Infinite-dimensional inverse problems with finite measurements

Matteo Santacesaria
Department of Mathematics,
University of Genoa

Reconstruction Methods in Inverse Problems
Banff
June 24, 2019

Joint with Giovanni S. Alberti

Summary

- Motivations
- Calderon's problem with a finite number of measurements: global uniqueness and Lipschitz stability
- A general Lipschitz stability and reconstruction result.
G. S. Alberti, M. Santacesaria

Calderón's inverse problem with a finite number of measurements, preprint arXiv:1803.04224.
G. S. Alberti, M. Santacesaria Infinite-dimensional inverse problems with finite measurements, preprint arXiv (today at 18:00, Banff time), ResearchGate DOI: 10.13140/RG.2.2.17756.03205.

Motivations

Inverse problem

Given $y=F(x)$, determine x.

- $F: X \rightarrow Y$, where X, Y are Banach spaces.
- Assume the inverse problems can be solved.

Motivations

Inverse problem

Given $y=F(x)$, determine x.

- $F: X \rightarrow Y$, where X, Y are Banach spaces.
- Assume the inverse problems can be solved.

Stability estimate

$\left\|x_{1}-x_{2}\right\|_{X} \leqslant g\left(\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\|_{Y}\right)$,
where $g(t) \rightarrow 0$ as $t \mapsto 0^{+}$.

Motivations

Inverse problem

Given $y=F(x)$, determine x.

- $F: X \rightarrow Y$, where X, Y are Banach spaces.
- Assume the inverse problems can be solved.

Stability estimate

$\left\|x_{1}-x_{2}\right\|_{X} \leqslant g\left(\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\|_{Y}\right)$, where $g(t) \rightarrow 0$ as $t \mapsto 0^{+}$.

Two scenarios:
(:) $g(t) \approx t, \quad$ well-posed problem.
$\odot g(t) \approx\left|\log \left(t^{-1}\right)\right|^{-1}, \quad$ ill-posed problem.

Motivations

Inverse problem

Given $y=F(x)$, determine x.

- $F: X \rightarrow Y$, where X, Y are Banach spaces.
- Assume the inverse problems can be solved.

Stability estimate

$\left\|x_{1}-x_{2}\right\|_{X} \leqslant g\left(\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\|_{Y}\right)$, where $g(t) \rightarrow 0$ as $t \mapsto 0^{+}$.

Two scenarios:

$$
\begin{aligned}
& :-(t) \approx t, \quad \text { well-posed problem. } \\
& :=g(t) \approx\left|\log \left(t^{-1}\right)\right|^{-1}, \text { ill-posed problem. }
\end{aligned}
$$

- Impose (reasonable) conditions on a ill-posed problem to make it well-posed.
- Study uniqueness from a discrete approximation of the data.

EIT for brain stroke imaging

Joint project: Univ. Helsinki, Aalto, Tampere, Kuopio and Helsinki Hospital.

- ischemic stroke: lower conductivity. Left: MRI image of ischemia (Hellerhoff 2010).
- haemorrhagic stroke: higher conductivity.
- Same symptoms!

EIT for brain stroke imaging

Joint project: Univ. Helsinki, Aalto, Tampere, Kuopio and Helsinki Hospital.

- ischemic stroke: lower conductivity. Left: MRI image of ischemia (Hellerhoff 2010).
- haemorrhagic stroke: higher conductivity.
- Same symptoms!

Challenges: resistive skull layer, unknown background.
Some existing work:

- Holder 1992,
- Shi et al, 2009,
- Malone et al., 2014.

Calderón's problem for EIT

- $D \subset \mathbb{R}^{d}, d \geqslant 2$: bounded Lipschitz domain
- $\sigma \in L^{\infty}(D), \sigma(x) \geqslant \sigma_{0}>0$: unknown conductivity
- Conductivity equation:

$$
\begin{cases}-\operatorname{div}(\sigma \nabla u)=0 & \text { in } D \tag{1}\\ u=f & \text { on } \partial D\end{cases}
$$

Calderón's problem for EIT

- $D \subset \mathbb{R}^{d}, d \geqslant 2$: bounded Lipschitz domain
- $\sigma \in L^{\infty}(D), \sigma(x) \geqslant \sigma_{0}>0$: unknown conductivity
- Conductivity equation:

$$
\begin{cases}-\operatorname{div}(\sigma \nabla u)=0 & \text { in } D \tag{1}\\ u=f & \text { on } \partial D\end{cases}
$$

- Dirichlet-to-Neumann (DN) map $\Lambda_{\sigma}: H^{1 / 2}(\partial D) \rightarrow H^{-1 / 2}(\partial D):$

$$
\left.f \longmapsto \sigma \frac{\partial u}{\partial v}\right|_{\partial D}
$$

Calderón's problem for EIT

- $D \subset \mathbb{R}^{d}, d \geqslant 2$: bounded Lipschitz domain
- $\sigma \in L^{\infty}(D), \sigma(x) \geqslant \sigma_{0}>0$: unknown conductivity
- Conductivity equation:

$$
\begin{cases}-\operatorname{div}(\sigma \nabla u)=0 & \text { in } D \tag{1}\\ u=f & \text { on } \partial D\end{cases}
$$

- Dirichlet-to-Neumann (DN) map $\Lambda_{\sigma}: H^{1 / 2}(\partial D) \rightarrow H^{-1 / 2}(\partial D):$

$$
\left.f \longmapsto \sigma \frac{\partial u}{\partial v}\right|_{\partial D}
$$

Calderón's problem

Given Λ_{σ}, determine σ in D.

Some known results

Basic questions:

- Uniqueness: injectivity of $\sigma \mapsto \Lambda_{\sigma}$
- stability estimates: continuity of $\Lambda_{\sigma} \mapsto \sigma$
- reconstruction algorithm

Theoretical contributions by: Calderón, Sylvester-Uhlmann, Nachman, Novikov, Alessandrini, Astala-Päivärinta, Haberman, Caro-Rogers and many others.

Some known results

Basic questions:

- Uniqueness: injectivity of $\sigma \mapsto \Lambda_{\sigma}$
- stability estimates: continuity of $\Lambda_{\sigma} \mapsto \sigma$
- reconstruction algorithm

Theoretical contributions by: Calderón, Sylvester-Uhlmann, Nachman, Novikov, Alessandrini, Astala-Päivärinta, Haberman, Caro-Rogers and many others.

Usual reduction to the Gel'fand-Calderón inverse problem for the Schrödinger equation

$$
(-\Delta+q) u=0 \quad \text { in } D, \quad \Lambda_{q}\left(\left.u\right|_{\partial D}\right)=\left.\frac{\partial u}{\partial v}\right|_{\partial D}
$$

which will be considered for the next few slides.

A finite number of measurements

$$
\left\{\begin{array}{ll}
(-\Delta+q) u=0 & \text { in } D, \\
u=f & \text { on } \partial D,
\end{array} \Lambda_{q}(f)=\left.\frac{\partial u}{\partial v}\right|_{\partial D}\right.
$$

- Most results need an infinite number of measurement.
- The only exception is the reconstruction of a polygon from one measurement [Friedman-Isakov 1989].
"Realistic" Calderón's problem

$$
\left\{\left(f_{l}, \Lambda_{q}\left(f_{l}\right)\right)\right\}_{l=1, \ldots, N} \quad \sim \quad q
$$

A finite number of measurements

$$
\left\{\begin{array}{ll}
(-\Delta+q) u=0 & \text { in } D, \\
u=f & \text { on } \partial D,
\end{array} \Lambda_{q}(f)=\left.\frac{\partial u}{\partial v}\right|_{\partial D}\right.
$$

- Most results need an infinite number of measurement.
- The only exception is the reconstruction of a polygon from one measurement [Friedman-Isakov 1989].
"Realistic" Calderón's problem

$$
\left\{\left(f_{l}, \wedge_{q}\left(f_{l}\right)\right)\right\}_{l=1, \ldots, N} \quad \sim \quad q
$$

A priori assumptions: $q \in \mathcal{W}_{R}$ if

- $q \in \mathcal{W}$: known finite dimensional subspace of $L^{\infty}(D)$;

A finite number of measurements

$$
\left\{\begin{array}{ll}
(-\Delta+q) u=0 & \text { in } D, \\
u=f & \text { on } \partial D,
\end{array} \quad \Lambda_{q}(f)=\left.\frac{\partial u}{\partial v}\right|_{\partial D}\right.
$$

- Most results need an infinite number of measurement.
- The only exception is the reconstruction of a polygon from one measurement [Friedman-Isakov 1989].
"Realistic" Calderón's problem

$$
\left\{\left(f_{l}, \wedge_{q}\left(f_{l}\right)\right)\right\}_{l=1, \ldots, N} \quad \sim \quad q
$$

A priori assumptions: $q \in \mathcal{W}_{R}$ if

- $q \in \mathcal{W}$: known finite dimensional subspace of $L^{\infty}(D)$;
- 0 is not a Dirichlet eigenvalue for $-\Delta+q$ in D;

A finite number of measurements

$$
\left\{\begin{array}{ll}
(-\Delta+q) u=0 & \text { in } D, \\
u=f & \text { on } \partial D,
\end{array} \quad \Lambda_{q}(f)=\left.\frac{\partial u}{\partial v}\right|_{\partial D}\right.
$$

- Most results need an infinite number of measurement.
- The only exception is the reconstruction of a polygon from one measurement [Friedman-Isakov 1989].
"Realistic" Calderón's problem

$$
\left\{\left(f_{l}, \wedge_{q}\left(f_{l}\right)\right)\right\}_{l=1, \ldots, N} \quad \sim \quad q
$$

A priori assumptions: $q \in \mathcal{W}_{R}$ if

- $q \in \mathcal{W}$: known finite dimensional subspace of $L^{\infty}(D)$;
- 0 is not a Dirichlet eigenvalue for $-\Delta+q$ in D;
- $\|q\|_{L^{\infty}(D)} \leqslant R$ for some $R>0$.

Nonlinear prolem - global uniqueness

Theorem 1 (G.S. Alberti, M.S. (2018))

Take $d \geqslant 3$ and let $D \subseteq \mathbb{R}^{d}$ be a bounded Lipschitz domain and $\mathcal{W} \subseteq L^{\infty}(D)$ be a finite dimensional subspace. There exists $N \in \mathbb{N}$ such that for any $R>0$ and $q_{1} \in \mathcal{W}_{R}$, the following is true.
There exist $\left\{f_{l} l_{l=1}^{N} \subseteq H^{1 / 2}(\partial D)\right.$ such that for any $q_{2} \in \mathcal{W}_{R}$, if

$$
\Lambda_{q_{1}} f_{l}=\Lambda_{q_{2}} f_{l}, \quad l=1, \ldots, N,
$$

then

$$
q_{1}=q_{2} .
$$

Similar result for Calderón's problem as well.

Ideas of the proof

- Alessandrini's identity to go from the boundary to the interior.

$$
\left\langle g,\left(\Lambda_{q}-\Lambda_{0}\right) f\right\rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)}=\int_{D} q u_{g}^{0} u_{f}^{q} d x
$$

Ideas of the proof

- Alessandrini's identity to go from the boundary to the interior.

$$
\left\langle g,\left(\Lambda_{q}-\Lambda_{0}\right) f\right\rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)}=\int_{D} q u_{g}^{0} u_{f}^{q} d x
$$

- Sylvester-Uhlmann CGO solutions: the complex parameters belong to a countable subset of \mathbb{C}^{d}.

Ideas of the proof

- Alessandrini's identity to go from the boundary to the interior.

$$
\left\langle g,\left(\Lambda_{q}-\Lambda_{0}\right) f\right\rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)}=\int_{D} q u_{g}^{0} u_{f}^{q} d x
$$

- Sylvester-Uhlmann CGO solutions: the complex parameters belong to a countable subset of \mathbb{C}^{d}. For $k \in \mathbb{Z}^{d}$, take $u^{0}(x)=e^{\zeta_{2}^{k} \cdot x}$ and CGO solution $u^{q}(x)=e^{\zeta_{1}^{k} \cdot x}\left(1+r^{k}(x)\right)$, with $\zeta_{1}^{k}, \zeta_{2}^{k} \in \mathbb{C}^{d}$ such that

$$
\zeta_{j}^{k} \cdot \zeta_{j}^{k}=0, \quad \zeta_{1}^{k}+\zeta_{2}^{k}=-2 \pi i k, \quad\left\|r^{k}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)} \leqslant c / t_{k}
$$

Ideas of the proof

- Alessandrini's identity to go from the boundary to the interior.

$$
\left\langle g,\left(\Lambda_{q}-\Lambda_{0}\right) f\right\rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)}=\int_{D} q u_{g}^{0} u_{f}^{q} d x
$$

- Sylvester-Uhlmann CGO solutions: the complex parameters belong to a countable subset of \mathbb{C}^{d}. For $k \in \mathbb{Z}^{d}$, take $u^{0}(x)=e^{\zeta_{2}^{k} \cdot x}$ and CGO solution $u^{q}(x)=e^{\zeta_{1}^{k} \cdot x}\left(1+r^{k}(x)\right)$, with $\zeta_{1}^{k}, \zeta_{2}^{k} \in \mathbb{C}^{d}$ such that

$$
\zeta_{j}^{k} \cdot \zeta_{j}^{k}=0, \quad \zeta_{1}^{k}+\zeta_{2}^{k}=-2 \pi i k, \quad\left\|r^{k}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)} \leqslant c / t_{k}
$$

- Order the frequencies: $\rho: l \in \mathbb{N} \mapsto k_{l} \in \mathbb{Z}^{d}$ (bijection)

Ideas of the proof

- Alessandrini's identity to go from the boundary to the interior.

$$
\left\langle g,\left(\Lambda_{q}-\Lambda_{0}\right) f\right\rangle_{H^{\frac{1}{2}}(\partial D) \times H^{-\frac{1}{2}}(\partial D)}=\int_{D} q u_{g}^{0} u_{f}^{q} d x
$$

- Sylvester-Uhlmann CGO solutions: the complex parameters belong to a countable subset of \mathbb{C}^{d}. For $k \in \mathbb{Z}^{d}$, take $u^{0}(x)=e^{\zeta_{2}^{k} \cdot x}$ and CGO solution $u^{q}(x)=e^{\zeta_{1}^{k} \cdot x}\left(1+r^{k}(x)\right)$, with $\zeta_{1}^{k}, \zeta_{2}^{k} \in \mathbb{C}^{d}$ such that

$$
\zeta_{j}^{k} \cdot \zeta_{j}^{k}=0, \quad \zeta_{1}^{k}+\zeta_{2}^{k}=-2 \pi i k, \quad\left\|r^{k}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)} \leqslant c / t_{k}
$$

- Order the frequencies: $\rho: l \in \mathbb{N} \mapsto k_{l} \in \mathbb{Z}^{d}$ (bijection)
- Define the nonlinear measurement operator $U: L^{\infty}\left([0,1]^{d}\right) \rightarrow \ell^{\infty}$ by

$$
(U(q))_{l}=\int_{D} q(x) e^{-2 \pi i k_{l} \cdot x}\left(1+r^{k_{l}}(x)\right) d x
$$

- $U=F+B$, where, F Fourier transform, B is a contraction $\left(t_{k}\right.$ large $)$

On the number of measurements N

- The number of measurements N depends only on \mathcal{W} through

$$
\left\|\left(I-P_{N}\right) F P_{\mathcal{W}}\right\|_{\mathcal{H} \rightarrow \ell^{2}} \leqslant 1 / 4 .
$$

- Relation with sampling theory: how many Fourier measurements does one need to reconstruct a function in \mathcal{W} ?

On the number of measurements N

- The number of measurements N depends only on \mathcal{W} through

$$
\left\|\left(I-P_{N}\right) F P_{\mathcal{W}}\right\|_{\mathcal{H} \rightarrow \ell^{2}} \leqslant 1 / 4 .
$$

- Relation with sampling theory: how many Fourier measurements does one need to reconstruct a function in \mathcal{W} ?
- It allows for an explicit calculation of N :
- bandlimited potentials

$$
N=\operatorname{dim} \mathcal{W}
$$

- piecewise constant potentials

$$
N=O\left((\operatorname{dim} \mathcal{W})^{4}\right)
$$

(up to log factors, and possibly not optimal)

- low-scale wavelets

$$
N=O(\operatorname{dim} \mathcal{W})
$$

(up to log factors, proven only in 1D, but easy generalization)

On the number of measurements N

- The number of measurements N depends only on \mathcal{W} through

$$
\left\|\left(I-P_{N}\right) F P_{\mathcal{W}}\right\|_{\mathcal{H} \rightarrow \ell^{2}} \leqslant 1 / 4 .
$$

- Relation with sampling theory: how many Fourier measurements does one need to reconstruct a function in \mathcal{W} ?
- It allows for an explicit calculation of N :
- bandlimited potentials

$$
N=\operatorname{dim} \mathcal{W}
$$

- piecewise constant potentials

$$
N=O\left((\operatorname{dim} \mathcal{W})^{4}\right)
$$

(up to log factors, and possibly not optimal)

- low-scale wavelets

$$
N=O(\operatorname{dim} \mathcal{W})
$$

(up to \log factors, proven only in 1D, but easy generalization)

- The ordering of \mathbb{Z}^{d} is crucial

Possible orderings of \mathbb{Z}^{d}

(a) Linear ordering

(b) Hyperbolic ordering (Jones, Adcock, Hansen, 2017)

Lipschitz stability

Theorem 2 (G.S. Alberti, M.S. (2018))

Under the same assumptions, there exist $\left\{f_{l}\right\}_{l=1}^{N} \subseteq H^{1 / 2}(\partial D)$ such that for every $q_{2} \in \mathcal{W}_{R}$, we have

$$
\left\|q_{2}-q_{1}\right\|_{L^{2}(D)} \leqslant e^{\mathrm{C} \mathrm{~N}^{\frac{1}{2}+\alpha}}\left\|\left(\Lambda_{q_{2}} f_{l}-\Lambda_{q_{1}} f_{l}\right)_{l=1}^{N}\right\|_{H^{-1 / 2}(\partial D)^{N}}
$$

for some $C>0$ depending only on D, R and α.

Lipschitz stability

Theorem 2 (G.S. Alberti, M.S. (2018))

Under the same assumptions, there exist $\left\{f_{l}\right\}_{l=1}^{N} \subseteq H^{1 / 2}(\partial D)$ such that for every $q_{2} \in \mathcal{W}_{R}$, we have

$$
\left\|q_{2}-q_{1}\right\|_{L^{2}(D)} \leqslant e^{\mathrm{C} \mathrm{~N}^{\frac{1}{2}+\alpha}}\left\|\left(\Lambda_{q_{2}} f_{l}-\Lambda_{q_{1}} f_{l}\right)_{l=1}^{N}\right\|_{H^{-1 / 2}(\partial D)^{N}}
$$

for some $C>0$ depending only on D, R and α.

- Several authors studied stability estimates with piece-wise constant unknowns with the full DN map (Alessandrini, Beretta, Francini, Gaburro, de Hoop, Scherzer, Sincich, Vessella...).
- The exponential $e^{\mathrm{CN}^{\frac{1}{2}+\alpha}}$ is consistent with previous work (Mandache) and is related to the severe ill-posedness of this IP.
- We have also obtained a nonlinear reconstruction algorithm based on Banach fixed point theorem.

Intermezzo - open questions

- Two-dimensional case.
- Is it possible to choose $\left\{f_{l}\right\}_{l}$ independently of q ? Yes [Harrach 2019]
- More realistic models (e.g. complete electrode model), numerical implementation.
- Extensions to other infinite dimensional IP, e.g. inverse scattering, elasticity. [Rüland-Sincich 2018] fractional Calderón problem.
- General Lipschitz stability result for a class of ill-posed inverse problems.

[Harrach 2019] result

- Take a finite dimensional subset of piecewise analytic conductivities: the data comes from the complete electrode model (CEM) and the input currents are independent on the conductivities.

[Harrach 2019] result

- Take a finite dimensional subset of piecewise analytic conductivities: the data comes from the complete electrode model (CEM) and the input currents are independent on the conductivities.

For the continuum model,

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{L^{2}(D)} \leqslant C\left\|P_{G_{N}}\left(\Lambda_{\sigma_{1}}-\Lambda_{\sigma_{2}}\right) P_{G_{N}}\right\|_{L^{2}(\partial D) \rightarrow L^{2}(\partial D)}
$$

where $P_{G_{N}} \Lambda_{\sigma_{j}} P_{G_{N}}$ is a finite dimensional Galerkin projection, $\Lambda_{\sigma_{j}}$ is the Neumann-to-Dirichlet map.

[Harrach 2019] result

- Take a finite dimensional subset of piecewise analytic conductivities: the data comes from the complete electrode model (CEM) and the input currents are independent on the conductivities.

For the continuum model,

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{L^{2}(D)} \leqslant C\left\|P_{G_{N}}\left(\Lambda_{\sigma_{1}}-\Lambda_{\sigma_{2}}\right) P_{G_{N}}\right\|_{L^{2}(\partial D) \rightarrow L^{2}(\partial D)}
$$

where $P_{G_{N}} \Lambda_{\sigma_{j}} P_{G_{N}}$ is a finite dimensional Galerkin projection, $\Lambda_{\sigma_{j}}$ is the Neumann-to-Dirichlet map.

- No estimate on the number of measurements/projections N.

[Harrach 2019] result

- Take a finite dimensional subset of piecewise analytic conductivities: the data comes from the complete electrode model (CEM) and the input currents are independent on the conductivities.

For the continuum model,

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{L^{2}(D)} \leqslant C\left\|P_{G_{N}}\left(\Lambda_{\sigma_{1}}-\Lambda_{\sigma_{2}}\right) P_{G_{N}}\right\|_{L^{2}(\partial D) \rightarrow L^{2}(\partial D)}
$$

where $P_{G_{N}} \Lambda_{\sigma_{j}} P_{G_{N}}$ is a finite dimensional Galerkin projection, $\Lambda_{\sigma_{j}}$ is the Neumann-to-Dirichlet map.

- No estimate on the number of measurements/projections N.

Can this be extended to more general inverse problems?

Lipschitz stability with finite measurements: setting

- X, Y Banach spaces, $A \subseteq X$ open set
- $F: A \rightarrow Y$ Fréchet differentiable with F^{\prime} continuous,

Lipschitz stability with finite measurements: setting

- X, Y Banach spaces, $A \subseteq X$ open set
- $F: A \rightarrow Y$ Fréchet differentiable with F^{\prime} continuous,

Discretization: $Q_{N}: Y \rightarrow Y, N \in \mathbb{N}$, uniformly bounded ($\left.\sup _{N}\left\|Q_{N}\right\|<+\infty\right)$.

Examples:

- Y Hilbert space, $\left\{G_{j}\right\}_{j \in \mathbb{N}}$ exhaustive sequence of finite dimensional and nested subspaces.

$$
Q_{N}=P_{G_{N}} \text { orthogonal projection onto } G_{N} .
$$

Lipschitz stability with finite measurements: setting

- X, Y Banach spaces, $A \subseteq X$ open set
- $F: A \rightarrow Y$ Fréchet differentiable with F^{\prime} continuous,

Discretization: $Q_{N}: Y \rightarrow Y, N \in \mathbb{N}$, uniformly bounded ($\left.\sup _{N}\left\|Q_{N}\right\|<+\infty\right)$.

Examples:

- Y Hilbert space, $\left\{G_{j}\right\}_{j \in \mathbb{N}}$ exhaustive sequence of finite dimensional and nested subspaces.

$$
Q_{N}=P_{G_{N}} \text { orthogonal projection onto } G_{N} .
$$

- $Y=\mathcal{L}_{c}\left(Y^{1}, Y^{2}\right)$ with Y^{1}, Y^{2} Banach spaces. $P_{N}^{2} \rightarrow I_{Y^{2}}$ and $\left(P_{N}^{1}\right)^{*} \rightarrow I_{Y^{1}}$ strongly.

$$
Q_{N}(y)=P_{N}^{2} y P_{N}^{1}
$$

Lipschitz stability with finite measurements: main result

Theorem 3 (G.S. Alberti, M.S. (2019))
Let $K \subseteq A$ be convex. Suppose there exists $C>0$ such that

$$
\left\|x_{1}-x_{2}\right\|_{X} \leqslant C\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\|_{Y}, \quad \text { for } x_{1}, x_{2} \in K
$$

Lipschitz stability with finite measurements: main result

Theorem 3 (G.S. Alberti, M.S. (2019))
Let $K \subseteq A$ be convex. Suppose there exists $C>0$ such that

$$
\left\|x_{1}-x_{2}\right\|_{X} \leqslant C\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\|_{Y}, \quad \text { for } x_{1}, x_{2} \in K
$$

(i) If $K \subseteq W \cap A$ is compact, where W is a finite dimensional subset of X and

$$
\lim _{N \rightarrow+\infty}\left(I-Q_{N}\right) F^{\prime}(\xi) \tau=0, \quad \xi \in A, \tau \in W
$$

then

$$
\lim _{N \rightarrow+\infty} s_{N}=0, \quad s_{N}=\sup _{\xi \in K}\left\|\left(I-Q_{N}\right) F^{\prime}(\xi)\right\|_{W \rightarrow \gamma}
$$

(ii) If $s_{N} \leqslant \frac{1}{2 C}$, then

$$
\left\|x_{1}-x_{2}\right\|_{X} \leqslant 2 C\left\|Q_{N}\left(F\left(x_{1}\right)\right)-Q_{N}\left(F\left(x_{2}\right)\right)\right\|_{Y}, \quad x_{1}, x_{2} \in K .
$$

The smoothing condition: $\lim _{N \rightarrow+\infty}\left(I-Q_{N}\right) F^{\prime}(\xi) \tau=0$

- Y Hilbert space, $\left\{G_{j}\right\}_{j \in \mathbb{N}}$ exhaustive sequence of finite dimensional and nested subspaces. $Q_{N}=P_{G_{N}}$ orthogonal projection onto G_{N}.

Since $Q_{N} \rightarrow I_{Y}$ strongly, the condition is satisfied.

The smoothing condition: $\lim _{N \rightarrow+\infty}\left(I-Q_{N}\right) F^{\prime}(\xi) \tau=0$

- Y Hilbert space, $\left\{G_{j}\right\}_{j \in \mathbb{N}}$ exhaustive sequence of finite dimensional and nested subspaces. $Q_{N}=P_{G_{N}}$ orthogonal projection onto G_{N}.

Since $Q_{N} \rightarrow I_{Y}$ strongly, the condition is satisfied.

- $Y=\mathcal{L}_{c}\left(Y^{1}, Y^{2}\right)$ with Y^{1}, Y^{2} Banach spaces. $P_{N}^{2} \rightarrow I_{Y^{2}}$ and $\left(P_{N}^{1}\right)^{*} \rightarrow I_{Y^{1}}$ strongly.

$$
Q_{N}(y)=P_{N}^{2} y P_{N}^{1} .
$$

Assuming that $F^{\prime}(\xi) \tau: Y^{1} \rightarrow Y^{2}$ is compact for every $\xi \in A, \tau \in W$ then the condition is satisfied.

On the number of measurements N

N depends on the Lipschitz constant C for the full data and on the subspace W :

$$
\sup _{\xi \in K}\left\|\left(I-Q_{N}\right) F^{\prime}(\xi)\right\|_{W \rightarrow Y} \leqslant \frac{1}{2 C}
$$

which can be explicitly computed in several cases.

Example I: electrical impedance tomography

Let \mathcal{N}_{σ} be the Neumann-to-Dirichlet map and assume

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{L^{\infty}(\Omega)} \leqslant C\left\|\mathcal{N}_{\sigma_{1}}-\mathcal{N}_{\sigma_{2}}\right\|_{L_{\Omega}^{2}(\partial \Omega) \rightarrow L_{\vartheta}^{2}(\partial \Omega)}, \quad \sigma_{1}, \sigma_{2} \in K
$$

where K is a compact subset of a finite dimensional subspace of L^{∞} conductivities $\left(L_{\diamond}^{2}(\partial \Omega)=\left\{f \in L^{2}(\partial \Omega): \int_{\partial \Omega} f d s=0\right\}\right)$. Then there exists $N \in \mathbb{N}$ such that

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{\infty} \leqslant 2 C\left\|P_{N} \mathcal{N}_{\sigma_{1}} P_{N}-P_{N} \mathcal{N}_{\sigma_{2}} P_{N}\right\|_{L_{\varepsilon}^{2}(\partial \Omega) \rightarrow L_{\odot}^{2}(\partial \Omega)^{\prime}} \quad \sigma_{1}, \sigma_{2} \in K
$$

Example I: electrical impedance tomography

Let \mathcal{N}_{σ} be the Neumann-to-Dirichlet map and assume

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{L^{\infty}(\Omega)} \leqslant C\left\|\mathcal{N}_{\sigma_{1}}-\mathcal{N}_{\sigma_{2}}\right\|_{L_{\Omega}^{2}(\partial \Omega) \rightarrow L_{\diamond}^{2}(\partial \Omega)}, \quad \sigma_{1}, \sigma_{2} \in K
$$

where K is a compact subset of a finite dimensional subspace of L^{∞} conductivities $\left(L_{\diamond}^{2}(\partial \Omega)=\left\{f \in L^{2}(\partial \Omega): \int_{\partial \Omega} f d s=0\right\}\right)$. Then there exists $N \in \mathbb{N}$ such that

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{\infty} \leqslant 2 C\left\|P_{N} \mathcal{N}_{\sigma_{1}} P_{N}-P_{N} \mathcal{N}_{\sigma_{2}} P_{N}\right\|_{L_{\imath}^{2}(\partial \Omega) \rightarrow L_{॰}^{2}(\partial \Omega)}, \quad \sigma_{1}, \sigma_{2} \in K
$$

$\Omega \subseteq \mathbb{R}^{2}$ unit disk. Let P_{N} be the projection on the trigonometric current patterns

$$
\sin (n \theta), \cos (n \theta), \text { for } n \leqslant N, \theta \in \partial \Omega
$$

Then we have $N=O\left(C^{2}\right)($ recall that for EIT $C=O(\exp (\operatorname{dim} W)))$.

Example I: electrical impedance tomography

Let \mathcal{N}_{σ} be the Neumann-to-Dirichlet map and assume

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{L^{\infty}(\Omega)} \leqslant C\left\|\mathcal{N}_{\sigma_{1}}-\mathcal{N}_{\sigma_{2}}\right\|_{L_{\Omega}^{2}(\partial \Omega) \rightarrow L_{\diamond}^{2}(\partial \Omega)}, \quad \sigma_{1}, \sigma_{2} \in K
$$

where K is a compact subset of a finite dimensional subspace of L^{∞} conductivities $\left(L_{\diamond}^{2}(\partial \Omega)=\left\{f \in L^{2}(\partial \Omega): \int_{\partial \Omega} f d s=0\right\}\right)$. Then there exists $N \in \mathbb{N}$ such that

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{\infty} \leqslant 2 C\left\|P_{N} \mathcal{N}_{\sigma_{1}} P_{N}-P_{N} \mathcal{N}_{\sigma_{2}} P_{N}\right\|_{L_{\imath}^{2}(\partial \Omega) \rightarrow L_{॰}^{2}(\partial \Omega)}, \quad \sigma_{1}, \sigma_{2} \in K
$$

$\Omega \subseteq \mathbb{R}^{2}$ unit disk. Let P_{N} be the projection on the trigonometric current patterns

$$
\sin (n \theta), \cos (n \theta), \text { for } n \leqslant N, \theta \in \partial \Omega
$$

Then we have $N=O\left(C^{2}\right)$ (recall that for EIT $C=O(\exp (\operatorname{dim} W))$).
Note that this is significantly worse than reconstructing from traces of CGO solutions, where $N=O(\operatorname{dim} W)$ in many cases.

Example II: inverse scattering

$$
\begin{cases}\Delta u+k^{2} n(x) u=0 & \text { in } \mathbb{R}^{3}, \\ u=e^{i k x \cdot d}+u^{s} & \text { in } \mathbb{R}^{3}, \\ \text { radiation condition for } u^{s} & \end{cases}
$$

- $k>0$ is the (fixed) wavenumber, $d \in S^{2}$,
- $n \in L^{\infty}\left(\mathbb{R}^{3} ; \mathbb{C}\right)$ is the refractive index with $\operatorname{Im}(n) \geqslant 0$ in \mathbb{R}^{3} and $\operatorname{supp}(1-n) \subseteq B$ for some open ball B.

Problem. Given the far field $u_{n}^{\infty}(\hat{x}, d) \in L^{2}\left(S^{2} \times S^{2}\right)$ at fixed $k>0$, find n in B.

Example II: inverse scattering

$$
\begin{cases}\Delta u+k^{2} n(x) u=0 & \text { in } \mathbb{R}^{3}, \\ u=e^{i k x \cdot d}+u^{s} & \text { in } \mathbb{R}^{3}, \\ \text { radiation condition for } u^{s} & \end{cases}
$$

- $k>0$ is the (fixed) wavenumber, $d \in S^{2}$,
- $n \in L^{\infty}\left(\mathbb{R}^{3} ; \mathbb{C}\right)$ is the refractive index with $\operatorname{Im}(n) \geqslant 0$ in \mathbb{R}^{3} and $\operatorname{supp}(1-n) \subseteq B$ for some open ball B.

Problem. Given the far field $u_{n}^{\infty}(\hat{x}, d) \in L^{2}\left(S^{2} \times S^{2}\right)$ at fixed $k>0$, find n in B.
Assuming Lipschitz stability we can prove the same my measuring u^{∞} on a finite number of points $(\hat{x}, d) \in S^{2} \times S^{2}$.

Reconstruction

Thanks to [de Hoop, Qiu, Scherzer 2012] we can show global convergence of Landweber iteration in our setting.

Key idea: build a sufficiently fine lattice in the set of unknowns and find a good initial guess for local convergence using the Lipschitz stability.

Conclusions and open questions

- This can be applied to many inverse problems where the unknown belongs to a finite dimensional space
- EIT for piecewise analytic conductivities,
- polygonal inclusions,
- piecewise constant on polygonal partition,
- Inverse boundary value problems for other PDEs,
- Inverse scattering.
- Some inverse problems where the unknown belong to a compact subspace,
- Increasing stability-type estimates for the Schrödinger equation.
- Connections with regularization by discretization.

Conclusions and open questions

- This can be applied to many inverse problems where the unknown belongs to a finite dimensional space
- EIT for piecewise analytic conductivities,
- polygonal inclusions,
- piecewise constant on polygonal partition,
- Inverse boundary value problems for other PDEs,
- Inverse scattering.
- Some inverse problems where the unknown belong to a compact subspace,
- Increasing stability-type estimates for the Schrödinger equation.
- Connections with regularization by discretization.

Thank you!

