Regularization of backwards diffusion by fractional time derivatives

Barbara Kaltenbacher, Alpen-Adria-Universität Klagenfurt joint work with William Rundell

Reconstruction Methods for Inverse Problems, Banff, June 2019

Outline

- backwards diffusion and quasi reversibility
- fractional derivatives and Mittag-Leffler functions
- regularization based on subdiffusion
- reconstructions - numerical experiments
- convergence analysis

backwards diffusion and quasi reversibility

Backwards diffusion

Reconstruct initial data $u_{0}(x)=u(x, 0)$ in

$$
\left.\begin{array}{rl}
u_{t}-\mathbb{L} u & =0, \\
u(x, 0) & =u_{0}
\end{array} \quad x \in \Omega\right)
$$

from final time values

$$
u(x, T)=u_{T}(x) \quad x \in \Omega
$$

where \mathbb{L} is a uniformly elliptic second order partial differential operator defined in a C^{2} domain Ω with sufficiently smooth coefficients.

Backwards diffusion

Reconstruct initial data $u_{0}(x)=u(x, 0)$ in

$$
\left.\begin{array}{rl}
u_{t}-\mathbb{L} u & =0, \\
u(x, 0) & =u_{0}
\end{array} \quad x \in \Omega\right)
$$

from final time values

$$
u(x, T)=u_{T}(x) \quad x \in \Omega
$$

where \mathbb{L} is a uniformly elliptic second order partial differential operator defined in a C^{2} domain Ω with sufficiently smooth coefficients.

- This is a classical inverse problem.
- More recent applications are, e.g.:
- identification of airborne contaminants
- imaging with acoustic or elastic waves in the presence of strong attenuation

Quasi-reversibility

Replace diffusion equation

$$
u_{t}-\mathbb{L} u=0
$$

by a nearby differential equation, e.g.,
[Làttes \& Lions 1969] weakly damped wave or beam equation

$$
\varepsilon u_{t t}+u_{t}-\mathbb{L} u=0 \quad u_{t}-\mathbb{L} u+\varepsilon \mathbb{L}^{2} u=0
$$

drawback: additional boundary and/or initial conditions needed.

Quasi-reversibility

Replace diffusion equation

$$
u_{t}-\mathbb{L} u=0
$$

by a nearby differential equation, e.g.,
[Làttes \& Lions 1969] weakly damped wave or beam equation

$$
\varepsilon u_{t t}+u_{t}-\mathbb{L} u=0 \quad u_{t}-\mathbb{L} u+\varepsilon \mathbb{L}^{2} u=0
$$

drawback: additional boundary and/or initial conditions needed.
[Showalter 1974,'75,'76] add viscous term

$$
(I-\epsilon \mathbb{L}) u_{t}^{\epsilon}-\mathbb{L} u^{\epsilon}=0
$$

see also the proof of the Hille-Phillips-Yosida Theorem.

Quasi-reversibility

Replace diffusion equation

$$
u_{t}-\mathbb{L} u=0
$$

by a nearby differential equation, e.g.,
[Làttes \& Lions 1969] weakly damped wave or beam equation

$$
\varepsilon u_{t t}+u_{t}-\mathbb{L} u=0 \quad u_{t}-\mathbb{L} u+\varepsilon \mathbb{L}^{2} u=0
$$

drawback: additional boundary and/or initial conditions needed.
[Showalter 1974,'75,'76] add viscous term

$$
(I-\epsilon \mathbb{L}) u_{t}^{\epsilon}-\mathbb{L} u^{\epsilon}=0
$$

see also the proof of the Hille-Phillips-Yosida Theorem.
Here: Replace u_{t} by a fractional time derivative of order $\alpha<1$

$$
\partial_{t}^{\alpha} u_{t}-\mathbb{L} u=0
$$

with $\alpha<1$, i.e., replace diffusion by subdiffușion.
fractional derivatives and Mittag-Leffler functions

Fractional derivatives

Abel fractional integral operator

$$
I_{a}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{f(s)}{(x-s)^{1-\alpha}} d s
$$

Then a fractional (time) derivative can be defined by either

$$
{ }_{a}^{R} D_{t}^{\alpha} f=\frac{d}{d t} I_{a}^{\alpha} f \quad \text { Riemann-Liouville derivative }
$$

$$
{ }_{a}^{C} D_{t}^{\alpha} f=l_{a}^{\alpha} \frac{d f}{d s} \quad \text { Djrbashian-Caputo derivative }
$$

Fractional derivatives

Abel fractional integral operator

$$
I_{a}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{f(s)}{(x-s)^{1-\alpha}} d s
$$

Then a fractional (time) derivative can be defined by either
or

$$
{ }_{a}^{R} D_{t}^{\alpha} f=\frac{d}{d t} I_{a}^{\alpha} f \quad \text { Riemann-Liouville derivative }
$$

$$
{ }_{a}^{c} D_{t}^{\alpha} f=l_{a}^{\alpha} \frac{d f}{d s} \quad \text { Djrbashian-Caputo derivative }
$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a
- D-C maps constants to zero \rightsquigarrow appropriate for prescribing initial values
Nonlocal and causal character of these derivatives provides them with a "memory" \rightsquigarrow initial values are tied to later values and can therfore be better reconstructed backwards in time

Diffusion as limit of continuous time random walk

1-d random walk:
$\operatorname{PDF} p_{j}(t)$ for the probability of being at position j at time t :

$$
p_{j}(t+\Delta t)=\frac{1}{2} p_{j-1}(t)+\frac{1}{2} p_{j+1}(t)
$$

where jumps to the left and right are equally likely; Δt is a fixed time step. Δx is a fixed jump distance.

Diffusion as limit of continuous time random walk

1-d random walk:
$\operatorname{PDF} p_{j}(t)$ for the probability of being at position j at time t :

$$
p_{j}(t+\Delta t)=\frac{1}{2} p_{j-1}(t)+\frac{1}{2} p_{j+1}(t)
$$

where jumps to the left and right are equally likely; Δt is a fixed time step. Δx is a fixed jump distance. Rearranging:

$$
\frac{p_{j}(t+\Delta t)-p_{j}(t)}{\Delta t}=\frac{(\Delta x)^{2}}{2 \Delta t} \frac{p_{j-1}(t)-2 p_{j}(t)+p_{j+1}(t)}{(\Delta x)^{2}}
$$

Diffusion as limit of continuous time random walk

1-d random walk:
$\operatorname{PDF} p_{j}(t)$ for the probability of being at position j at time t :

$$
p_{j}(t+\Delta t)=\frac{1}{2} p_{j-1}(t)+\frac{1}{2} p_{j+1}(t)
$$

where jumps to the left and right are equally likely; Δt is a fixed time step. Δx is a fixed jump distance.
Rearranging:

$$
\frac{p_{j}(t+\Delta t)-p_{j}(t)}{\Delta t}=\frac{(\Delta x)^{2}}{2 \Delta t} \frac{p_{j-1}(t)-2 p_{j}(t)+p_{j+1}(t)}{(\Delta x)^{2}}
$$

as $\Delta x \rightarrow 0, \Delta t \rightarrow 0$ leads to the diffusion equation

$$
\partial_{t} p(x, t)=K \partial_{x x} p(x, t)
$$

The limit is taken such that $0<K=\lim _{\Delta x \rightarrow 0, \Delta t \rightarrow 0} \frac{(\Delta x)^{2}}{2 \Delta t}<\infty$
$K \ldots$...diffusion coefficient - it couples the spatial and time scales.

Subdiffusion as limit of continuous time random walk

slightly more general setting:
Assume that the temporal and spatial increments

$$
\Delta t_{n}=t_{n}-t_{n-1} \quad \text { and } \quad \Delta x_{n}=x_{n}-x_{n-1}
$$

are iid random variables, with pDFs $\psi(t)$ and $\lambda(x)$,

- the waiting time and jump length distribution, respectively, i.e.,

$$
P\left(a<\Delta t_{n}<b\right)=\int_{a}^{b} \psi(t) d t, \quad P\left(a<\Delta x_{n}<b\right)=\int_{a}^{b} \lambda(x) d x
$$

Subdiffusion as limit of continuous time random walk

slightly more general setting:
Assume that the temporal and spatial increments

$$
\Delta t_{n}=t_{n}-t_{n-1} \quad \text { and } \quad \Delta x_{n}=x_{n}-x_{n-1}
$$

are iid random variables, with pDFs $\psi(t)$ and $\lambda(x)$,

- the waiting time and jump length distribution, respectively, i.e.,

$$
P\left(a<\Delta t_{n}<b\right)=\int_{a}^{b} \psi(t) d t, \quad P\left(a<\Delta x_{n}<b\right)=\int_{a}^{b} \lambda(x) d x .
$$

CTRW processes can be categorized by the characteristic waiting time T and the jump length variance Σ^{2} being finite or diverging.

$$
T=: E\left[\Delta t_{n}\right]=\int_{0}^{\infty} t \psi(t) d t, \quad \Sigma^{2}=: E\left[\left(\Delta x_{n}\right)^{2}\right]=\int_{-\infty}^{\infty} x^{2} \lambda(x) d x .
$$

Subdiffusion as limit of continuous time random walk

slightly more general setting:
Assume that the temporal and spatial increments

$$
\Delta t_{n}=t_{n}-t_{n-1} \quad \text { and } \quad \Delta x_{n}=x_{n}-x_{n-1}
$$

are iid random variables, with pDFs $\psi(t)$ and $\lambda(x)$,

- the waiting time and jump length distribution, respectively, i.e.,

$$
P\left(a<\Delta t_{n}<b\right)=\int_{a}^{b} \psi(t) d t, \quad P\left(a<\Delta x_{n}<b\right)=\int_{a}^{b} \lambda(x) d x .
$$

CTRW processes can be categorized by the characteristic waiting time T and the jump length variance Σ^{2} being finite or diverging.

$$
T=: E\left[\Delta t_{n}\right]=\int_{0}^{\infty} t \psi(t) d t, \quad \Sigma^{2}=: E\left[\left(\Delta x_{n}\right)^{2}\right]=\int_{-\infty}^{\infty} x^{2} \lambda(x) d x .
$$

Case $0<T<\infty, 0<\Sigma<\infty$: \rightsquigarrow classical diffusion;
Case $T=\infty, 0<\Sigma<\infty$: \rightsquigarrow subdiffusion,
in particular $\psi(t) \sim t^{-1+\alpha}, 0<\Sigma<\infty: \rightsquigarrow \partial_{t}^{\alpha} u=K \partial_{x \times} p(x, t)$

Solution representation by separation of variables

1-d ODE:

$$
u^{\prime}(t)+\lambda u(t)=0, \quad u(T)=e^{-\lambda T} u(0), \quad u(0)=e^{\lambda T} u(T)
$$

PDE with elliptic operator $A=-\mathbb{L}$ with eigensystem $\lambda_{j} \nearrow \infty, \phi_{j} \in H^{2}(\Omega)_{\infty} \cap H_{0}^{1}(\Omega), j \in \mathbb{N}$:

$$
u_{t}(t)+A u(t)=0, \quad u(x, 0)=\sum_{j=1} e^{\lambda_{j} T}\left\langle u(\cdot, T), \phi_{j}\right\rangle \phi_{j}(x)
$$

exponential amplification of noise in Fourier coefficients $\left\langle u(\cdot, T), \phi_{j}\right\rangle$

Solution representation by separation of variables

1-d ODE:

$$
u^{\prime}(t)+\lambda u(t)=0, \quad u(T)=e^{-\lambda T} u(0), \quad u(0)=e^{\lambda T} u(T)
$$

PDE with elliptic operator $A=-\mathbb{L}$ with eigensystem $\lambda_{j} \nearrow \infty, \phi_{j} \in H^{2}(\Omega)_{\infty} \cap H_{0}^{1}(\Omega), j \in \mathbb{N}$:

$$
u_{t}(t)+A u(t)=0, \quad u(x, 0)=\sum_{j=1} e^{\lambda_{j} T}\left\langle u(\cdot, T), \phi_{j}\right\rangle \phi_{j}(x)
$$

exponential amplification of noise in Fourier coefficients $\left\langle u(\cdot, T), \phi_{j}\right\rangle$
replace diffusion by subdiffusion:
1-d ODE:
$\partial_{t}^{\alpha} u(t)+\lambda u(t)=0, \quad u(T)=E_{\alpha, 1}\left(-\lambda T^{\alpha}\right) u(0), \quad u(0)=\frac{u(T)}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)}$
PDE with elliptic operator $A=-\mathbb{L}$:

$$
\partial_{t}^{\alpha} u(t)+A u(t)=0, \quad u(x, 0)=\sum_{j=1}^{\infty} \frac{\left\langle u(\cdot, T), \phi_{j}\right\rangle}{E_{\alpha, 1}\left(-\lambda_{j} T^{\alpha}\right)} \phi_{j}(x)
$$

where $E_{\alpha, 1}$ is a Mittag-Leffler function.

Mittag-Leffler functions

$$
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)} \quad \alpha>0, \beta \in \mathbb{R}, \quad z \in \mathbb{C}
$$

generalizes exponential $E_{1,1}(z)=e^{z} ; \quad E_{\alpha}:=E_{\alpha, 1}$

Theorem (Djrbashian, 1966,'93)

Let $\alpha \in(0,2), \beta \in \mathbb{R}$, and $\mu \in(\alpha \pi / 2, \min (\pi, \alpha \pi))$, and $N \in \mathbb{N}$. Then for $|\arg (z)| \leq \mu$ with $|z| \rightarrow \infty$,

$$
E_{\alpha, \beta}(z) \sim \frac{1}{\alpha} z^{\frac{1-\beta}{\alpha}} e^{z^{\frac{1}{\alpha}}}
$$

and for $\mu \leq|\arg (z)| \leq \pi$ with $|z| \rightarrow \infty$

$$
E_{\alpha, \beta}(z)=-\sum_{k=1}^{N} \frac{1}{\Gamma(\beta-\alpha k)} \frac{1}{z^{k}}+O\left(\frac{1}{z^{N+1}}\right)
$$

Mittag-Leffler functions

For $x \rightarrow+\infty$
$E_{\alpha, \beta}(x) \sim \frac{1}{\alpha} x^{\frac{1-\beta}{\alpha}} e^{x^{\frac{1}{\alpha}}}$

For $x \rightarrow-\infty$
$E_{\alpha, \beta}(x)=-\sum_{k=1}^{N} \frac{1}{\Gamma(\beta-\alpha k)} \frac{1}{x^{k}}+O\left(\frac{1}{x^{N+1}}\right)$

Mittag-Leffler functions

For $x \rightarrow+\infty$
$E_{\alpha, \beta}(x) \sim \frac{1}{\alpha} x^{\frac{1-\beta}{\alpha}} e^{x^{\frac{1}{\alpha}}}$

For $x \rightarrow-\infty$
$E_{\alpha, \beta}(x)=-\sum_{k=1}^{N} \frac{1}{\Gamma(\beta-\alpha k)} \frac{1}{x^{k}}+O\left(\frac{1}{x^{N+1}}\right)$

On the positive real axis, $E_{\alpha, \beta}$ grows superexponetially. On the negative real axis, $E_{\alpha, \beta}$ decreases only linearly.

regularization based on subdiffusion

Plain subdiffusion regularization

backwards diffusion $u_{t}+A u=0, u(x, T)=u_{T} \approx u_{T}^{\delta} \approx \tilde{u}_{T}^{\delta}$,

Plain subdiffusion regularization

 backwards diffusion $u_{t}+A u=0, u(x, T)=u_{T} \approx u_{T}^{\delta} \approx \tilde{u}_{T}^{\delta}$, in terms of Fourier coefficients:$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}, \phi_{j}\right\rangle \quad \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

Plain subdiffusion regularization

backwards diffusion $u_{t}+A u=0, u(x, T)=u_{T} \approx u_{T}^{\delta} \approx \tilde{u}_{T}^{\delta}$, in terms of Fourier coefficients (truncated SVD):

$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle \text { for } j \leq K \quad \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

Plain subdiffusion regularization

backwards diffusion $u_{t}+A u=0, u(x, T)=u_{T} \approx u_{T}^{\delta} \approx \tilde{u}_{T}^{\delta}$, in terms of Fourier coefficients (truncated SVD):

$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle \text { for } j \leq K \quad \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

replace ∂_{t} by ∂_{t}^{α} with $\alpha<1$ (\rightsquigarrow regularization parameter)

$$
\left\langle u_{0, \alpha}^{\delta}, \phi_{j}\right\rangle=w\left(\lambda_{j}, \alpha\right)\left\langle\tilde{u}_{T}^{\delta}, \phi_{j}\right\rangle \quad \text { with } \quad w(\lambda, \alpha)=\frac{1}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)}
$$

Plain subdiffusion regularization

backwards diffusion $u_{t}+A u=0, u(x, T)=u_{T} \approx u_{T}^{\delta} \approx \tilde{u}_{T}^{\delta}$, in terms of Fourier coefficients (truncated SVD):
$\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle$ for $j \leq K \quad$ with $\quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}$ replace ∂_{t} by ∂_{t}^{α} with $\alpha<1(\rightsquigarrow$ regularization parameter)

$$
\left\langle u_{0, \alpha}^{\delta}, \phi_{j}\right\rangle=w\left(\lambda_{j}, \alpha\right)\left\langle\tilde{u}_{T}^{\delta}, \phi_{j}\right\rangle \quad \text { with } \quad w(\lambda, \alpha)=\frac{1}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)}
$$

\rightsquigarrow more stable for large frequencies, less stable for small frequencies

Split frequency subdiffusion regularization

 backwards diffusion $u_{t}+A u=0, u(x, T)=\underbrace{u_{T}}_{\in C^{\infty}(\Omega)} \approx \overbrace{\underbrace{u_{T}^{\delta}}_{\in L^{2}(\Omega)}} \approx \overbrace{\underbrace{\tilde{u}_{T}^{\delta}}_{\in H^{2}(\Omega)}}$, in terms of Fourier coefficients:$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle \text { for } j \leq K \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

Split frequency subdiffusion regularization

 in terms of Fourier coefficients:$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle \text { for } j \leq K \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

backwards diffusion on small frequencies, subdiffusion on large frequencies

$$
\left\langle u_{0, \alpha}^{\delta}, \phi_{j}\right\rangle=\left\{\begin{array}{ll}
w\left(\lambda_{j}, 1\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle & \text { for } j \leq K \\
w\left(\lambda_{j}, \alpha\right)\left\langle\tilde{u}_{T}^{\delta}, \phi_{j}\right\rangle & \text { for } j \geq K+1
\end{array} \quad \text { with } w(\lambda, \alpha)=\frac{1}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)}\right.
$$

\rightsquigarrow regularization parameters α, K

Multiple split frequency subdiffusion regularization

backwards diffusion $u_{t}+A u=0, u(x, T)=u_{T} \approx u_{T}^{\delta} \approx \tilde{u}_{T}^{\delta}$, in terms of Fourier coefficients:

$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle \text { for } j \leq K \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

backwards diffusion on small frequencies, subdiffusion on larger frequencies

$$
\left\langle u_{0, \alpha}^{\delta}, \phi_{j}\right\rangle= \begin{cases}w\left(\lambda_{j}, 1\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle & \text { for } j \leq K_{1} \\ w\left(\lambda_{j}, \alpha_{1}\right)\left\langle\tilde{u}_{T}^{\delta}, \phi_{j}\right\rangle & \text { for } K_{1}+1 \leq j \leq K_{2} \\ \cdots & \\ w\left(\lambda_{j}, \alpha_{i}\right)\left\langle\tilde{u}_{T}^{\delta}, \phi_{j}\right\rangle & \text { for } K_{i}+1 \leq j \leq K_{i+1} \\ \cdots & \end{cases}
$$

\rightsquigarrow regularization parameters $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{\ell}, K_{1}<K_{2}<\cdots<K_{\ell+1}$

Other regularization approaches based on fractional derivatives

- add fracional time derivative:

$$
u_{t}+A u=0 \quad \rightsquigarrow \quad u_{t}+\varepsilon \partial_{t}^{\alpha} u+A u=0
$$

amplification factors

$$
w(\lambda, \alpha, \beta, \varepsilon)=\left(\mathcal{L}^{-1}\left(\frac{1+\epsilon s^{\alpha-1}}{s+\epsilon s^{\alpha}+\lambda}\right)\right)^{-1} \sim \frac{\pi T^{\alpha} \Gamma(1-\alpha)}{\sin (\alpha \pi)} \frac{1}{\epsilon} \lambda
$$

regularization parameters α, ε

Other regularization approaches based on fractional derivatives

- add fracional time derivative:

$$
u_{t}+A u=0 \quad \rightsquigarrow \quad u_{t}+\varepsilon \partial_{t}^{\alpha} u+A u=0
$$

amplification factors
$w(\lambda, \alpha, \beta, \varepsilon)=\left(\mathcal{L}^{-1}\left(\frac{1+\epsilon s^{\alpha-1}}{s+\epsilon s^{\alpha}+\lambda}\right)\right)^{-1} \sim \frac{\pi T^{\alpha} \Gamma(1-\alpha)}{\sin (\alpha \pi)} \frac{1}{\epsilon} \lambda$
regularization parameters α, ε

- add fractional space derivative A^{β}, e.g., $\lambda_{j} \rightarrow \lambda_{j}^{\beta}$:

$$
u_{t}+A u=0 \quad \rightsquigarrow \quad\left(I+\varepsilon A^{\beta}\right) \partial_{t}^{\alpha} u+A u=0
$$

amplification factors $\quad w(\lambda, \alpha, \beta, \varepsilon)=\frac{1}{E_{\alpha, 1}\left(-\frac{\lambda}{1+\varepsilon \lambda^{\beta}} T^{\alpha}\right)}$
regularization parameters $\alpha, \beta, \varepsilon$

reconstructions - numerical experiments

Test case 1: u_{0} with kink; $\delta=0.1 \%$

Reconstructions from single and double split frequency method. single split: $K_{1}=4$ and $\alpha=0.92$; double split: $K_{1}=4, K_{2}=10$ and $\alpha_{1}=0.999, \alpha_{2}=0.92$.

Test case 2: u_{0} with $\lambda_{j} \neq 0, j=1, \ldots, 7,10 \ldots, 15 ; \delta=1 \%$

Reconstructions from truncated SVD, single and double split frequency method.

Test case 3: u_{0} with $\lambda_{j} \neq 0, j=1, \ldots, 7,10 \ldots, 15 ; \delta=0.1$

Reconstructions from truncated SVD, single, double, and triple split frequency method.

convergence analysis

Plain subdiffusion regularization

backwards diffusion $u_{t}+A u=0, u(x, T)=u_{T} \approx u_{T}^{\delta} \approx \tilde{u}_{T}^{\delta}$, in terms of Fourier coefficients:

$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}, \phi_{j}\right\rangle \quad \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

replace ∂_{t} by ∂_{t}^{α} with $\alpha<1$ (\rightsquigarrow regularization parameter)

$$
\left\langle u_{0, \alpha}^{\delta}, \phi_{j}\right\rangle=w\left(\lambda_{j}, \alpha\right)\left\langle\tilde{u}_{T}^{\delta}, \phi_{j}\right\rangle \quad \text { with } \quad w(\lambda, \alpha)=\frac{1}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)}
$$

Properties of the Mittag-Leffler function $E_{\alpha, 1}(-\lambda x)$ (I)

[Djrbashian 1966,'93, Jin\&Rundell 2015, Gorenflo\&Kilbas\&Mainardi\&Rogosin 2014]
Lemma
For $0<\alpha \leq 1$ and $x, t>0, \lambda>0$

$$
\alpha \lambda \frac{d}{d x} E_{\alpha, 1}(-\lambda x)=-E_{\alpha, \alpha}(-\lambda x)
$$

Consequently, $u(t):=E_{\alpha, 1}\left(-\lambda t^{\alpha}\right)$ solves fractional ODE $\quad \partial_{t}^{\alpha} u+\lambda u=0$.

Lemma

For $0<\alpha<1$ and $x>0$

$$
\frac{1}{1+\Gamma(1-\alpha) x} \leq E_{\alpha, 1}(-x) \leq \frac{1}{1+\Gamma(1+\alpha)^{-1} x}
$$

Consequently, we have the stability estimate $\frac{1}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)} \leq \bar{C} \frac{\lambda}{1-\alpha}$

Properties of the Mittag-Leffler function $E_{\alpha, 1}(-\lambda x)$ (II)

Lemma (BK\&Rundell 2018)

For any $\alpha_{0} \in(0,1)$ and $p \in\left[1, \frac{1}{1-\alpha_{0}}\right)$, there exists $C=C\left(\alpha_{0}, p\right)>0$ such that for all $\lambda \geq \lambda_{1}, \alpha \in\left[\alpha_{0}, 1\right)$

$$
\left|E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)-\exp (-\lambda T)\right| \leq C \lambda^{1 / p}(1-\alpha)
$$

Consequently, we have the convergence rate

$$
\left|\frac{\exp (-\lambda T)}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)}-1\right| \leq \tilde{C} \lambda^{1+1 / p}
$$

with $\alpha_{0}, \alpha, p, \lambda_{1}, \lambda$ as above, $\tilde{C}=\tilde{C}\left(\alpha_{0}, p\right)>0$.

Exponential ill-posedness \longrightarrow mild ill-posedness

backwards diffusion:

$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}, \phi_{j}\right\rangle \quad \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

\rightsquigarrow exponential instability.

Exponential ill-posedness \longrightarrow mild ill-posedness

backwards diffusion:

$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}, \phi_{j}\right\rangle \quad \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

\rightsquigarrow exponential instability.
backwards subdiffusion

$$
\left\langle u_{0, \alpha}^{\delta}, \phi_{j}\right\rangle=w\left(\lambda_{j}, \alpha\right)\left\langle\tilde{u}_{T}^{\delta}, \phi_{j}\right\rangle \quad \text { with } \quad w(\lambda, \alpha)=\frac{1}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)}
$$

stability estimate $\quad \frac{1}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)} \leq \frac{\bar{C}}{1-\alpha} \lambda$
and Sobolev norm equivalence $\|v\|_{H^{s}(\Omega)} \sim \sum_{j=1}^{\infty} \lambda_{j}^{s}\left\langle v, \phi_{j}\right\rangle^{2}$
$\Longrightarrow H^{2}-L^{2}$ stability of backwards subdiffusion, with a stability constant that degenerates as $\alpha \nearrow_{1} 1$.

Pre-smoothing the data

$$
u(x, T)=\underbrace{u_{T}}_{\in C^{\infty}(\Omega)} \approx \overbrace{\in L^{2}(\Omega)}^{\overbrace{T}^{\delta}} \approx \overbrace{\in H^{2}(\Omega)}^{\tilde{u}_{T}^{\delta}}
$$

Use Landweber iteration for defining $\tilde{u}_{T}^{\delta}=v^{\left(i_{*}\right)}$

$$
v^{(i+1)}=v^{(i)}-\mu A^{-s / 2}\left(v^{(i)}-u_{T}^{\delta}\right), \quad v^{(0)}=0
$$

with $\mu>0$ chosen so that $\mu\left\|A^{-s / 2}\right\|_{L^{2} \rightarrow L^{2}} \leq 1$.

Pre-smoothing the data

$$
u(x, T)=\underbrace{u_{T}}_{\in C^{\infty}(\Omega)} \approx \overbrace{\underbrace{u_{T}^{\delta}}_{\in L^{2}(\Omega)}}^{\text {noisy }} \approx \overbrace{\underbrace{\tilde{u}_{T}^{\delta}}_{\in H^{2}(\Omega)}}^{\text {smoothed }}
$$

Use Landweber iteration for defining $\tilde{u}_{T}^{\delta}=v^{\left(i_{*}\right)}$

$$
v^{(i+1)}=v^{(i)}-\mu A^{-s / 2}\left(v^{(i)}-u_{T}^{\delta}\right), \quad v^{(0)}=0
$$

with $\mu>0$ chosen so that $\mu\left\|A^{-s / 2}\right\|_{L^{2} \rightarrow L^{2}} \leq 1$.

Lemma (BK\&Rundell 2018; pre-smoothing)

A choice of $i_{*} \sim T^{-2} \log \left(\frac{\left\|u_{0}\right\|_{L^{2}(\Omega)}}{\delta}\right)$ yields $\left\|u_{T}-\tilde{u}_{T}^{\delta}\right\|_{L^{2}(\Omega)} \leq C_{1} \delta$,
$\left\|u_{T}-\tilde{u}_{T}^{\delta}\right\|_{H^{s}(\Omega)} \sim\left\|A^{s / 2}\left(u_{T}-\tilde{u}_{T}^{\delta}\right)\right\|_{L^{2}(\Omega)} \leq \frac{C_{2}}{T} \delta \sqrt{\log \left(\frac{\left\|u_{0}\right\|_{L^{2}(\Omega)}}{\delta}\right)}=: \tilde{\delta}$ for some $C_{1}, C_{2}>0$ independent of T and δ.

Note that Tikhonov regularization would not properly pre-smooth noisy versions of C^{∞} data, due to saturation.

Convergence with a priori choice of α

Theorem (BK\&Rundell 2018)

Let $u_{0} \in L^{2}(\Omega), A^{1+1 / p} u_{0} \in L^{2}(\Omega)$ for some $p \in(1, \infty)$, $\tilde{u}_{T}^{\delta}=v^{\left(i_{*}\right)}$ as in pre-smoothing Lemma with $s \geq 2\left(1+\frac{1}{p}\right)$, and assume that $\alpha=\alpha(\tilde{\delta})$ is chosen such that

$$
\alpha(\tilde{\delta}) \nearrow 1 \text { and } \frac{\tilde{\delta}}{1-\alpha(\tilde{\delta})} \rightarrow 0, \quad \text { as } \tilde{\delta} \rightarrow 0
$$

Then

$$
\left\|u_{0, \alpha(\tilde{\delta})}^{\delta}-u_{0}\right\|_{L^{2}(\Omega)} \rightarrow 0, \quad \text { as } \tilde{\delta} \rightarrow 0
$$

Backwards time fractional diffusion is a regularization method.

Convergence with a posteriori choice of α

Theorem (BK\&Rundell 2018)

Let $u_{0} \in L^{2}(\Omega), A^{1+1 / p} u_{0} \in L^{2}(\Omega)$ for some $p \in(1, \infty)$, $\tilde{u}_{T}^{\delta}=v^{\left(i_{*}\right)}$ as in pre-smoothing Lemma with $s \geq 2\left(1+\frac{1}{p}\right)$, and assume that $\alpha=\alpha\left(\tilde{u}_{T}^{\delta}, \tilde{\delta}\right)$ is chosen according to

$$
\underline{\tau} \tilde{\delta} \leq\left\|\exp (-A T) u_{0}^{\delta}(\cdot ; \alpha)-\tilde{u}_{T}^{\delta}\right\| \leq \bar{\tau} \tilde{\delta}
$$

(discrepancy principle) with fixed $1<\underline{\tau}<\bar{\tau}$.
Then

$$
u_{0, \alpha(\tilde{\delta})}^{\delta} \rightharpoonup u_{0} \text { in } L^{2}(\Omega), \quad \text { as } \delta \rightarrow 0
$$

Convergence rates

Theorem (BK\&Rundell 2018)

Let $u_{0} \in L^{2}(\Omega), A^{1+1 / p+\max \{1 / p, q\}} u_{0} \in L^{2}(\Omega)$ for some $p \in(1, \infty)$, $q>0, \tilde{u}_{T}^{\delta}=v^{\left(i_{*}\right)}$ as in pre-smoothing Lemma with $s \geq 2\left(1+\frac{1}{p}\right)$, and assume that $\alpha=\alpha\left(\tilde{u}_{T}^{\delta}, \tilde{\delta}\right)$ is chosen according to

$$
1-\alpha(\tilde{\delta}) \sim \sqrt{\tilde{\delta}}, \quad \text { as } \tilde{\delta} \rightarrow 0
$$

Then

$$
\left\|u_{0, \alpha(\tilde{\delta})}^{\delta}-u_{0}\right\|_{L^{2}(\Omega)}=O\left(\log \left(\frac{1}{\delta}\right)^{-2 q}\right), \quad \text { as } \delta \rightarrow 0
$$

In the noise free case we have

$$
\left\|u_{0, \alpha}^{0}-u_{0}\right\|_{L^{2}(\Omega)}=O\left(\log \left(\frac{1}{1-\alpha}\right)^{-2 q}\right), \quad \text { as } \alpha \nearrow 1
$$

Finite Sobolev regularity implies a logarithmic rate.

Split frequency subdiffusion regularization

backwards diffusion $u_{t}+A u=0, u(x, T)=u_{T} \approx u_{T}^{\delta} \approx \tilde{u}_{T}^{\delta}$, in terms of Fourier coefficients:

$$
\left\langle u_{0}, \phi_{j}\right\rangle=w\left(\lambda_{j}\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle \text { for } j \leq K \text { with } \quad w(\lambda)=e^{\lambda T}=\frac{1}{e^{-\lambda T}}
$$

backwards diffusion on small frequencies, subdiffusion on large frequencies

$$
\left\langle u_{0, \alpha}^{\delta}, \phi_{j}\right\rangle=\left\{\begin{array}{ll}
w\left(\lambda_{j}, 1\right)\left\langle u_{T}^{\delta}, \phi_{j}\right\rangle & \text { for } j \leq K \\
w\left(\lambda_{j}, \alpha\right)\left\langle\tilde{u}_{T}^{\delta}, \phi_{j}\right\rangle & \text { for } j \geq K+1
\end{array} \quad \text { with } w(\lambda, \alpha)=\frac{1}{E_{\alpha, 1}\left(-\lambda T^{\alpha}\right)}\right.
$$

\rightsquigarrow regularization parameters α, K

Convergence with a posteriori choice of K and α

First choose K :

$$
\begin{equation*}
K=\min \left\{k \in \mathbb{N}:\left\|\exp (\mathbb{L} T) u_{0, I f}^{\delta}-u_{T}^{\delta}\right\| \leq \tau \delta\right\} \tag{1}
\end{equation*}
$$

for some fixed $\tau>1$. Then choose α

$$
\begin{equation*}
\underline{\tau} \tilde{\delta} \leq\left\|\exp (-A T) u_{0, \alpha, K}^{\delta}-u_{T}^{\delta}\right\| \leq \bar{\tau} \tilde{\delta} \tag{2}
\end{equation*}
$$

Theorem (BK\&Rundell 2018)

Let $u_{0} \in L^{2}(\Omega), A^{1+1 / p} u_{0} \in L^{2}(\Omega)$ for some $p \in(1, \infty)$, $\tilde{u}_{T}^{\delta}=v^{\left(i_{*}\right)}$ as in pre-smoothing Lemma with $s \geq 2\left(1+\frac{1}{p}\right)$, and assume that $K=K\left(u_{T}^{\delta}, \delta\right)$ and $\alpha=\alpha\left(\tilde{u}_{T}^{\delta}, \tilde{\delta}\right)$ are chosen according to (1) and (2). Then

$$
u_{0, \alpha\left(\tilde{u}_{T}^{\delta}, \tilde{\delta}\right), K\left(u_{T}^{\delta}, \delta\right)}^{\delta} \rightharpoonup u_{0} \text { in } L^{2}(\Omega), \quad \text { as } \delta \rightarrow 0
$$

Conclusions and remarks

- based on the paradigm of quasi-reversibility, backwards subdiffusion (with pre-smoothing) is a regularizer for backwards diffusion

Conclusions and remarks

- based on the paradigm of quasi-reversibility, backwards subdiffusion (with pre-smoothing) is a regularizer for backwards diffusion
- can be implemented without explicit use of eigensystem by just numerical solution of time-fractional PDE

Conclusions and remarks

- based on the paradigm of quasi-reversibility, backwards subdiffusion (with pre-smoothing) is a regularizer for backwards diffusion
- can be implemented without explicit use of eigensystem by just numerical solution of time-fractional PDE
- can be improved by spitting frequencies (using eigensystem) and treating different parts of the frequency range by different time differentiation orders α

Thank you for your attention!

