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@ backwards diffusion and quasi reversibility
o fractional derivatives and Mittag-Leffler functions
@ regularization based on subdiffusion

@ reconstructions - numerical experiments

@ convergence analysis




backwards diffusion and quasi reversibility




Backwards diffusion
Reconstruct initial data up(x) = u(x,0) in

up—Lu=0, (x,t)€Qx(0,T)+ boundary conditions
u(x,0)=u x€eQ

from final time values

ulx, T)=ur(x) x€Q

where L is a uniformly elliptic second order partial differential
operator defined in a C? domain Q with sufficiently smooth
coefficients.




Backwards diffusion
Reconstruct initial data up(x) = u(x,0) in

up—Lu=0, (x,t)€Qx(0,T)+ boundary conditions
u(x,0) =u xeQ
from final time values
ulx, T)=ur(x) x€Q

where L is a uniformly elliptic second order partial differential
operator defined in a C? domain Q with sufficiently smooth
coefficients.

@ This is a classical inverse problem.
@ More recent applications are, e.g.:

o identification of airborne contaminants
e imaging with acoustic or elastic waves in the presence of
strong attenuation




Quasi-reversibility
Replace diffusion equation

ur—Lu=0

by a nearby differential equation, e.g.,
[Lattes & Lions 1969] weakly damped wave or beam equation

eupp +ur —Lu=20 ut—Lu—i—eLZu:O

drawback: additional boundary and/or initial conditions needed.
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eupp +ur —Lu=20 ut—Lu—i—eLZu:O
drawback: additional boundary and/or initial conditions needed.
[Showalter 1974,'75,'76] add viscous term
(I — el)uy — Lu® =0,

see also the proof of the Hille-Phillips-Yosida Theorem.




Quasi-reversibility
Replace diffusion equation

ur—Lu=0

by a nearby differential equation, e.g.,
[Lattes & Lions 1969] weakly damped wave or beam equation

eupp +ur —Lu=20 ut—Lu—i—eLZu:O
drawback: additional boundary and/or initial conditions needed.
[Showalter 1974,'75,'76] add viscous term
(I — el)uy — Lu® =0,
see also the proof of the Hille-Phillips-Yosida Theorem.
Here: Replace u; by a fractional time derivative of order v < 1
Ofur —Lu=0

with a < 1, i.e., replace diffusion by subdiffusion.. ., .-, ..,




fractional derivatives and Mittag-Leffler functions




Fractional derivatives
Abel fractional integral operator

570~ ey [ e

Then a fractional (time) derivative can be defined by either

RDO‘f d—lo‘f Riemann-Liouville derivative

d a
df . . N
Cpof = I;‘E Djrbashian-Caputo derivative

or




Fractional derivatives
Abel fractional integral operator

I$F(x) = Mo )/ )1 —ds

Then a fractional (time) derivative can be defined by either

fD,_?‘f = Z—l;‘f Riemann-Liouville derivative

df
Cpof = IaO‘E Djrbashian-Caputo derivative

or

@ R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a

@ D-C maps constants to zero ~» appropriate for prescribing
initial values

Nonlocal and causal character of these derivatives provides them
with a “memory” ~ initial values are tied to later values and can
therfore be better reconstructed backwards in time- . <=, <=,




Diffusion as limit of continuous time random walk

1-d random walk:
PDF p;j(t) for the probability of being at position j at time t:

pi(t+ At) = 3pji1(t) + 5pja(t),

where jumps to the left and right are equally likely;
At is a fixed time step.  Ax is a fixed jump distance.




Diffusion as limit of continuous time random walk

1-d random walk:
PDF p;j(t) for the probability of being at position j at time t:

pi(t + At) = 3pi-1(t) + 3pj1(2),

where jumps to the left and right are equally likely;
At is a fixed time step.  Ax is a fixed jump distance.
Rearranging:

pi(t+At) = pi(t) _ (Ax)? pi-1(t) — 2p;(t) + pj+a(t)

At 2At (Ax)?2




Diffusion as limit of continuous time random walk

1-d random walk:
PDF p;j(t) for the probability of being at position j at time t:

pi(t + At) = 3pi-1(t) + 3pj1(2),

where jumps to the left and right are equally likely;
At is a fixed time step.  Ax is a fixed jump distance.
Rearranging:

pi(t+At) = pi(t) _ (Ax)? pi-1(t) — 2p;(t) + pj+a(t)

At 2At (Ax)?2
as Ax — 0, At — 0 leads to the diffusion equation

Orp(x, t) = KOxp(x, t),

2
The limit is taken such that 0 < K = lim (8x) < 00

Ax—0,At—0 2At
K. . .diffusion coefficient — it couples the spatial and time scales.




Subdiffusion as limit of continuous time random walk

slightly more general setting:
Assume that the temporal and spatial increments

At, =t, —th—1 and Ax, = X, — Xp—1

are iid random variables, with PDFs 1(t) and A(x),
— the waiting time and jump length distribution, respectively, i.e.,

P(a< Aty < b)= [Py(t)dt,  P(a<Oxy < b)= [P A(x)dx.




Subdiffusion as limit of continuous time random walk

slightly more general setting:
Assume that the temporal and spatial increments

At, =t, —th—1 and Ax, = X, — Xp—1

are iid random variables, with PDFs 1(t) and A(x),
— the waiting time and jump length distribution, respectively, i.e.,

P(a< Aty < b)= [Py(t)dt,  P(a<Oxy < b)= [P A(x)dx.

CTRW processes can be categorized by the characteristic waiting
time T and the jump length variance ¥? being finite or diverging.

T = E[At,] = [° t(t)de, T2 =: E[(Axa)?2] = [

x?A(x)dx.

[e.9]
—00




Subdiffusion as limit of continuous time random walk

slightly more general setting:
Assume that the temporal and spatial increments

At, =t, —th—1 and Ax, = X, — Xp—1

are iid random variables, with PDFs 1(t) and A(x),
— the waiting time and jump length distribution, respectively, i.e.,

P(a< Aty < b)= [Py(t)dt,  P(a< Axy < b)= [P A(x)dx.

CTRW processes can be categorized by the characteristic waiting
time T and the jump length variance ¥? being finite or diverging.
T = E[Aty) = [y~ t(t)dt, X2 =: E[(Axy)*] = [

[e.9]
—00

x?A(x)dx.

Case 0 < T <00, 0 < X < o0o: ~ classical diffusion;
Case T =00, 0 < X < 00: ~ subdiffusion,
in particular ¥(t) ~ t71%, 0 < ¥ < 00: ~ 08U = KDwup(x, t)




Solution representation by separation of variables

1-d ODE:
u(t)+ du(t) =0, u(T) = e u(0), u(0) = e*Tu(T)

PDE with elliptic operator A = —LL
with eigensystem \; oo, ¢j € H2(Q) N H&(Q) j eN:

ue(t) + Au(t) =0, Ze* T(u(, T), 6;);(x)

exponential amplification of noise in Fourier coefficients (u(-, T), ¢;)




Solution representation by separation of variables

1-d ODE:
u'(t) + Au(t) =0, u(T)=e*Tu(0), u(0) = e} u(T)

PDE with elliptic operator A = —LL
with eigensystem \; oo, ¢j € HZ(Q) N H&(Q) j eN:

ue(t) + Au(t) =0, ZeA T(u(, T), 6;);(x)

exponential amplification of noise in Fourier coefficients (u(-, T), ¢;)

replace diffusion by subdiffusion:

1-d ODE:
Ofu(t)+Au(t) =0, u(T)=Ey1(—AT*)u(0), u(0)=




Mittag-Leffler functions

o0
E.p5(z) = Zrak—i—ﬁ a>0, BeR, zeC,
k=0

generalizes exponential E1 1(z) = €7; E,:=Eqy1

Theorem (Djrbashian, 1966,'93)

Let « € (0,2), B €R, and p € (am/2, min(m, ar)), and N € N.
Then for |arg(z)| < p with |z| — oo,

1
E.p(z) ~ e

and for p < |arg(z)| < 7 with |z| — o

N

1 1 1
@) =~ gy + O ()




Mittag-Leffler functions

For x — +o00 For x — OO

1
1 15 L —
E. p(x) ~ axla e Eap(x) = Z F(ﬁ ak) Xk +0 (XN—H)




Mittag-Leffler functions
For x — 400 For x — OO

1
1 15 L I
Eap(x) ~ —x7a e Eap(x) = Z < T(B- ak) Xk +0 (XN—H)

On the positive real axis, E, g grows superexponetially.
On the negative real axis, E, g decreases only linearly.

12 _ -
10295 (2) 109 Ba(2)
109 _ 0.8 o
— a=1/4 0.6
108 — a=1/2
0.4
5 — a=3/4
10° 7 — a=1 0.2
10° T T T T v 0.0 T T T T |m

00 05 1.0 1.5 2.0 25 -10 -8 -6 -4 -2 0




regularization based on subdiffusion




Plain subdiffusion regularization

0 0

backwards diffusion u; + Au =0, u(x, T) = ut = uy =~ i%,




Plain subdiffusion regularization
backwards diffusion u + Au =0, u(x, T) = ur ~ u%y ~ i,
in terms of Fourier coefficients:

(o, ¢j) = w\){ur,¢j)  with  w()) = el = —5




Plain subdiffusion regularization
backwards diffusion u + Au =0, u(x, T) = ur ~ u%y ~ i,
in terms of Fourier coefficients (truncated SVD):

(uo, ¢j) = W()\j)(u‘-sr,qéj) forj < K with w()\)= Ml =

e~ AT




Plain subdiffusion regularization
backwards diffusion u + Au =0, u(x, T) = ur ~ u%y ~ i,
in terms of Fourier coefficients (truncated SVD):

(uo, @) = W()\j)(u‘-sr,qu) forj < K with w()\)= Ml =

e~ AT

replace 0 by 0¢ with aw < 1 (~~ regularization parameter)

<ug,a7 ¢J> = W(>‘J'7 a)<ﬁ§'a ¢J> with W(>‘7 a) -

b
Ea71(*)\ TO‘)




Plain subdiffusion regularization
backwards diffusion u + Au =0, u(x, T) = ur ~ u%y ~ i,
in terms of Fourier coefficients (truncated SVD):

1
<U07¢J'> = W()‘j)<u§'7¢j> for j< K with  w(\) = e = e AT
replace 0 by 0¢ with aw < 1 (~~ regularization parameter)

- . 1
(U o &) = w(Nj, @) (07, 6)  with  w()\,a) = Evi(CAT9)

103 7 log,o(w(A, @))

o |

10! e
] /
.7 a=0.5
2E —— =09
.’ — a=1
e @= A
100 T
0 100 200 300 400 500 600

~ more
= =




Split frequency subdiffusion regularization

noisy smoothed
/—’6\ /—’?
backwards diffusion uy + Au =0, u(x, T)= ur =~ uy =~ Oy |,

€C>(Q)  er2(Q) eH2(Q)
in terms of Fourier coefficients:

(w0, d5) = w(\j) (U, ¢;) for j <K with w(\)=e' = —=




Split frequency subdiffusion regularization

noisy smoothed
/—’5\ z—’r

backwards diffusion uy + Au =0, u(x, T)= ur =~ uy =~ Oy |,
~ ~~ v

€C>(Q)  er2(Q) eH2(Q)
in terms of Fourier coefficients:

. . 1
(w0, ¢5) = w(Xj){uT, ¢j) forj < K with  w())=e'" = —5

backwards diffusion on small frequencies, subdiffusion on large frequencies

) S b <
(U o 87) = i 1)<u~§’¢1> OISR it wiha) = s
’ w(Aj, a)(d%, ¢j) forj>K+1 Eo1(=AT?)

~> regularization parameters a, K




Multiple split frequency subdiffusion regularization

backwards diffusion u; + Au =0, u(x, T) = ut ~ v} ~ i},
in terms of Fourier coefficients:

1
(ug, ¢j) = W()\j)(u‘ST,d)j> for j < K with  w()\) = M = pesvs
backwards diffusion on small frequencies, subdiffusion on larger frequencies

(

W()‘Jal)<u§r’¢_]> for.j < Ki

w(\j, ar)(@, ¢j) for K1 +1<j < Ky
(ug,w@) ...

w(Nj, i) (@, ¢j)  for Ki+1<j < Ki1

\

~ regularization parameters a3 > ap > --- > ay, K1 < Ko <--- < Kpy1




Other regularization approaches
based on fractional derivatives

@ add fracional time derivative:

ur+Au=0 ~ wu+edfu+Au=0

amplification factors

w(\, a, 8,¢) = (ﬁ‘l (%)>_1 o T (1—a) % \

regularization parameters a, ¢

sin(am)




Other regularization approaches
based on fractional derivatives

@ add fracional time derivative:

ur+Au=0 ~ wu+edfu+Au=0
amplification factors

w(\ o, B,e) = <£—1 (1+€sa_1 ))‘1 _aT°T(1-a) 1 1 \

s+es¥+A sin(am)
regularization parameters a, ¢

o add fractional space derivative A®, e g., Aj— )\J@:

ue+Au=0 ~ (I +eA?)0%u+Au=0

.- . 1
amplification factors  w(\, a, 5,¢) = Eaa(-1255 %)

regularization parameters «, 3, ¢




reconstructions - numerical experiments




Test case 1: ug with kink; § = 0.1%

2.0

uo(x) T =0.02 §=0.001
—— Actual ug
14 A single split freq
----- double split freq
1.04
[l
[/ A
/
[/
0.5
[/ g
\-
N\ /A :
B\, T
0.0 . < . . .
0.0 0.2 0.4 0.6 0.8 1.0

Reconstructions from single and double split frequency method.
single split: K1 =4 and o = 0.92;
double split: K1 =4, K, =10 and a3 = 0.999, a, = 0.92.

» « E >




Uo ()

Test case 2: ug with \; #0, j=1,...,7,10...,15; 6 = 1%
4_

T =0.02 § =0.01

—— Actual ug

"""" SVD
double split freq
2 -
14
\ -
0 f— At
0 : 08 _)\ o
14
_9 ]

frequency method.

Reconstructions from truncated SVD, single and double split




Test case 3: up with A\; #0, j=1,...,7,10...,15; 6 =0.1

T =0.02 6 =0.001

uo(x)
5 -
i - —— Actual ug
B ! L
i .= : \\... SVD '
g 17 "\, vy . — — — double-split freq
31 l.’l’ ‘.\ Vs ol \ ————— triple-split freq
= . \ : 0
;,l & VL ‘Y 1
24 fir; X \\ %!
E N Iy
,'l':' S5 S
1
0 T
0{0 0.2
14

-9 J
Reconstructions from truncated SVD, single, double, and triple

split frequency method.




convergence analysis




Plain subdiffusion regularization

backwards diffusion us + Au=0, u(x, T) = ur = u‘sT ~ 0%,
in terms of Fourier coefficients:

(ug, ¢j) = w(\)(ur,¢))  with  w(\)=e' = =t

replace 0 by 0¢ with aw < 1 (~ regularization parameter)

1
Eq1(—AT®)

<ug,a7 ¢J> = W(>‘j7 O‘)<a§'7 ¢J> with W(>‘7 a) =




Properties of the Mittag-Leffler function E, 1(—Ax) (1)
[Djrbashian 1966,'93, Jin&Rundell 2015, Gorenflo&Kilbas&Mainardi&Rogosin 2014]

ForO<a<1landx,t>0, A>0

d
a A& Eo1(—Xx) = —Eq o(—Xx).

Consequently, u(t) := Ey1(—At®) solves fractional ODE ~ 97'u+ Au=0.

ForO<a<1landx>0
1 1

< Eyq(—x) <
S Baa(=X) S T o ix

1

1+T7(1—a)x

. : = A
Consequently, we have the stability estimate C

IN

Eq1(—AT®) 11—«

> < > «




Properties of the Mittag-Leffler function E, 1(—Ax) (1)

Lemma (BK&Rundell 2018)

For any ag € (0,1) and p € [1, = ao) there exists
C = C(ao, p) > 0 such that for all A > A1, a € [ag, 1)

|Ea1(—AT®) —exp(=AT)| < CAYP(1 - a).
exp(—AT)

Consequently, we have the convergence rate TR q| < AP
e : Eaa(-AT®) |~

with ag, a, p, A1, A as above, C = C(ao,p) > 0.




Exponential ill-posedness — mild ill-posedness

backwards diffusion:

(uo, 0j) = w(N)(ur, &) with  w(}) =T = —

~+ exponential instability.




Exponential ill-posedness — mild ill-posedness

backwards diffusion:

(uo, 0j) = w(N)(ur, &) with  w(}) =T = —

~+ exponential instability.
backwards subdiffusion

1

(U,0s 85) = WXy, @) (8%, &) with wh o) = E AT

stability estimate ! < ¢ A
y Ea1(-AT%) “1—a

[ee)
and Sobolev norm equivalence  [|v||ys(q) ~ Z)\f(v,(ﬁj)z
j=1

— H? — [? stability of backwards subdiffusion,
with a stability constant that degenerates as o /ﬁl}.

« E «E»




Pre-smoothing the data noisy  smoothed

ux,T)= ur =~ uy ~ &%

€C=(Q)  €L2(Q) eH?(Q)
Use Landweber iteration for defining &4 = v(+)

VD) — 0y a=s2(, ) _ydy (0 — g

with 11 > 0 chosen so that ju||A=%/2||2_,;2 < 1.




Pre-smoothing the data noisy  smoothed
ux, T)= ur =~ uy =~ i
~~ ~—~ v
€C=(Q)  €L2(Q) eH?(Q)
Use Landweber iteration for defining &4 = v(+)

with 11 > 0 chosen so that ju||A=%/2||2_,;2 < 1.

Lemma (BK&Rundell 2018; pre-smoothing)

A choice of i, ~ T2 log (M) yields |lur — % || 2y < Gid,

uT—ﬁ(S Hs(Q) ~ As/2 uT—ﬁ‘S 2 Sgé lo Iuolli2 @) =4
| Tl (9) | TN Q) = 71 g 5
for some Cy, C; > 0 independent of T and §.

v

Note that Tikhonov regularization would not properly pre-smooth noisy
versions of C* data, due to saturation.




Convergence with a priori choice of

Theorem (BK&Rundell 2018)

Let ug € L2(Q), A1t1/Pug € 12(Q) for some p € (1, 00),
% = v() as in pre-smoothing Lemma with s > 2(1 + %) and

assume that o = «(9) is chosen such that

a(g)/‘land —-0, asd—0,

1—a(d)
Then

””g,a(s) — upllr2(@) = 0, as 5 —0.

Backwards time fractional diffusion is a regularization method.




Convergence with a posteriori choice of «

Theorem (BK&Rundell 2018)

Let ug € L3(Q), AM*Y/Pug € [2(Q) for some p € (1,00),
i = vU=) as in pre-smoothing Lemma with s > 2(1 + %) and

assume that o = a(iié, d) is chosen according to
78 < | exp(—AT) (s @) — G| < 76

(discrepancy principle) with fixed 1 < 7 < 7.
Then

”ga(S) —up in L?(Q), asd—0.




Convergence rates

Theorem (BK&Rundell 2018)

Let ug € L?(Q), AL+1/ptma{l/p.at s € [2(Q) for some p € (1,00),
q>0, i = v(i) as in pre-smoothing Lemma with s > 2(1 + %)

and assume that o = a(ii%, 9) is chosen according to

1-a(8) ~ \/g, asd —0.
Then
Hug,a(S) — uoll 2y = O (log(5)™%9) , asd—0.
In the noise free case we have

||”8,a — uollr2() = <Iog(1 — 2‘7) , asa 1.

Finite Sobolev regularity implies a logarithmic rate.




Split frequency subdiffusion regularization

backwards diffusion u; + Au =0, u(x, T) = ut ~ v} ~ iy,

in terms of Fourier coefficients:

(uo, ¢j) = W()\j)(u‘-s,—,d)j> for j < K with  w(\) = M = ST
backwards diffusion on small frequencies, subdiffusion on large frequencies

(WS, ) forj < K
(0 ) = 4 VW Dt 0 for j < with w(h,a) = — +
7 W()‘Jaa)<u(;'7¢_]> fOF_j >K+1 anl(_)‘Ta)

~> regularization parameters a, K




Convergence with a posteriori choice of K and «

First choose K:
K =min{k e N : | exp(]LT)ugﬂ,f — u%|| < 76} (1)
for some fixed 7 > 1. Then choose «

78 < | exp(—AT)ug o x — uf| < 76 (2)

Theorem (BK&Rundell 2018)

Let ug € L3(Q), AM*Y/Pug € L2(Q) for some p € (1,00),

i = vU) as in pre-smoothing Lemma with s > 2(1 + [—17) and
assume that K = K(u%,8) and o = (%, 0) are chosen according
to (1) and (2). Then

“g,a(aér,S),K(uér,a) — up in L*(Q), asd—0.




Conclusions and remarks

@ based on the paradigm of quasi-reversibility,
backwards subdiffusion (with pre-smoothing) is a regularizer
for backwards diffusion
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@ based on the paradigm of quasi-reversibility,
backwards subdiffusion (with pre-smoothing) is a regularizer
for backwards diffusion

@ can be implemented without explicit use of eigensystem by
just numerical solution of time-fractional PDE




Conclusions and remarks

@ based on the paradigm of quasi-reversibility,
backwards subdiffusion (with pre-smoothing) is a regularizer
for backwards diffusion

@ can be implemented without explicit use of eigensystem by
just numerical solution of time-fractional PDE

@ can be improved by spitting frequencies (using eigensystem)
and treating different parts of the frequency range by different
time differentiation orders




Thank you for your attention!




