.$

- Relation with sampling theory: how many Fourier measurements does one need to reconstruct a function in W?
- ► It allows for an explicit calculation of *N*:
 - bandlimited potentials

 $N = \dim \mathcal{W}$

piecewise constant potentials

 $N = O((\dim \mathcal{W})^4)$

(up to log factors, and possibly not optimal)

Iow-scale wavelets

```
N = O(\dim \mathcal{W})
```

(up to log factors, proven only in 1D, but easy generalization)

On the number of measurements N

► The number of measurements *N* depends only on *W* through

 $\|(I-P_N)FP_{\mathcal{W}}\|_{\mathcal{H}\to\ell^2}\leqslant 1/4.$

- Relation with sampling theory: how many Fourier measurements does one need to reconstruct a function in W?
- ► It allows for an explicit calculation of *N*:
 - bandlimited potentials

 $N = \dim \mathcal{W}$

piecewise constant potentials

 $N = O((\dim \mathcal{W})^4)$

(up to log factors, and possibly not optimal)

Iow-scale wavelets

```
N = O(\dim \mathcal{W})
```

(up to log factors, proven only in 1D, but easy generalization)

• The ordering of \mathbb{Z}^d is crucial

Possible orderings of \mathbb{Z}^d

(a) Linear ordering

(b) Hyperbolic ordering (Jones, Adcock, Hansen, 2017)

Lipschitz stability

Theorem 2 (G.S. Alberti, M.S. (2018))

Under the same assumptions, there exist $\{f_l\}_{l=1}^N \subseteq H^{1/2}(\partial D)$ such that for every $q_2 \in W_R$, we have

$$\|q_2 - q_1\|_{L^2(D)} \leq e^{CN^{\frac{1}{2} + \alpha}} \left\| \left(\Lambda_{q_2} f_l - \Lambda_{q_1} f_l \right)_{l=1}^N \right\|_{H^{-1/2}(\partial D)^N}$$

for some C > 0 depending only on D, R and α .

Lipschitz stability

Theorem 2 (G.S. Alberti, M.S. (2018))

Under the same assumptions, there exist $\{f_l\}_{l=1}^N \subseteq H^{1/2}(\partial D)$ such that for every $q_2 \in W_R$, we have

$$\|q_2 - q_1\|_{L^2(D)} \leq e^{CN^{\frac{1}{2} + \alpha}} \left\| \left(\Lambda_{q_2} f_l - \Lambda_{q_1} f_l \right)_{l=1}^N \right\|_{H^{-1/2}(\partial D)^N}$$

for some C > 0 depending only on D, R and α .

- Several authors studied stability estimates with piece-wise constant unknowns with the full DN map (Alessandrini, Beretta, Francini, Gaburro, de Hoop, Scherzer, Sincich, Vessella...).
- The exponential $e^{CN^{\frac{1}{2}+\alpha}}$ is consistent with previous work (Mandache) and is related to the severe ill-posedness of this IP.
- We have also obtained a nonlinear reconstruction algorithm based on Banach fixed point theorem.

- ► Two-dimensional case.
- Is it possible to choose $\{f_l\}_l$ independently of *q*? Yes [Harrach 2019]
- More realistic models (e.g. complete electrode model), numerical implementation.
- Extensions to other infinite dimensional IP, e.g. inverse scattering, elasticity. [Rüland-Sincich 2018] fractional Calderón problem.
- General Lipschitz stability result for a class of ill-posed inverse problems.

For the continuum model,

$$\|\sigma_1 - \sigma_2\|_{L^2(D)} \leqslant C \|P_{G_N}(\Lambda_{\sigma_1} - \Lambda_{\sigma_2})P_{G_N}\|_{L^2(\partial D) \to L^2(\partial D)},$$

where $P_{G_N} \Lambda_{\sigma_j} P_{G_N}$ is a finite dimensional Galerkin projection, Λ_{σ_j} is the Neumann-to-Dirichlet map.

For the continuum model,

$$\|\sigma_1 - \sigma_2\|_{L^2(D)} \leqslant C \|P_{G_N}(\Lambda_{\sigma_1} - \Lambda_{\sigma_2})P_{G_N}\|_{L^2(\partial D) \to L^2(\partial D)},$$

where $P_{G_N} \Lambda_{\sigma_j} P_{G_N}$ is a finite dimensional Galerkin projection, Λ_{σ_j} is the Neumann-to-Dirichlet map.

► No estimate on the number of measurements/projections *N*.

For the continuum model,

$$\|\sigma_1-\sigma_2\|_{L^2(D)}\leqslant C\|P_{G_N}(\Lambda_{\sigma_1}-\Lambda_{\sigma_2})P_{G_N}\|_{L^2(\partial D)\to L^2(\partial D)},$$

where $P_{G_N} \Lambda_{\sigma_j} P_{G_N}$ is a finite dimensional Galerkin projection, Λ_{σ_j} is the Neumann-to-Dirichlet map.

► No estimate on the number of measurements/projections *N*.

Can this be extended to more general inverse problems?

Lipschitz stability with finite measurements: setting

- *X*, *Y* Banach spaces, $A \subseteq X$ open set
- $F : A \rightarrow Y$ Fréchet differentiable with F' continuous,

Lipschitz stability with finite measurements: setting

- *X*, *Y* Banach spaces, $A \subseteq X$ open set
- $F : A \rightarrow Y$ Fréchet differentiable with F' continuous,

Discretization: $Q_N : Y \to Y, N \in \mathbb{N}$, uniformly bounded (sup_N $||Q_N|| < +\infty$).

Examples:

Y Hilbert space, {G_j}_{j∈ℕ} exhaustive sequence of finite dimensional and nested subspaces.

 $Q_N = P_{G_N}$ orthogonal projection onto G_N .

Lipschitz stability with finite measurements: setting

- *X*, *Y* Banach spaces, $A \subseteq X$ open set
- $F : A \rightarrow Y$ Fréchet differentiable with F' continuous,

Discretization: $Q_N : Y \to Y, N \in \mathbb{N}$, uniformly bounded (sup_N $||Q_N|| < +\infty$).

Examples:

Y Hilbert space, {G_j}_{j∈ℕ} exhaustive sequence of finite dimensional and nested subspaces.

 $Q_N = P_{G_N}$ orthogonal projection onto G_N .

►
$$Y = \mathcal{L}_c(Y^1, Y^2)$$
 with Y^1, Y^2 Banach spaces. $P_N^2 \to I_{Y^2}$ and $(P_N^1)^* \to I_{Y^1}$ strongly.
 $Q_N(y) = P_N^2 y P_N^1.$

Lipschitz stability with finite measurements: main result

Theorem 3 (G.S. Alberti, M.S. (2019))

Let $K \subseteq A$ *be convex. Suppose there exists* C > 0 *such that*

$$||x_1 - x_2||_X \leq C ||F(x_1) - F(x_2)||_Y$$
, for $x_1, x_2 \in K$.

Lipschitz stability with finite measurements: main result

Theorem 3 (G.S. Alberti, M.S. (2019))

Let $K \subseteq A$ *be convex. Suppose there exists* C > 0 *such that*

$$||x_1 - x_2||_X \leq C ||F(x_1) - F(x_2)||_Y$$
, for $x_1, x_2 \in K$.

(i) If $K \subseteq W \cap A$ is compact, where W is a finite dimensional subset of X and

$$\lim_{N\to+\infty}(I-Q_N)F'(\xi)\tau=0,\qquad \xi\in A, \tau\in W,$$

then

(ii)

$$\lim_{N \to +\infty} s_N = 0, \qquad s_N = \sup_{\xi \in K} \|(I - Q_N)F'(\xi)\|_{W \to Y}.$$

If $s_N \leq \frac{1}{2C}$, then

 $||x_1 - x_2||_X \leq 2C ||Q_N(F(x_1)) - Q_N(F(x_2))||_Y, \quad x_1, x_2 \in K.$

The *smoothing* condition: $\lim_{N \to +\infty} (I - Q_N) F'(\xi) \tau = 0$

Y Hilbert space, {G_j}_{j∈ℕ} exhaustive sequence of finite dimensional and nested subspaces. Q_N = P_{G_N} orthogonal projection onto G_N.

Since $Q_N \rightarrow I_Y$ strongly, the condition is satisfied.

The *smoothing* condition: $\lim_{N \to +\infty} (I - Q_N) F'(\xi) \tau = 0$

Y Hilbert space, {G_j}_{j∈ℕ} exhaustive sequence of finite dimensional and nested subspaces. Q_N = P_{G_N} orthogonal projection onto G_N.

Since $Q_N \rightarrow I_Y$ strongly, the condition is satisfied.

•
$$Y = \mathcal{L}_c(Y^1, Y^2)$$
 with Y^1, Y^2 Banach spaces. $P_N^2 \to I_{Y^2}$ and $(P_N^1)^* \to I_{Y^1}$ strongly.
 $Q_N(y) = P_N^2 y P_N^1.$

Assuming that $F'(\xi)\tau : Y^1 \to Y^2$ is *compact* for every $\xi \in A, \tau \in W$ then the condition is satisfied.

N depends on the Lipschitz constant *C* for the full data and on the subspace *W*:

$$\sup_{\xi \in \mathcal{K}} \| (I - Q_N) F'(\xi) \|_{W \to Y} \leq \frac{1}{2C}$$

which can be explicitly computed in several cases.

Example I: electrical impedance tomography

Let \mathcal{N}_σ be the Neumann-to-Dirichlet map and assume

$$\|\sigma_1 - \sigma_2\|_{L^{\infty}(\Omega)} \leqslant C \|\mathcal{N}_{\sigma_1} - \mathcal{N}_{\sigma_2}\|_{L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega)}, \qquad \sigma_1, \sigma_2 \in K,$$

where *K* is a compact subset of a finite dimensional subspace of L^{∞} conductivities $(L^2_{\diamond}(\partial\Omega) = \{f \in L^2(\partial\Omega) : \int_{\partial\Omega} f \, ds = 0\})$. Then there exists $N \in \mathbb{N}$ such that

$$\|\sigma_1 - \sigma_2\|_{\infty} \leq 2C \|P_N \mathcal{N}_{\sigma_1} P_N - P_N \mathcal{N}_{\sigma_2} P_N\|_{L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega)}, \qquad \sigma_1, \sigma_2 \in K.$$

Example I: electrical impedance tomography

Let \mathcal{N}_σ be the Neumann-to-Dirichlet map and assume

$$\|\sigma_1 - \sigma_2\|_{L^{\infty}(\Omega)} \leq C \|\mathcal{N}_{\sigma_1} - \mathcal{N}_{\sigma_2}\|_{L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega)}, \qquad \sigma_1, \sigma_2 \in K,$$

where *K* is a compact subset of a finite dimensional subspace of L^{∞} conductivities $(L^2_{\diamond}(\partial\Omega) = \{f \in L^2(\partial\Omega) : \int_{\partial\Omega} f \, ds = 0\}$). Then there exists $N \in \mathbb{N}$ such that

$$\|\sigma_1 - \sigma_2\|_{\infty} \leq 2C \|P_N \mathcal{N}_{\sigma_1} P_N - P_N \mathcal{N}_{\sigma_2} P_N\|_{L^2_{\circ}(\partial\Omega) \to L^2_{\circ}(\partial\Omega)}, \qquad \sigma_1, \sigma_2 \in K.$$

 $\Omega \subseteq \mathbb{R}^2$ unit disk. Let P_N be the projection on the trigonometric current patterns $\sin(n\theta), \cos(n\theta)$, for $n \leq N, \theta \in \partial\Omega$.

Then we have $N = O(C^2)$ (recall that for EIT $C = O(\exp(\dim W))$).

Example I: electrical impedance tomography

Let \mathcal{N}_σ be the Neumann-to-Dirichlet map and assume

$$\|\sigma_1 - \sigma_2\|_{L^{\infty}(\Omega)} \leq C \|\mathcal{N}_{\sigma_1} - \mathcal{N}_{\sigma_2}\|_{L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega)}, \qquad \sigma_1, \sigma_2 \in K,$$

where *K* is a compact subset of a finite dimensional subspace of L^{∞} conductivities $(L^2_{\diamond}(\partial\Omega) = \{f \in L^2(\partial\Omega) : \int_{\partial\Omega} f \, ds = 0\}$). Then there exists $N \in \mathbb{N}$ such that

$$\|\sigma_1 - \sigma_2\|_{\infty} \leq 2C \|P_N \mathcal{N}_{\sigma_1} P_N - P_N \mathcal{N}_{\sigma_2} P_N\|_{L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega)}, \qquad \sigma_1, \sigma_2 \in K.$$

 $\Omega \subseteq \mathbb{R}^2$ unit disk. Let P_N be the projection on the trigonometric current patterns $\sin(n\theta), \cos(n\theta)$, for $n \leq N, \theta \in \partial\Omega$.

Then we have $N = O(C^2)$ (recall that for EIT $C = O(\exp(\dim W))$).

Note that this is significantly worse than reconstructing from traces of CGO solutions, where $N = O(\dim W)$ in many cases.

Example II: inverse scattering

$$\begin{array}{ll} \Delta u + k^2 n(x) u = 0 & \text{ in } \mathbb{R}^3, \\ u = e^{ikx \cdot d} + u^s & \text{ in } \mathbb{R}^3, \\ \text{ radiation condition for } u^s \end{array}$$

- k > 0 is the (fixed) wavenumber, $d \in S^2$,
- ▶ $n \in L^{\infty}(\mathbb{R}^3; \mathbb{C})$ is the refractive index with $\text{Im}(n) \ge 0$ in \mathbb{R}^3 and supp $(1 n) \subseteq B$ for some open ball *B*.

Problem. Given the far field $u_n^{\infty}(\hat{x}, d) \in L^2(S^2 \times S^2)$ at fixed k > 0, find *n* in *B*.

Example II: inverse scattering

$$\begin{array}{ll} \Delta u + k^2 n(x) u = 0 & \text{ in } \mathbb{R}^3, \\ u = e^{ikx \cdot d} + u^s & \text{ in } \mathbb{R}^3, \\ \text{ radiation condition for } u^s \end{array}$$

- k > 0 is the (fixed) wavenumber, $d \in S^2$,
- ▶ $n \in L^{\infty}(\mathbb{R}^3; \mathbb{C})$ is the refractive index with $\text{Im}(n) \ge 0$ in \mathbb{R}^3 and supp $(1 n) \subseteq B$ for some open ball *B*.

Problem. Given the far field $u_n^{\infty}(\hat{x}, d) \in L^2(S^2 \times S^2)$ at fixed k > 0, find *n* in *B*.

Assuming Lipschitz stability we can prove the same my measuring u^{∞} on a *finite number of points* $(\hat{x}, d) \in S^2 \times S^2$.

Thanks to [de Hoop, Qiu, Scherzer 2012] we can show *global* convergence of Landweber iteration in our setting.

Key idea: build a sufficiently fine lattice in the set of unknowns and find a good initial guess for local convergence using the Lipschitz stability.

Conclusions and open questions

- This can be applied to many inverse problems where the unknown belongs to a finite dimensional space
 - ► EIT for piecewise analytic conductivities,
 - polygonal inclusions,
 - piecewise constant on polygonal partition,
 - Inverse boundary value problems for other PDEs,
 - Inverse scattering.
- Some inverse problems where the unknown belong to a compact subspace,
 - ► *Increasing stability*-type estimates for the Schrödinger equation.
- Connections with regularization by discretization.

Conclusions and open questions

- This can be applied to many inverse problems where the unknown belongs to a finite dimensional space
 - ► EIT for piecewise analytic conductivities,
 - polygonal inclusions,
 - piecewise constant on polygonal partition,
 - Inverse boundary value problems for other PDEs,
 - Inverse scattering.
- Some inverse problems where the unknown belong to a compact subspace,
 - ► Increasing stability-type estimates for the Schrödinger equation.
- Connections with regularization by discretization.

Thank you!