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Overview
• The Born approximation in the context of inverse scattering is

used to obtain a linear approximation to the forward map from
index of refraction to the far-field pattern.

• It works well for weak scatterers but tends to fail for strong
scatterers:
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The forward transmission problem
• Let u(x), ui (x ,d) and us(x) be the total wave, the incident wave

and the scattered wave, respectively, and let x ,d ∈ R2.
• The time-harmonic scattering problem can be written as

∆u + k2n(x)u = 0 in R2,

u = ui + us in R2,

r1/2
(
∂us

∂r
− ikus

)
→ 0 as r := |x | → ∞.

where n(x) is the (squared) refraction index, k = ω/c is the wave
number, d is the direction of the incident wave, ω is the frequency
and c is the wave speed where n = 1.

• Let the scatterer/contrast m(x) = 1− n(x) have a bounded
support such that supp m ⊂ D.
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The far-field pattern
• The total field u satisfies the Lippmann-Schwinger equation

u(x) = ui (x)−k2
∫

D

i
4

H(1)
0 (k |x−y |)m(y)u(y) dA(y), ∀x ∈ R2

where H(1)
0 is the Hankel function of first kind and order zero.

• The far-field pattern can be computed as

u∞(x̂ ,d) = −k2 exp(iπ/4)√
8πk

∫
D

exp(−ik x̂ · y)m(y)u(y ,d) dA(y)

where x̂ is the direction of the out-going wave.
• The forward problem is to compute u∞(x̂ ,d) for a collection of

(d , x̂).
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“Accurate” numerical approximation
of the forward problem

• We can write

∆us + k2n(x)us = k2(1− n(x))ui = k2m(x)ui

where the right hand “source” term has the same support as m.
• We use the finite element method with a perfectly matching layer

with a computational domain Ω̄ that is ∼ twice the size of the
scatterer.

• The far field pattern is then computed as above.
• Let us denote the respective model predictions as RM 3 F̄ (m̄)

where the barred entities refer to “accurate” representations.
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The Born approximation
• The Born approximation in this context is simply the first term of

the Neumann series

u(x) ≈ ui (x)−k2
∫

D

i
4

H(1)
0 (k |x−y |)m(y)ui (y) dA(y), ∀x ∈ R2

• This yields the approximate forward map

u∞(x̂ ,d) ≈ −k2 exp(iπ/4)√
8πk

∫
D

exp(ik(d − x̂) · y)m(y) dA(y).

which (linear map) we denote by F (m)

• Note: the Neumann series converges usually only for very low
contrasts m ∼ 1.07.

• Weak scatterer: (ka)2‖m‖L∞(D) is “sufficiently small”, where a is
the size of the scatterer (D).
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Bayesian models with auxiliary variables
• All information of the random variables χ is decoded in the joint

density π(χ), in our case χ = (Y ,m,e, ε) where
• Measurements: Y
• Primary unknowns: m
• Measurement noise: e
• Other secondary unknows: ε

• So, one is interested in the RV’s m, the RV’s Y have been
measured and the RV’s (e, ε) are uninteresting. Then the task is
to model the conditional distribution

π(m |Y ) ∝
∫ ∫

π(m,e, ε |Y ) de dε

which expresses the uncertainty of m given Y .
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The measurement model
• We pose the additive measurement error model

Y = F̄ (m̄) + e
= F (m) + e + F̄ (m̄)− F (m)︸ ︷︷ ︸

ε(m̄)

with e ∼ N (e∗, Γe).
• One can marginalize over e to yield

π(Y |m) =

∫
πe(Y − F (m)− ε)πε|m(ε |m) dε

• At this stage, we approximate the joint density π(ε,m) with a
normal model

π(ε,m) ∝ exp

{
−1

2

(
ε− ε∗

m −m∗

)T(
Γεε Γεm
Γmε Γmm

)−1(
ε− ε∗

m −m∗

)}
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• For the approximate conditional density π(ε |m) = N (ε∗|m, Γε|m)
we can then write

ε∗|m = ε∗ + ΓεmΓ−1
mm(m −m∗),

Γε|m = Γεε − ΓεmΓ−1
mmΓmε.

• Define the normal random variable ν so that ν |m = e + ε |m then

ν |m ∼ N (ν∗|m, Γν|m)

where

ν∗|m = e∗ + ε∗ + ΓεmΓ−1
mm(m −m∗), (1)

Γν|m = Γe + Γεε − ΓεmΓ−1
mmΓmε (2)

• Which yields the approximate likelihood

π(Y |m) = N (Y − F (m)− ν∗|m, Γν|m)
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The posterior model
• For the inversion/inference, we adopt “a normal approximation for

the prior model”
π(m) = N (m∗, Γmm) (3)

• The approximation for the posterior distribution can thus be
written as

π(m |Y ) ∝ π(Y |m)π(m) ∝ exp
(
−1

2
V (m |Y )

)
where V (m |Y ) is the posterior potential that can be written in
the form

V (m |Y ) = ‖Lν|m(Y − F (m)− ν∗|m)‖2 + ‖Lm(m −m∗)‖2 (4)

where Γ−1
ν |m = LT

ν|mLν|m and Γ−1
mm = LT

mLm.
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• We aim to compute the conditional mean (minimizer of the
posterior potential) to obtain a “precomputed” estimator since we
can write

E(m |Y ) = BY + c

• The posterior covariance can also be precomputed

Γm|Y =
(

F̃ TΓ−1
ν|mF̃ + Γ−1

mm

)−1
(5)

where F̃ = F + ΓεmΓ−1
mm. A further approximation, that is referred

to as the enhanced error model, is obtained by setting Γεm = 0.
• The overall approach is called the Bayesian approximation error

approach.
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The priors π̄(m̄), π(m), m̄ and m
• The actual prior π̄(m̄): 1-3 ellipses (inclusions) with random

centers, orientations, eccentricities and contrasts m ∈ (0,1).
• Draw samples m̄(`) from this prior model and compute

projections m(`) and the approximation errors ε(`)

• Compute the joint second order statistics of (ε,m)

• The prior for the inversion/inference is π(m) = N (0, Γmm) where
Γmm is an isotropic homogeneous Ornstein-Uhlenback
covariance with characteristic length λ (wavelength outside
scatterer) and marginal variances var (mk ) = 0.42 for all k .

• m is discretized in a 50× 50 rectangular grid.
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Comments
• By carrying out simulations (model predictions) with an accurate

and an approximate (Born) forward model, one can compute the
approximate statistics of the related approximation/modelling
errors

• The approach yields a computational scheme with essentially the
same complexity as the (standard) Born approximation

• The simulations suggest that this approach can be feasible in the
sense that the posterior error estimates are . . . feasible.

Reconstruction Methods for Inverse Problems, Banff, Canada, June 24-28, 2019 21


