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Summary

I Motivations

I Calderon’s problem with a finite number of measurements:
global uniqueness and Lipschitz stability

I A general Lipschitz stability and reconstruction result.
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Motivations

Inverse problem

Given y = F(x), determine x.

I F : X→ Y, where X, Y are Banach spaces.
I Assume the inverse problems can be solved.

Stability estimate

‖x1 − x2‖X 6 g(‖F(x1) − F(x2)‖Y),

where g(t)→ 0 as t 7→ 0+.

Two scenarios:
, g(t) ≈ t, well-posed problem.

/ g(t) ≈ | log(t−1)|−1, ill-posed problem.

I Impose (reasonable) conditions on a ill-posed problem to make it well-posed.
I Study uniqueness from a discrete approximation of the data.
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EIT for brain stroke imaging

Joint project: Univ. Helsinki, Aalto, Tampere, Kuopio and Helsinki Hospital.

• ischemic stroke: lower conductivity.
Left: MRI image of ischemia (Hellerhoff
2010).

• haemorrhagic stroke: higher
conductivity.

• Same symptoms!

Challenges: resistive skull layer, unknown background.

Some existing work:
• Holder 1992,
• Shi et al, 2009,
• Malone et al., 2014.
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Calderón’s problem for EIT

I D ⊂ Rd, d > 2: bounded Lipschitz domain
I σ ∈ L∞(D), σ(x) > σ0 > 0: unknown conductivity
I Conductivity equation: {

−div(σ∇u) = 0 in D,
u = f on ∂D. (1)

I Dirichlet-to-Neumann (DN) map Λσ : H1/2(∂D)→ H−1/2(∂D):

f 7−→ σ
∂u
∂ν

∣∣∣∣
∂D

Calderón’s problem

Given Λσ, determine σ in D.
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Some known results

Basic questions:
I Uniqueness: injectivity of σ 7→ Λσ

I stability estimates: continuity of Λσ 7→ σ

I reconstruction algorithm
Theoretical contributions by: Calderón, Sylvester–Uhlmann, Nachman, Novikov,
Alessandrini, Astala–Päivärinta, Haberman, Caro–Rogers and many others.

Usual reduction to the Gel’fand-Calderón inverse problem for the Schrödinger
equation

(−∆+ q)u = 0 in D, Λq(u|∂D) =
∂u
∂ν

∣∣∣∣
∂D

,

which will be considered for the next few slides.
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A finite number of measurements

{
(−∆+ q)u = 0 in D,
u = f on ∂D, Λq(f ) =

∂u
∂ν

∣∣∣∣
∂D

.

I Most results need an infinite number of measurement.
I The only exception is the reconstruction of a polygon from one measurement

[Friedman-Isakov 1989].

“Realistic” Calderón’s problem

{(fl,Λq(fl))}l=1,...,N ; q

A priori assumptions: q ∈WR if
I q ∈W: known finite dimensional subspace of L∞(D);
I 0 is not a Dirichlet eigenvalue for −∆+ q in D;
I ‖q‖L∞(D) 6 R for some R > 0.
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Nonlinear prolem - global uniqueness

Theorem 1 (G.S. Alberti, M.S. (2018))

Take d > 3 and let D ⊆ Rd be a bounded Lipschitz domain and W ⊆ L∞(D) be a finite
dimensional subspace. There exists N ∈N such that for any R > 0 and q1 ∈WR, the
following is true.

There exist {fl}Nl=1 ⊆ H1/2(∂D) such that for any q2 ∈WR, if

Λq1 fl = Λq2 fl, l = 1, . . . , N,

then
q1 = q2.

Similar result for Calderón’s problem as well.
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Ideas of the proof

I Alessandrini’s identity to go from the boundary to the interior.

〈g, (Λq −Λ0)f 〉H 1
2 (∂D)×H− 1

2 (∂D)
=

∫
D

q u0
guq

f dx

I Sylvester-Uhlmann CGO solutions: the complex parameters belong to a
countable subset of Cd. For k ∈ Zd, take u0(x) = eζ

k
2·x and CGO solution

uq(x) = eζ
k
1·x(1 + rk(x)), with ζk

1, ζk
2 ∈ C

d such that

ζk
j · ζ

k
j = 0, ζk

1 + ζ
k
2 = −2πik, ‖rk‖L2(Td) 6 c/tk

I Order the frequencies: ρ : l ∈N 7→ kl ∈ Zd (bijection)
I Define the nonlinear measurement operator U : L∞([0, 1]d)→ `∞ by

(U(q))l =

∫
D

q(x)e−2πikl·x(1 + rkl(x)) dx

I U = F + B, where, F Fourier transform, B is a contraction (tk large)
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On the number of measurements N

I The number of measurements N depends only on W through

‖(I − PN)FPW‖H→`2 6 1/4.

I Relation with sampling theory: how many Fourier measurements does one
need to reconstruct a function in W?

I It allows for an explicit calculation of N:
I bandlimited potentials

N = dimW

I piecewise constant potentials

N = O((dimW)4)

(up to log factors, and possibly not optimal)
I low-scale wavelets

N = O(dimW)

(up to log factors, proven only in 1D, but easy generalization)
I The ordering of Zd is crucial
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Possible orderings of Zd

(a) Linear ordering
−40 −30 −20 −10 0 10 20 30 40

−40

−30

−20

−10

0

10

20

30

40

5

10

15

20

25

30

35

(b) Hyperbolic ordering (Jones,
Adcock, Hansen, 2017)
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Lipschitz stability

Theorem 2 (G.S. Alberti, M.S. (2018))

Under the same assumptions, there exist {fl}Nl=1 ⊆ H1/2(∂D) such that for every q2 ∈WR,
we have

‖q2 − q1‖L2(D) 6 eCN
1
2 +α

∥∥∥(Λq2 fl −Λq1 fl
)N

l=1

∥∥∥
H−1/2(∂D)N

for some C > 0 depending only on D, R and α.

I Several authors studied stability estimates with piece-wise constant
unknowns with the full DN map (Alessandrini, Beretta, Francini, Gaburro, de
Hoop, Scherzer, Sincich, Vessella...).

I The exponential eCN
1
2 +α

is consistent with previous work (Mandache) and is
related to the severe ill-posedness of this IP.

I We have also obtained a nonlinear reconstruction algorithm based on Banach
fixed point theorem.
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Intermezzo – open questions

I Two-dimensional case.

I Is it possible to choose {fl}l independently of q? Yes [Harrach 2019]

I More realistic models (e.g. complete electrode model), numerical
implementation.

I Extensions to other infinite dimensional IP, e.g. inverse scattering, elasticity.
[Rüland-Sincich 2018] fractional Calderón problem.

I General Lipschitz stability result for a class of ill-posed inverse problems.
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[Harrach 2019] result

I Take a finite dimensional subset of piecewise analytic conductivities: the data
comes from the complete electrode model (CEM) and the input currents are
independent on the conductivities.

For the continuum model,

‖σ1 − σ2‖L2(D) 6 C‖PGN(Λσ1 −Λσ2)PGN‖L2(∂D)→L2(∂D),

where PGNΛσjPGN is a finite dimensional Galerkin projection, Λσj is the
Neumann-to-Dirichlet map.

I No estimate on the number of measurements/projections N.

Can this be extended to more general inverse problems?
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Lipschitz stability with finite measurements: setting

I X, Y Banach spaces, A ⊆ X open set
I F : A→ Y Fréchet differentiable with F ′ continuous,

Discretization: QN : Y→ Y, N ∈N, uniformly bounded (supN ‖QN‖ < +∞).

Examples:
I Y Hilbert space, {Gj}j∈N exhaustive sequence of finite dimensional and nested

subspaces.
QN = PGN orthogonal projection onto GN.

I Y = Lc(Y1, Y2) with Y1, Y2 Banach spaces. P2
N → IY2 and (P1

N)
∗ → IY1 strongly.

QN(y) = P2
NyP1

N.
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Lipschitz stability with finite measurements: main result

Theorem 3 (G.S. Alberti, M.S. (2019))

Let K ⊆ A be convex. Suppose there exists C > 0 such that

‖x1 − x2‖X 6 C‖F(x1) − F(x2)‖Y, for x1, x2 ∈ K.

(i) If K ⊆W ∩ A is compact, where W is a finite dimensional subset of X and

lim
N→+∞(I − QN)F ′(ξ)τ = 0, ξ ∈ A, τ ∈W,

then
lim

N→+∞ sN = 0, sN = sup
ξ∈K
‖(I − QN)F ′(ξ)‖W→Y.

(ii) If sN 6 1
2C , then

‖x1 − x2‖X 6 2C‖QN(F(x1)) − QN(F(x2))‖Y, x1, x2 ∈ K.
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The smoothing condition: limN→+∞(I − QN)F ′(ξ)τ = 0

I Y Hilbert space, {Gj}j∈N exhaustive sequence of finite dimensional and nested
subspaces. QN = PGN orthogonal projection onto GN.

Since QN → IY strongly, the condition is satisfied.

I Y = Lc(Y1, Y2) with Y1, Y2 Banach spaces. P2
N → IY2 and (P1

N)
∗ → IY1 strongly.

QN(y) = P2
NyP1

N.

Assuming that F ′(ξ)τ : Y1 → Y2 is compact for every ξ ∈ A, τ ∈W then the
condition is satisfied.
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On the number of measurements N

N depends on the Lipschitz constant C for the full data and on the subspace W:

sup
ξ∈K
‖(I − QN)F ′(ξ)‖W→Y 6

1
2C

which can be explicitly computed in several cases.
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Example I: electrical impedance tomography

Let Nσ be the Neumann-to-Dirichlet map and assume

‖σ1 − σ2‖L∞(Ω) 6 C‖Nσ1 −Nσ2‖L2
�(∂Ω)→L2

�(∂Ω), σ1,σ2 ∈ K,

where K is a compact subset of a finite dimensional subspace of L∞ conductivities
(L2
�(∂Ω) = {f ∈ L2(∂Ω) :

∫
∂Ω f ds = 0}). Then there exists N ∈N such that

‖σ1 − σ2‖∞ 6 2C ‖PNNσ1PN − PNNσ2PN‖L2
�(∂Ω)→L2

�(∂Ω), σ1,σ2 ∈ K.

Ω ⊆ R2 unit disk. Let PN be the projection on the trigonometric current patterns

sin(nθ), cos(nθ), for n 6 N, θ ∈ ∂Ω.

Then we have N = O(C2) (recall that for EIT C = O(exp(dim W))).

Note that this is significantly worse than reconstructing from traces of CGO
solutions, where N = O(dim W) in many cases.
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Example II: inverse scattering


∆u + k2n(x)u = 0 in R3,
u = eikx·d + us in R3,
radiation condition for us

I k > 0 is the (fixed) wavenumber, d ∈ S2,
I n ∈ L∞(R3;C) is the refractive index with Im(n) > 0 in R3 and

supp (1 − n) ⊆ B for some open ball B.

Problem. Given the far field u∞n (x̂, d) ∈ L2(S2 × S2) at fixed k > 0, find n in B.

Assuming Lipschitz stability we can prove the same my measuring u∞ on a finite
number of points (x̂, d) ∈ S2 × S2.

20 / 22



Example II: inverse scattering


∆u + k2n(x)u = 0 in R3,
u = eikx·d + us in R3,
radiation condition for us

I k > 0 is the (fixed) wavenumber, d ∈ S2,
I n ∈ L∞(R3;C) is the refractive index with Im(n) > 0 in R3 and

supp (1 − n) ⊆ B for some open ball B.

Problem. Given the far field u∞n (x̂, d) ∈ L2(S2 × S2) at fixed k > 0, find n in B.

Assuming Lipschitz stability we can prove the same my measuring u∞ on a finite
number of points (x̂, d) ∈ S2 × S2.

20 / 22



Reconstruction

Thanks to [de Hoop, Qiu, Scherzer 2012] we can show global convergence of
Landweber iteration in our setting.

Key idea: build a sufficiently fine lattice in the set of unknowns and find a good
initial guess for local convergence using the Lipschitz stability.
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Conclusions and open questions

I This can be applied to many inverse problems where the unknown belongs to
a finite dimensional space
I EIT for piecewise analytic conductivities,
I polygonal inclusions,
I piecewise constant on polygonal partition,
I Inverse boundary value problems for other PDEs,
I Inverse scattering.

I Some inverse problems where the unknown belong to a compact subspace,
I Increasing stability-type estimates for the Schrödinger equation.

I Connections with regularization by discretization.

Thank you!
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