Reduced order models for spectral domain inversion: Embedding into the continuous problem and generation of internal data.

L. Borcea ¹ V. Druskin ² A. Mamonov ³ S. Moskow ⁴ M. Zaslavsky ⁵

¹University of Michigan

²WPI

³University of Houston

⁴Drexel University

⁵Schlumberger-Doll Research

Banff, Canada, June 27, 2019

S. Moskow (Drexel University) Spectral inversion and Galerkin equivalence

• Reduced order models to solve inverse problems

- 一司

э

- Reduced order models to solve inverse problems
- Inherent ill-posedness in classical inverse problems

- Reduced order models to solve inverse problems
- Inherent ill-posedness in classical inverse problems
- Difficult to do direct inversion methods on standard discretizations since small errors in forward models lead to large errors in inversion

- Reduced order models to solve inverse problems
- Inherent ill-posedness in classical inverse problems
- Difficult to do direct inversion methods on standard discretizations since small errors in forward models lead to large errors in inversion
- Possible fix: spectrally converging reduced order forward models (ROMs).

- Reduced order models to solve inverse problems
- Inherent ill-posedness in classical inverse problems
- Difficult to do direct inversion methods on standard discretizations since small errors in forward models lead to large errors in inversion
- Possible fix: spectrally converging reduced order forward models (ROMs).
- Approach: Find reduced order forward model that matches data exactly, extract unknown coefficient from the ROM

Consider solving

$$-u'' + q(x)u + \lambda u = 0$$
 for x on (0,1)
 $-u'(0) = 1$
 $u(1) = 0$

- Define the transfer function $F(\lambda) := u(0)$.
- Read data at *m* spectral points $\{F(\lambda), F'(\lambda) : \lambda = b_1, \dots, b_m\}$, want to determine *q*

• Consider the variational form for above for

$$V = \{\phi \in H^1(0,1) | \phi(1) = 0\},\$$

Find $u \in V$ such that

$$\int_{0}^{1} u' \phi' + \int_{0}^{1} q u \phi + \lambda \int_{0}^{1} u \phi = \phi(0)$$

for all $\phi \in V$

- Pretend we were to have exact solutions to above u₁,..., u_m corresponding to spectral points λ = b₁,... b_m.
- We could construct the subspace

$$U = \operatorname{span}\{u_1, \ldots, u_m\}$$

and find the Galerkin solution

• $u_G \in U$ such that

$$\int_{0}^{1} u'_{G} \phi' + \int_{0}^{1} q u_{G} \phi + \lambda \int_{0}^{1} u_{G} \phi = \phi(0)$$
 (1)

for any $\phi \in U$.

• Searching for the unknown coefficients $\{c_i\}$ for the solution

$$u_G = \sum_{i=1}^m c_i u_i$$

and by setting $\phi = u_j$ we get

$$M_{ij}=\int_0^1 u_i u_j$$

and

$$S_{ij}=\int_0^1 u_i'u_j'+\int_0^1 qu_iu_j.$$

the mass and stiffness matrices.

• Searching for the unknown coefficients $\{c_i\}$ for the solution

$$u_G = \sum_{i=1}^m c_i u_i$$
$$M_{ij} = \int_0^1 u_i u_j$$

and

$$S_{ij} = \int_0^1 u'_i u'_j + \int_0^1 q u_i u_j.$$

• For forward solution would solve $(S + \lambda M)\vec{c} = \vec{F}$ where $F_i = F(b_i) = u_i(0)$.

• Given data
$$\{F(b_j), F'(b_j) : j = 1, ..., m\}$$
,

- Given data $\{F(b_j), F'(b_j) : j = 1, ..., m\}$,
- Use (1) with $u = u_i$ and $\phi = u_j$ to obtain

$$S_{ij} + b_i M_{ij} = u_j(0) = F(b_j)$$
 for all $i, j = 1, \dots, m.$ (2)

- Given data $\{F(b_j), F'(b_j) : j = 1, ..., m\}$,
- Use (1) with $u = u_i$ and $\phi = u_j$ to obtain

$$S_{ij} + b_i M_{ij} = u_j(0) = F(b_j)$$
 for all $i, j = 1, \dots, m.$ (2)

• By reversing *i* and *j* and subtracting, for $i \neq j$ we have

$$(b_i - b_j)M_{ij} = F(b_j) - F(b_i)$$

or

$$M_{ij} = \frac{F(b_j) - F(b_i)}{b_i - b_j}$$
(3)

• Taking spectral point $z \rightarrow b_i$, we obtain

$$M_{ii} = -F'(b_i). \tag{4}$$

• Taking spectral point $z \rightarrow b_i$, we obtain

$$M_{ii} = -F'(b_i). \tag{4}$$

• Multiplying (2) by b_j , reversing *i* and *j* and subtracting, we get

$$(b_j - b_i)S_{ij} = b_jF(b_j) - b_iF(b_i)$$

or

$$S_{ij} = \frac{b_j F(b_j) - b_i F(b_i)}{b_j - b_i}$$
(5)

э

• and taking spectral point $z \rightarrow b_i$,

$$S_{ii} = (\lambda F)'(b_i). \tag{6}$$

• and taking spectral point $z \rightarrow b_i$,

$$S_{ii} = (\lambda F)'(b_i). \tag{6}$$

• These formulas are well known in the model reduction community.

• and taking spectral point $z \rightarrow b_i$,

$$S_{ii} = (\lambda F)'(b_i). \tag{6}$$

- These formulas are well known in the model reduction community.
- The Galerkin model of small size *m*, *S*, *M* is obtained directly from the data.

• and taking spectral point $z \rightarrow b_i$,

$$S_{ii} = (\lambda F)'(b_i). \tag{6}$$

- These formulas are well known in the model reduction community.
- The Galerkin model of small size *m*, *S*, *M* is obtained directly from the data.
- This Galerkin discretization of the pde has solutions which match the data exactly.

S. Moskow (Drexel University) Spectral inversion and Galerkin equivalence BIRS, June 27, 2019 11 / 49

э

• That is, for the above described Galerkin solution u_G , we that have

$$u_G(0) = F_m(\lambda)$$

where $F_m(\lambda)$ is the unique rational Hermite interpolant to the transfer function $F(\lambda)$ at the points b_1, \ldots, b_m of the form

$$F_m(\lambda) = \sum_{i=1}^m \frac{y_i}{\lambda - \theta_i}$$

• That is, for the above described Galerkin solution u_G , we that have

$$u_G(0) = F_m(\lambda)$$

where $F_m(\lambda)$ is the unique rational Hermite interpolant to the transfer function $F(\lambda)$ at the points b_1, \ldots, b_m of the form

$$F_m(\lambda) = \sum_{i=1}^m \frac{y_i}{\lambda - \theta_i}$$

• Similar results hold for other forms of spectral data.

• To see this:

• To see this:

• For *m* dimensional test/trial space, eigendecomposition shows Galerkin solution at x = 0 must be of that rational form

$$u_G(0) = \sum_{i=1}^m \frac{y_i}{\lambda - \theta_i} =: F_m(\lambda)$$

for some positive residues and negative poles.

• To see this:

• For *m* dimensional test/trial space, eigendecomposition shows Galerkin solution at x = 0 must be of that rational form

$$u_G(0) = \sum_{i=1}^m \frac{y_i}{\lambda - \theta_i} =: F_m(\lambda)$$

for some positive residues and negative poles.

 Since exact solutions for λ = b_i are in the trial space, solution must be exact there, i.e.

$$F_m(b_i) = F(b_i)$$

for i = 1, ..., m.

• Using that the exact solutions are also in the test space, the variational formulation for λ near b_i and taking limits we get that

$$F'_m(b_i)=F'(b_i).$$

• Using that the exact solutions are also in the test space, the variational formulation for λ near b_i and taking limits we get that

$$F'_m(b_i)=F'(b_i).$$

• The derivatives of *F* are matched as well as the values. (2*m* data points)

• Using that the exact solutions are also in the test space, the variational formulation for λ near b_i and taking limits we get that

$$F'_m(b_i)=F'(b_i).$$

- The derivatives of *F* are matched as well as the values. (2*m* data points)
- Uniqueness follows from uniqueness of the Hermite Padé interpolant to F(λ).

• (Druskin, Kniznerman)

- (Druskin, Kniznerman)
- Given the same 1-d, one receiver pde above.

$$-u'' + qu + \lambda u = 0$$
 on (0,1) (7
 $-u'(0) = 1$
 $u(1) = 0$

- (Druskin, Kniznerman)
- Given the same 1-d, one receiver pde above.

$$-u'' + qu + \lambda u = 0$$
 on (0,1) (7
 $-u'(0) = 1$
 $u(1) = 0$

• Rational approximation of the transfer function

$$F(\lambda):=u(0)$$

 \rightarrow three point finite difference stencil which matches data

- (Druskin, Kniznerman)
- Given the same 1-d, one receiver pde above.

$$-u'' + qu + \lambda u = 0$$
 on (0,1) (7
 $-u'(0) = 1$
 $u(1) = 0$

14 / 49

• Rational approximation of the transfer function

$$F(\lambda):=u(0)$$

- \rightarrow three point finite difference stencil which matches data
- Yields special nonuniform grid and spectral convergence at the receiver.

Original idea of spectrally matched grids

• So, given data $F(b_i)$, $F'(b_i)$ for m positive spectral points $\lambda = b_1, \dots, b_m$.
Original idea of spectrally matched grids

- So, given data $F(b_i)$, $F'(b_i)$ for m positive spectral points $\lambda = b_1, \dots, b_m$.
- One can generate the unique rational approximation $F_m(\lambda)$ to $F(\lambda)$ of the form

$$F_m(\lambda) = \sum_{i=1}^m \frac{y_i}{\lambda - \theta_i}$$

with positive residues and negative poles which interpolates this data.

Original idea of spectrally matched grids

- So, given data $F(b_i)$, $F'(b_i)$ for m positive spectral points $\lambda = b_1, \dots, b_m$.
- One can generate the unique rational approximation $F_m(\lambda)$ to $F(\lambda)$ of the form

$$F_m(\lambda) = \sum_{i=1}^m \frac{y_i}{\lambda - \theta_i}$$

with positive residues and negative poles which interpolates this data.

 There is then a unique three-point staggered difference scheme with tridiagonal matrix L_m for which the approximated data/solution at x = 0 is exactly F_m(λ).

Original idea of spectrally matched grids

• That is, the rational approximation $F_m(\lambda)$ uniquely determines positive γ_j , $\hat{\gamma}_j$, such that solving the finite difference scheme

$$-\frac{1}{\hat{\gamma}_j} \left(\frac{U_{j+1} - U_j}{\gamma_j} - \frac{U_j - U_{j-1}}{\gamma_{j-1}} \right) + \lambda U_j = 0 \quad \text{for } j = 1, \dots N(8)$$
$$-\frac{U_1 - U_0}{\gamma_0} = 1$$
$$U_{N+1} = 0$$

yields

$$U_1 = F_m(\lambda)$$

• View γ_j as primary step size and $\hat{\gamma}_j$ as dual grid step size. For example for q = 0, these are straightforward grid steps.

• So the spectrally matched grid and Galerkin solutions have exactly the same response at x = 0.

- So the spectrally matched grid and Galerkin solutions have exactly the same response at x = 0.
- Galerkin solution converges high order everywhere on the domain but system is full

- So the spectrally matched grid and Galerkin solutions have exactly the same response at x = 0.
- Galerkin solution converges high order everywhere on the domain but system is full
- Spectrally matched grid has high order convergence only at *x* = 0 and system is tridiagonal.

A one-dimensional model: How to use this for inversion ?

• (Borcea, Druskin) For Sturm-Liouville

18 / 49

- (Borcea, Druskin) For Sturm-Liouville
- Compute above or similar reduced order finite difference model from data.

- (Borcea, Druskin) For Sturm-Liouville
- Compute above or similar reduced order finite difference model from data.
- Use the spectrally matched grid (or reduced order model) for reference media to extract unknown coefficient

- (Borcea, Druskin) For Sturm-Liouville
- Compute above or similar reduced order finite difference model from data.
- Use the spectrally matched grid (or reduced order model) for reference media to extract unknown coefficient
- They proved that the grid depends only very weakly on the medium in the high frequency limit.

3

• (Borcea, Druskin, Guevara-Vasquez, Mamanov, Zaslavsky) Use other new techniques to extend to 2-d

- (Borcea, Druskin, Guevara-Vasquez, Mamanov, Zaslavsky) Use other new techniques to extend to 2-d
- New methods require better understanding of reduced order modelhow to generalize grid?

• Consider again solving

$$-u'' + qu + \lambda u = 0$$
 on $(0,1)$
 $-u'(0) = 1$ $u(1) = 0$

with Galerkin subspace $U = \text{span}\{u_1(x), u_2(x), \dots, u_n(x)\}$, for $\{u_i\}$ the solutions at those same spectral data points $\lambda = b_i$.

• Consider again solving

$$-u'' + qu + \lambda u = 0$$
 on $(0,1)$
 $-u'(0) = 1$ $u(1) = 0$

with Galerkin subspace $U = \text{span}\{u_1(x), u_2(x), \dots, u_n(x)\}$, for $\{u_i\}$ the solutions at those same spectral data points $\lambda = b_i$.

• Galerkin system is

$$(S + \lambda M)\vec{c} = \vec{F}$$
(9)

to solve for $\vec{c} = (c_1, \ldots c_n)$

• Consider again solving

$$-u'' + qu + \lambda u = 0$$
 on $(0,1)$
 $-u'(0) = 1$ $u(1) = 0$

with Galerkin subspace $U = \text{span}\{u_1(x), u_2(x), \dots, u_n(x)\}$, for $\{u_i\}$ the solutions at those same spectral data points $\lambda = b_i$.

• Galerkin system is

$$(S + \lambda M)\vec{c} = \vec{F}$$
(9)

to solve for $\vec{c} = (c_1, \ldots c_n)$

coefficients for solution

$$u_G=\sum c_i u_i.$$

• Consider again solving

$$-u'' + qu + \lambda u = 0$$
 on $(0,1)$
 $-u'(0) = 1$ $u(1) = 0$

with Galerkin subspace $U = \text{span}\{u_1(x), u_2(x), \dots, u_n(x)\}$, for $\{u_i\}$ the solutions at those same spectral data points $\lambda = b_i$.

• Galerkin system is

$$(S + \lambda M)\vec{c} = \vec{F}$$
(9)

to solve for $\vec{c} = (c_1, \ldots c_n)$

coefficients for solution

$$u_G=\sum c_i u_i.$$

• S and M are full, unlike the finite difference

• Consider again solving

$$-u'' + qu + \lambda u = 0$$
 on $(0,1)$
 $-u'(0) = 1$ $u(1) = 0$

with Galerkin subspace $U = \text{span}\{u_1(x), u_2(x), \dots, u_n(x)\}$, for $\{u_i\}$ the solutions at those same spectral data points $\lambda = b_i$.

• Galerkin system is

$$(S + \lambda M)\vec{c} = \vec{F}$$
(9)

to solve for $\vec{c} = (c_1, \dots c_n)$

coefficients for solution

$$u_G=\sum c_i u_i.$$

- S and M are full, unlike the finite difference
- Find a new basis in which the Galerkin system is sparse?

• Define $\delta_U \in U$ to be the unique element of U which satisfies

$$\langle \delta_U, w \rangle = w(0)$$
 for all $w \in U$,

21 / 49

• Define $\delta_U \in U$ to be the unique element of U which satisfies

$$\langle \delta_U, w
angle = w(0)$$
 for all $w \in U$,

• identified with the vector
$$\vec{\delta} = (d_1, d_2, \dots d_n)$$

• Define $\delta_U \in U$ to be the unique element of U which satisfies

$$\langle \delta_U, w
angle = w(0)$$
 for all $w \in U$,

• identified with the vector
$$ec{\delta} = (d_1, d_2, \dots d_n)$$

• Let $A = M^{-1}S$

• Define $\delta_U \in U$ to be the unique element of U which satisfies

$$\langle \delta_U, w
angle = w(0)$$
 for all $w \in U$,

• identified with the vector
$$ec{\delta} = (d_1, d_2, \dots d_n)$$

• Let
$$A = M^{-1}S$$

• Consider now the basis where we let

$$B = \{\vec{\delta}, A\vec{\delta}, A^2\vec{\delta}, \dots, A^{m-1}\vec{\delta}\}.$$

21 / 49

• Define $\delta_U \in U$ to be the unique element of U which satisfies

$$\langle \delta_U, w \rangle = w(0)$$
 for all $w \in U$,

• identified with the vector
$$ec{\delta} = (d_1, d_2, \dots d_n)$$

• Let $A = M^{-1}S$

Consider now the basis where we let

$$B = \{\vec{\delta}, A\vec{\delta}, A^2\vec{\delta}, \dots, A^{m-1}\vec{\delta}\}.$$

 Orthogonalize it with Gram-Schmidt with respect to M inner product (yields L² orthonormality) • Get new orthogonalized basis for U:

$$U = \operatorname{span}\{\hat{u}_1(x), \hat{u}_2(x), \dots \hat{u}_n(x)\}.$$

• Get new orthogonalized basis for U:

$$U = \operatorname{span}\{\hat{u}_1(x), \hat{u}_2(x), \dots \hat{u}_n(x)\}.$$

• Now redo Galerkin system in this new basis.

• Mass \hat{M} matrix will be identity due to orthogonality.

23 / 49

- Mass \hat{M} matrix will be identity due to orthogonality.
- Stiffness matrix \hat{S} will be tri-diagonal due to Lanczos process

- Mass \hat{M} matrix will be identity due to orthogonality.
- Stiffness matrix \hat{S} will be tri-diagonal due to Lanczos process
- Right hand side will be nonzero only in first component (an approximate delta)

- Mass \hat{M} matrix will be identity due to orthogonality.
- Stiffness matrix \hat{S} will be tri-diagonal due to Lanczos process
- Right hand side will be nonzero only in first component (an approximate delta)
- The only difference is that the Galerkin stiffness matrix \hat{S} is symmetric while the system (11) is symmetric with respect to the $\hat{\gamma}_i$ diagonal inner product.

Theorem

If one uses the orthogonalized basis above and forms the Galerkin system

$$(\hat{S} + \lambda \hat{M})\hat{\vec{c}} = \hat{\vec{F}}$$
 (10)

to solve for \vec{c} , this is precisely the symmetrization of the finite difference system (11) for \vec{U} . More precisely,

$$u_{\mathcal{G}} = \sum_{i=1}^{m} \sqrt{\hat{\gamma}_i} U_i \hat{u}_i(x).$$

• That is, the solution components U_j of this difference scheme

$$-\frac{1}{\hat{\gamma}_j} \left(\frac{U_{j+1} - U_j}{\gamma_j} - \frac{U_j - U_{j-1}}{\gamma_{j-1}} \right) + \lambda U_j = 0 \quad \text{for } j = 1, \dots \text{(N11)}$$
$$-\frac{U_1 - U_0}{\gamma_0} = 1$$
$$U_{N+1} = 0$$

can be interpreted as coefficients (with a scaling) of the Galerkin solution in this orthonormal basis.

A one-dimensional model: Galerkin equivalence

Figure: Spectrally matched finite difference grid with its equivalent Galerkin basis

• So the entries of this reduced order model (which can be obtained from the data) are the entries of the stiffness matrix

$$\hat{S}_{ij}=\int \hat{u}_i'\hat{u}_j'+\int_0^1 q\hat{u}_i\hat{u}_j$$

and the mass matrix

$$\hat{M}_{ij} = \int \hat{u}_i \hat{u}_j.$$

• So the entries of this reduced order model (which can be obtained from the data) are the entries of the stiffness matrix

$$\hat{S}_{ij}=\int \hat{u}_i'\hat{u}_j'+\int_0^1 q\hat{u}_i\hat{u}_j$$

and the mass matrix

$$\hat{M}_{ij} = \int \hat{u}_i \hat{u}_j.$$

• The orthogonalized basis functions here actually *depend only very* weakly on the coefficient .

 Idea (from time domain papers of Borcea, Druskin, Mamonov, Zaslavsky): Since these appropriately orthogonalized basis functions depend only weakly on q we can use similarly orthogonalized basis functions for some known reference medium.

- Idea (from time domain papers of Borcea, Druskin, Mamonov, Zaslavsky): Since these appropriately orthogonalized basis functions depend only weakly on *q* we can use similarly orthogonalized basis functions for some known reference medium.
- The orthogonalized basis functions for the reference medium play the role of the optimal grid for coefficient extraction.
- Idea (from time domain papers of Borcea, Druskin, Mamonov, Zaslavsky): Since these appropriately orthogonalized basis functions depend only weakly on *q* we can use similarly orthogonalized basis functions for some known reference medium.
- The orthogonalized basis functions for the reference medium play the role of the optimal grid for coefficient extraction.
- Unlike the grid, localized basis functions have a natural extension to higher dimensions and other geometries.

A one-dimensional example: Inversion

Consider

$$-u'' + q(x)u + \lambda u = 0 \text{ on } (0,1)$$
(12)
$$-u'(0) = 1$$

$$u(1) = 0$$

as a perturbation of the corresponding reference problem $q_0 = 0$

$$\begin{array}{rcl} -u'' + \lambda u &= 0 & \text{on} & (0,1) \\ -u'(0) &= 1 \\ u(1) &= 0 \end{array}$$
 (13)

We read data F(b_i), F'(b_i) for λ = b₁,... b_m for the perturbed problem.

- We read data F(b_i), F'(b_i) for λ = b₁,... b_m for the perturbed problem.
- From this generate the $m \times m$ stiffness and mass matrices S, M for Galerkin system for basis of exact solutions.

- We read data $F(b_i)$, $F'(b_i)$ for $\lambda = b_1, \dots, b_m$ for the perturbed problem.
- From this generate the $m \times m$ stiffness and mass matrices S, M for Galerkin system for basis of exact solutions.
- Perform Lanczos orthogonalization to generate Galerkin system \hat{S} , \hat{M} for orthogonalized basis

Weak dependence of orthogonalized bases on q

< 一型

Weak dependence of orthogonalized bases on q

• From the data, we have a Galerkin system (low dimensional reduced order model) for the internal solution for any spectral value.

- From the data, we have a Galerkin system (low dimensional reduced order model) for the internal solution for any spectral value.
- From the reference medium, we have a highly accurate approximation to the orthogonalized basis.

- From the data, we have a Galerkin system (low dimensional reduced order model) for the internal solution for any spectral value.
- From the reference medium, we have a highly accurate approximation to the orthogonalized basis.
- By solving the Galerkin system, we get the coefficients

- From the data, we have a Galerkin system (low dimensional reduced order model) for the internal solution for any spectral value.
- From the reference medium, we have a highly accurate approximation to the orthogonalized basis.
- By solving the Galerkin system, we get the coefficients
- This yields boundary data generated internal solutions

Internal solution

Internal solution for arbitrarily chosen spectral value $\lambda=3$ generated from data.

Internal solution

Internal solution for arbitrarily chosen spectral value $\lambda=3$ generated from data.

2019 35 / 49

• How to use internal solution to do inversion?

- How to use internal solution to do inversion?
- For example, can compute $(u'' \lambda u)/u pprox q$

- How to use internal solution to do inversion?
- For example, can compute $(u'' \lambda u)/u pprox q$
- Can do this for any spectral value.

A one-dimensional example: Inversion

A one-dimensional example: Inversion

A harder example

• For higher dimensional problems, we can use multiple k sources/receivers:

$$-\Delta u_i^r + q(x)u_i^r + b_i u_i^r = 0 \quad \text{in} \quad \Omega \qquad (14)$$
$$\frac{\partial u_i^r}{\partial \nu} = g_r \quad \text{on} \ \partial \Omega$$

"source" (Neumann data) g_r and spectral value b_i

• For higher dimensional problems, we can use multiple k sources/receivers:

$$-\Delta u_i^r + q(x)u_i^r + b_i u_i^r = 0 \quad \text{in} \quad \Omega \qquad (14)$$
$$\frac{\partial u_i^r}{\partial \nu} = g_r \quad \text{on} \ \partial \Omega$$

"source" (Neumann data) g_r and spectral value b_i

• Now spectral data is in the form of a $k \times k$ block

$$F_{rl}^i := F_{rl}(b_i) = \int_{\partial\Omega} u_i^r g_l$$

and

$$DF_{rl}^{i} := \frac{dF_{rl}}{d\lambda}(\lambda)|_{\lambda=b_{i}}$$

• Galerkin system generation with basis of exact solutions

$$S_{irjl} + b_i M_{irjl} = F_{lr}^j$$

• Galerkin system generation with basis of exact solutions

$$S_{irjl} + b_i M_{irjl} = F_{lr}^j$$

• is again obtained directly from boundary data :

$$M_{irjl} = \frac{F_{lr}^{j} - F_{lr}^{i}}{b_{i} - b_{j}},$$
(15)

$$M_{iril} = -DF_{lr}^{i},$$
(16)

$$S_{irjl} = \frac{b_{j}F_{lr}^{j} - b_{i}F_{lr}^{i}}{b_{j} - b_{i}},$$
(17)

and

$$S_{iril} = (\lambda F_{rl})'(b_i).$$
⁽¹⁸⁾

Spectral inversion and Galerkin equivalence

• Orthogonalize with block Lanczos with $k \times k$ blocks

- Orthogonalize with block Lanczos with $k \times k$ blocks
- No finite difference representation anymore, but localized basis functions should provide geometric interpretation of system entries.

- Orthogonalize with block Lanczos with $k \times k$ blocks
- No finite difference representation anymore, but localized basis functions should provide geometric interpretation of system entries.
- After orthonormalization, basis functions close to those from reference medium.

- Orthogonalize with block Lanczos with $k \times k$ blocks
- No finite difference representation anymore, but localized basis functions should provide geometric interpretation of system entries.
- After orthonormalization, basis functions close to those from reference medium.
- Again reference basis functions combined with reduced order model will yield internal data for any chosen λ .

- Orthogonalize with block Lanczos with $k \times k$ blocks
- No finite difference representation anymore, but localized basis functions should provide geometric interpretation of system entries.
- After orthonormalization, basis functions close to those from reference medium.
- Again reference basis functions combined with reduced order model will yield internal data for any chosen λ .
- Try again $(\Delta u \lambda u)/u pprox q$.

proof of concept 2d, two sources/receivers

proof of concept 2d , two sources/receivers

bump profile, four sources on one side

, 2019 44 / 49

reconstruction using data generated internal solutions , four sources on one side

double bump profile, eight sources around

7, 2019 46 / 49

Figure: Relative error between the true and data generated: 0.003930. Relative difference between the true and reference medium: 0.084794.

Figure: Reconstruction of two bumps . Eight sources total; two on each side, and six spectral values.

• Can use spectral data to directly generate Galerkin reduced order model as was done before in time domain

- Can use spectral data to directly generate Galerkin reduced order model as was done before in time domain
- In 1-d, after orthogonalization, this is equivalent to a spectrally matched finite difference grid
- Can use spectral data to directly generate Galerkin reduced order model as was done before in time domain
- In 1-d, after orthogonalization, this is equivalent to a spectrally matched finite difference grid
- Lanczos orthogonalization yields a new basis which is close to that from reference medium.

- Can use spectral data to directly generate Galerkin reduced order model as was done before in time domain
- In 1-d, after orthogonalization, this is equivalent to a spectrally matched finite difference grid
- Lanczos orthogonalization yields a new basis which is close to that from reference medium.
- Can use the reference medium basis and data generated ROM to obtain approximations of internal solutions from data

- Can use spectral data to directly generate Galerkin reduced order model as was done before in time domain
- In 1-d, after orthogonalization, this is equivalent to a spectrally matched finite difference grid
- Lanczos orthogonalization yields a new basis which is close to that from reference medium.
- Can use the reference medium basis and data generated ROM to obtain approximations of internal solutions from data
- $(\Delta u \lambda u)/u pprox q$ can yield reconstructions directly

- Can use spectral data to directly generate Galerkin reduced order model as was done before in time domain
- In 1-d, after orthogonalization, this is equivalent to a spectrally matched finite difference grid
- Lanczos orthogonalization yields a new basis which is close to that from reference medium.
- Can use the reference medium basis and data generated ROM to obtain approximations of internal solutions from data
- $(\Delta u \lambda u)/u \approx q$ can yield reconstructions directly
- Other approaches to use the ROM, reference basis functions, and optimization improve accuracy of reconstructions (current work)