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1 Introduction
• 3rd Order NLS with Raman Scatteing Term

∂tu =α1∂
3
xu+ iα2∂

2
xu+ iγ1|u|2u

+ γ2∂x
(
|u|2u

)
− iΓu∂x

(
|u|2

)
, (1)

t ∈ [−T, T ], x ∈ T,

u(0, x) = u0(x), x ∈ T. (2)

αj , γj , Γ; real constants, α2
1 + α2

2 ̸= 0,

Γ ̸= 0.



u : [−T, T ]×T → C ; slowly varying

envelope of electric field,

The last term on RHS of (1) represents the

effect of Raman scattering.

Assume that

α1 ̸= 0 =⇒ 2α2/3α1 ̸∈ Z. (NR)

Pulse with slowly varying envelope in photonic

crystal fiber



V. Agrawal, “Nonlinear Fiber Optics ”,

Fourth Edition, Acadmic Press, 2007.

Problem: Is the Cauchy problem of (1)

well-posed in Sobolev spaces Hs, in analytic

function space or in the Gevrey class?

• Main Theorems on Ill-Posedness

Theorem 1 (Kishimoto-Y.T, 2018)

2α2/3α1 ̸∈ Z (α1 ̸= 0), 1 ≤ s1 ≤ s < s1 + 1.



Then, ∃u0 ∈ Hs(T) such that for any T > 0

the Cauchy problem of (1) with u(0) = u0 has

no solution u ∈ C([0, T );Hs1(T)), nor

solution u ∈ C((−T, 0];Hs1(T)).

Remark 1 (i) Instead of T, when we consider

(1) on R，it is known that (LWP) holds in

regular Sobolev spaces (Hayashi and Ozawa

(1994), Chihara (1994))．The spectrum of

the Laplacian on T is discrete while it is

continuous on R. The difference between T



and R comes from the nature of the spectrum

of the Laplacian.

(ii) Even if α1 = 0, Theorem 1 holds.

Theorem 2 (Kishimoto-Y.T, 2018)

2α2/3α1 ̸∈ Z (α1 ̸= 0), s ≥ 1,

u∗ ∈ C([0, T ];Hs(T)) ; solution to (1) on

[0, T ] for some T > 0. Then,

∀ε > 0, 0 < ∀τ ≤ T , ∃ real analytic function

ϕ on T with ∥ϕ∥Hs ≤ ε such that either there

is no solution u to (1) in C([0, τ ];Hs(T))



with initial condition u(0) = u∗(0) + ϕ, or

such a solution exists but

sup
t∈[0,τ ]

∥u(t)− u∗(t)∥Hs ≥ ε−1.

Remark 2 Theorem 2 implies the breakdown

of continuous dependence on initial data. The

assertion of Theorem 2 is weaker than

Theorem 1, while the former can cover a

larger class of initial data than the latter.

• Idea of Proofs for Theorems 1 and 2



Conservation Law of Mass:

∥u(t)∥L2 = ∥u0∥2L2 , t ∈ [−T, T ].

Remark 3 Momentum and energy are not

conserved because of Raman scattering.

(Translation and Gauge Transformation)

v(t, x) = u
(
t, x− γ2

π

∫ t

0

∥u(s)∥2L2 ds
)

× e−
γ1
π i

∫ t
0
∥u(s)∥2

L2 ds− Γ
2π i

∫ t
0
Im(∂xu,u) ds.



Then, (1) can be written as follows.

∂tv + ia∂xv = α1∂
3
xv + iα2∂

2
xv (3)

+iγ1
(
|v|2 − 1

π
∥v(t)∥2L2

)
v

+γ2
[
2
(
|v|2 − 1

2π
∥v(t)∥2L2

)
∂xv + v2∂xv̄

]
+

Γ

(2π)3/2

∑
k∈Z

e−ikx

×
∑

(k1+k2)(k2+k3 )̸=0

(k1 + k2)v̂(k1)ˆ̄v(k2)v̂(k3),



where v̂(t, k) denotes the Fourier transform in

x of v(t, x) and

a =
Γ

2π
∥u0∥2L2 .

The Cauchy-Riemann type elliptic operator

∂t + ia∂x appears due to the Raman

scattering term, which gives rise to the

ill-posedness of the Cauchy problem (1)-(2).

Remark 4 The elliptic regularity theorem for

the Cauchy-Riemann type operator yields that



no solution u ∈ C((−T, T );Hs1) for any

T > 0, which is slightly weaker than Theorem

1. For the proof of Theorems 1 and 2, we

need to use the dispersive nature of equation

(3), which implies the smoothing type effect.

This is why we need to assume (NR).

(Interaction representation)

w(t, x) = e−t(α1∂
3
x+iα2∂

2
x)v(t, x).

Apply Fourier transform in x to (3) =⇒



∂tŵ(k)− a kŵ(k) =
iγ1 + iγ2k

2π
|ŵ(k)|2ŵ(k)

+
iγ1
2π

∑
k1+k2+k3=k

(k1+k2)(k2+k3) ̸=0

eitΦŵ(k1) ¯̂w(−k2)ŵ(k3)

+
∑

k1+k2+k3=k
(k1+k2)(k2+k3) ̸=0

iγ2k + Γ(k1 + k2)

2π

×eitΦŵ(k1) ¯̂w(−k2)ŵ(k3)



=: F̂1(t, k) + F̂2(t, k)+F̂3(t, k).

Here,

Φ(k1, k2, k3) =
(
α1k

3 + α2k
2
)

− (α1k
3
1 + α2k

2
1) +

(
α1(−k2)

3 + α2(−k2)
2
)

− (α1k
3
3 + α2k

2
3)

=3α1(k1 + k2)(k2 + k3)
(
k3 + k1 +

2α2

3α1

)
.



Under the assumption 2α2

3α1
̸∈ Z, it holds that

Φ(k1, k2, k3) = 0 ⇔ (k1 + k2)(k2 + k3) = 0,

Φ(k1, k2, k3) ̸= 0 ⇒ |Φ(k1, k2, k3)|
∼ |k1 + k2| |k2 + k3| |k3 + k1|.

(Resonant case) If s ≥ 1,

|k|
∣∣F̂1(t, k)

∣∣ ≲ |k|−1
(
|k|s

∣∣ŵ(k)∣∣)3,
which is the smoothing type estimate.



(Nonresonant case) The time integration of

F̂2 and F̂3 leads to the smoothing type effect

thanks to the oscillation of eitΦ. Therefore,

∃u0 ∈ Hs such that if T > 0 (resp. T < 0),∣∣eaTkû0(k)
∣∣ −→ ∞,∣∣∣∣

∫ T

0
ea(T−t′)kF̂j(t

′, k) dt′

eaTkû0(k)

∣∣∣∣ −→ 0

as k → ∞ (resp. k → −∞), j = 1, 2.

=⇒ Thoerems 1 and 2



• Physical Literature Related to Ill-Posedness

◦ M. Erkintalo, G. Genty, B. Wetzel and J.M.

Dudley, Optics Express, 18(24), 2010.

Limitations of the linear Raman gain

approximation

◦ T.X. Tran and F. Biancalana,

arXiv:1504.03865v3 [physics.optics] , 2015.

Unphysical metastability of the fundamental

Raman soliton

◦ Fabio Biancalana, Heriot-Watt University



This approach is universally used amongst

physicists, ...

(Private Communications)

Remark 5 The mathematical notion of

ill-posedness is interpreted as the instability of

a physical system at hand. But it is not very

clear whether this instability accounts for

some physical phenomena or it implies just

the limitation of the model.

Remark 6 A large number of numerical



simulations for the Cauchy problem (1)-(2)

have been made though it is ill-posed in

Sobolev spaces. In those numerical

computations, such analytic functions as

Gaussian and super-Gaussian pulses are chosen

as initial data. So, it is natural to expect that

the Cauchy problem (1)-(2) should be solvable

in the analytic function space. Indeed, we can

prove the result on the unique solvability in

the analytic function space.



• Solvability in Analytic Function Spaces

∥f∥A(r) := ∥er|k|f̂(k)∥ℓ1(Z), r > 0,

A(r) :=
{
f ∈ L2(T)

∣∣ ∥f∥A(r) < ∞
}
.

Remark 7 Functions in A(r) are real analytic

and have analytic extensions on the strip

{z ∈ C| |Im z| < r}. The function space A(r)

was employed by Ukai (1984) for the

Boltzmann equation, by Kato and Masuda

(1986) for a class of nonlinear evolution



equations and by Foias and Temam (1989) for

the incompressible Navier-Stokes equations.

Theorem 3 Let αj , j = 1, 2 be two real

numbers and let r > 0. For any u0 ∈ A(r),

there exist T > 0 such that the Cauchy

problem (1)-(2) has a unique solution

u ∈ C([−T, T ];A(r/2)) on (−T, T ).

Moreover, T can be chosen as

T ≳ min{1, r}∥u0∥−2
A(r),



where the implicit constant does not depend

on r and u0.

Remark 8 Theorem 3 is a kind of the

abstract Cauchy-Kowlevsky theorem. We do

not have to assume 2α2/3α1 ̸∈ Z in Theorem

3. Even when α1 = α2 = 0, Theorem 3 holds.

Open Problem It is not known if the solution

given by Theorem 3 exists globally in time.

Some numerical simulations suggest that

when the initial datum is Gaussian or



super-Gaussian, the solution may exist

globally in time or for a long period of time.

What if the initial datum is a sech pulse of the

cubic NLS?

• Ill-posedness in the Gevrey class

It is natural to ask if the Cauchy problem

(1)-(2) is well-posed in the Gevrey class or

not.

σ ≥ 1, s ≥ 0, a > 0,



Gσ
s,a =

{
f ∈ C∞(T;C);

f̂(k) = O(|k|−se−a|k|1/σ ), |k| → ∞
}
,

∥f∥Gσ
s,a

= sup
k∈Z

ea|k|
1/σ

⟨k⟩s|f̂k|,

⟨k⟩ = max{1, |k|}.

Gσ =
∪
a>0

Gσ
0,a (Gevrey class of order σ).



Remark 9 The space Gσ
s,a is the Banach

space while Gσ is not the Banach space. The

Gevrey space Gσ is the topological space

equipped with the inductive limit topology.

Theorem 4 (Kishimoto-Y.T, 2019) Let

σ > 1. For any u0 ∈ Gσ \
∩

a′>0 G
σ
0,a′ there

exists no T > 0 such that the Cauchy problem

(1)–(2) has a solution in C([−T, T ];Gσ).

Theorem 4 follows from the following Gevrey

smoothing effect.



Lemma 1 (Kishimoto-Y.T, 2019) Let

σ > 1, and let u(t) ∈ C([−T, T ];Gσ) be a

solution to (1) on (−T, T ) for some T > 0.

Then, u(t) ∈
∩

a′>0 G
σ
0,a′ for all t ∈ (−T, T ).



Thank you
for your attention!



(Example of initial datum) Let s, s1 be such

that 1 ≤ s1 ≤ s < s1 + 1. We take any

s0 ∈ (s, s1 + 1) and choose initial data u0 as

follows.

û0(k) :=

{
|k|−s0 if k = ±2j for some j ∈ N,

0 otherwise,

which is clearly in Hs(T).



(periodic Gaussian pulse)

gλ(x) =
∞∑

k=−∞

ĝλ(k)e
ikx,

ĝλ(k) = λe−λ2k2

, k ∈ Z, λ > 0.

(periodic hyperbolic secant pulse)

hλ(x) =
∞∑

k=−∞

ĥλ(k)e
ikx,



ĥλ(k) = λπ sech
(πk
2λ

)
, k ∈ Z, λ > 0.


