Banff on July 2, 2019

III-Posedness of the Third Order NLS
Equation with Raman Scattering Term
Yoshio TSUTSUMI (Kyoto University),
with Nobu KISHIMOTO (Kyoto University, RIMS)

1 Introduction

- 3rd Order NLS with Raman Scatteing Term

$$
\begin{align*}
\partial_{t} u= & \alpha_{1} \partial_{x}^{3} u+i \alpha_{2} \partial_{x}^{2} u+i \gamma_{1}|u|^{2} u \\
& +\gamma_{2} \partial_{x}\left(|u|^{2} u\right)-i \Gamma u \partial_{x}\left(|u|^{2}\right), \tag{1}\\
& t \in[-T, T], \quad x \in \mathbf{T}, \\
& u(0, x)=u_{0}(x), \quad x \in \mathbf{T} . \tag{2}
\end{align*}
$$

$\alpha_{j}, \gamma_{j}, \Gamma$; real constants, $\alpha_{1}^{2}+\alpha_{2}^{2} \neq 0$, $\Gamma \neq 0$.
$u:[-T, T] \times \mathbf{T} \rightarrow \mathbf{C}$; slowly varying envelope of electric field, The last term on RHS of (1) represents the effect of Raman scattering.
Assume that

$$
\begin{equation*}
\alpha_{1} \neq 0 \Longrightarrow 2 \alpha_{2} / 3 \alpha_{1} \notin \mathbf{Z} \tag{NR}
\end{equation*}
$$

Pulse with slowly varying envelope in photonic crystal fiber
V. Agrawal, "Nonlinear Fiber Optics ", Fourth Edition, Acadmic Press, 2007.

Problem: Is the Cauchy problem of (1) well-posed in Sobolev spaces H^{s}, in analytic function space or in the Gevrey class?

- Main Theorems on III-Posedness

Theorem 1 (Kishimoto-Y.T, 2018)
$2 \alpha_{2} / 3 \alpha_{1} \notin \mathbf{Z}\left(\alpha_{1} \neq 0\right), \quad 1 \leq s_{1} \leq s<s_{1}+1$.

Then, $\exists u_{0} \in H^{s}(\mathbf{T})$ such that for any $T>0$ the Cauchy problem of (1) with $u(0)=u_{0}$ has no solution $u \in C\left([0, T) ; H^{s_{1}}(\mathbf{T})\right)$, nor solution $u \in C\left((-T, 0] ; H^{s_{1}}(\mathbf{T})\right)$.

Remark 1 (i) Instead of \mathbf{T}, when we consider (1) on \mathbf{R}, it is known that (LWP) holds in regular Sobolev spaces (Hayashi and Ozawa (1994), Chihara (1994)). The spectrum of the Laplacian on \mathbf{T} is discrete while it is continuous on \mathbf{R}. The difference between \mathbf{T}
and \mathbf{R} comes from the nature of the spectrum of the Laplacian.
(ii) Even if $\alpha_{1}=0$, Theorem 1 holds.

Theorem 2 (Kishimoto-Y.T, 2018)
$2 \alpha_{2} / 3 \alpha_{1} \notin \mathbf{Z}\left(\alpha_{1} \neq 0\right), \quad s \geq 1$, $u^{*} \in C\left([0, T] ; H^{s}(\mathbf{T})\right)$; solution to (1) on $[0, T]$ for some $T>0$. Then, $\forall \varepsilon>0,0<\forall \tau \leq T, \exists$ real analytic function ϕ on \mathbf{T} with $\|\phi\|_{H^{s}} \leq \varepsilon$ such that either there is no solution u to (1) in $C\left([0, \tau] ; H^{s}(\mathbf{T})\right)$
with initial condition $u(0)=u^{*}(0)+\phi$, or such a solution exists but

$$
\sup _{t \in[0, \tau]}\left\|u(t)-u^{*}(t)\right\|_{H^{s}} \geq \varepsilon^{-1}
$$

Remark 2 Theorem 2 implies the breakdown of continuous dependence on initial data. The assertion of Theorem 2 is weaker than Theorem 1, while the former can cover a larger class of initial data than the latter.

- Idea of Proofs for Theorems 1 and 2

Conservation Law of Mass:

$$
\|u(t)\|_{L^{2}}=\left\|u_{0}\right\|_{L^{2}}^{2}, \quad t \in[-T, T] .
$$

Remark 3 Momentum and energy are not conserved because of Raman scattering.
(Translation and Gauge Transformation)

$$
\begin{aligned}
& v(t, x)=u\left(t, x-\frac{\gamma_{2}}{\pi} \int_{0}^{t}\|u(s)\|_{L^{2}}^{2} d s\right) \\
& \times e^{-\frac{\gamma_{1}}{\pi} i \int_{0}^{t}\|u(s)\|_{L^{2}}^{2} d s-\frac{\Gamma}{2 \pi} i \int_{0}^{t} \operatorname{Im}\left(\partial_{x} u, u\right) d s}
\end{aligned}
$$

Then, (1) can be written as follows.

$$
\begin{aligned}
& \partial_{t} v+i a \partial_{x} v=\alpha_{1} \partial_{x}^{3} v+i \alpha_{2} \partial_{x}^{2} v \\
& +i \gamma_{1}\left(|v|^{2}-\frac{1}{\pi}\|v(t)\|_{L^{2}}^{2}\right) v \\
& +\gamma_{2}\left[2\left(|v|^{2}-\frac{1}{2 \pi}\|v(t)\|_{L^{2}}^{2}\right) \partial_{x} v+v^{2} \partial_{x} \bar{v}\right] \\
& +\frac{\Gamma}{(2 \pi)^{3 / 2}} \sum_{k \in \mathbf{Z}} e^{-i k x} \\
& \quad \times \sum_{\left(k_{1}+k_{2}\right)\left(k_{2}+k_{3}\right) \neq 0}\left(k_{1}+k_{2}\right) \hat{v}\left(k_{1}\right) \hat{\bar{v}}\left(k_{2}\right) \hat{v}\left(k_{3}\right),
\end{aligned}
$$

where $\hat{v}(t, k)$ denotes the Fourier transform in x of $v(t, x)$ and

$$
a=\frac{\Gamma}{2 \pi}\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

The Cauchy-Riemann type elliptic operator $\partial_{t}+i a \partial_{x}$ appears due to the Raman scattering term, which gives rise to the ill-posedness of the Cauchy problem (1)-(2).

Remark 4 The elliptic regularity theorem for the Cauchy-Riemann type operator yields that
no solution $u \in C\left((-T, T) ; H^{s_{1}}\right)$ for any
$T>0$, which is slightly weaker than Theorem 1. For the proof of Theorems 1 and 2, we need to use the dispersive nature of equation (3), which implies the smoothing type effect. This is why we need to assume (NR).
(Interaction representation)

$$
w(t, x)=e^{-t\left(\alpha_{1} \partial_{x}^{3}+i \alpha_{2} \partial_{x}^{2}\right)} v(t, x)
$$

Apply Fourier transform in x to $(3) \Longrightarrow$

$$
\begin{aligned}
& \partial_{t} \hat{w}(k)-a k \hat{w}(k)=\frac{i \gamma_{1}+i \gamma_{2} k}{2 \pi}|\hat{w}(k)|^{2} \hat{w}(k) \\
&+\frac{i \gamma_{1}}{2 \pi} \sum_{\substack{k_{1}+k_{2}+k_{3}=k \\
\left(k_{1}+k_{2}\right)\left(k_{2}+k_{3}\right) \neq 0}} e^{i t \Phi} \hat{w}\left(k_{1}\right) \overline{\hat{w}}\left(-k_{2}\right) \hat{w}\left(k_{3}\right) \\
&+\sum_{\substack{k_{1}+k_{2}+k_{3}=k \\
\left(k_{1}+k_{2}\right)\left(k_{2}+k_{3}\right) \neq 0}} \frac{i \gamma_{2} k+\Gamma\left(k_{1}+k_{2}\right)}{2 \pi} \\
& \times e^{i t \Phi} \hat{w}\left(k_{1}\right) \overline{\hat{w}}\left(-k_{2}\right) \hat{w}\left(k_{3}\right)
\end{aligned}
$$

$$
=: \hat{F}_{1}(t, k)+\hat{F}_{2}(t, k)+\hat{F}_{3}(t, k)
$$

Here,

$$
\begin{aligned}
& \Phi\left(k_{1}, k_{2}, k_{3}\right)=\left(\alpha_{1} k^{3}+\alpha_{2} k^{2}\right) \\
& \quad-\left(\alpha_{1} k_{1}^{3}+\alpha_{2} k_{1}^{2}\right)+\left(\alpha_{1}\left(-k_{2}\right)^{3}+\alpha_{2}\left(-k_{2}\right)^{2}\right) \\
& \quad-\left(\alpha_{1} k_{3}^{3}+\alpha_{2} k_{3}^{2}\right) \\
& =3 \alpha_{1}\left(k_{1}+k_{2}\right)\left(k_{2}+k_{3}\right)\left(k_{3}+k_{1}+\frac{2 \alpha_{2}}{3 \alpha_{1}}\right)
\end{aligned}
$$

Under the assumption $\frac{2 \alpha_{2}}{3 \alpha_{1}} \notin \mathbf{Z}$, it holds that

$$
\begin{aligned}
\Phi\left(k_{1}, k_{2}, k_{3}\right)=0 & \Leftrightarrow\left(k_{1}+k_{2}\right)\left(k_{2}+k_{3}\right)=0, \\
\Phi\left(k_{1}, k_{2}, k_{3}\right) \neq 0 & \Rightarrow\left|\Phi\left(k_{1}, k_{2}, k_{3}\right)\right| \\
& \sim\left|k_{1}+k_{2}\right|\left|k_{2}+k_{3}\right|\left|k_{3}+k_{1}\right| .
\end{aligned}
$$

(Resonant case) If $s \geq 1$,

$$
|k|\left|\hat{F}_{1}(t, k)\right| \lesssim|k|^{-1}\left(|k|^{s}|\hat{w}(k)|\right)^{3},
$$

which is the smoothing type estimate.
(Nonresonant case) The time integration of \hat{F}_{2} and \hat{F}_{3} leads to the smoothing type effect thanks to the oscillation of $e^{i t \Phi}$. Therefore, $\exists u_{0} \in H^{s}$ such that if $T>0$ (resp. $T<0$),

$$
\begin{aligned}
& \left|e^{a T k} \hat{u}_{0}(k)\right| \longrightarrow \infty, \\
& \left|\frac{\int_{0}^{T} e^{a\left(T-t^{\prime}\right) k} \hat{F}_{j}\left(t^{\prime}, k\right) d t^{\prime}}{e^{a T k} \hat{u}_{0}(k)}\right| \longrightarrow 0 \\
& \text { as } k \rightarrow \infty(\text { resp. } k \rightarrow-\infty), \quad j=1,2
\end{aligned}
$$

\Longrightarrow Thoerems 1 and 2

- Physical Literature Related to III-Posedness
- M. Erkintalo, G. Genty, B. Wetzel and J.M.

Dudley, Optics Express, 18(24), 2010.
Limitations of the linear Raman gain approximation

- T.X. Tran and F. Biancalana, arXiv:1504.03865v3 [physics.optics], 2015. Unphysical metastability of the fundamental Raman soliton
- Fabio Biancalana, Heriot-Watt University

This approach is universally used amongst physicists, ...
(Private Communications)
Remark 5 The mathematical notion of ill-posedness is interpreted as the instability of a physical system at hand. But it is not very clear whether this instability accounts for some physical phenomena or it implies just the limitation of the model.

Remark 6 A large number of numerical
simulations for the Cauchy problem (1)-(2) have been made though it is ill-posed in Sobolev spaces. In those numerical computations, such analytic functions as Gaussian and super-Gaussian pulses are chosen as initial data. So, it is natural to expect that the Cauchy problem (1)-(2) should be solvable in the analytic function space. Indeed, we can prove the result on the unique solvability in the analytic function space.

- Solvability in Analytic Function Spaces

$$
\begin{aligned}
\|f\|_{\mathcal{A}(r)} & :=\left\|e^{r|k|} \hat{f}(k)\right\|_{\ell^{1}}(\mathbf{Z}) \\
\mathcal{A}(r) & :=\left\{f \in 0, L^{2}(\mathbf{T}) \mid\|f\|_{\mathcal{A}(r)}<\infty\right\} .
\end{aligned}
$$

Remark 7 Functions in $\mathcal{A}(r)$ are real analytic and have analytic extensions on the strip $\{z \in \mathbf{C}||\operatorname{Im} z|<r\}$. The function space $\mathcal{A}(r)$ was employed by Ukai (1984) for the Boltzmann equation, by Kato and Masuda (1986) for a class of nonlinear evolution
equations and by Foias and Temam (1989) for the incompressible Navier-Stokes equations.

Theorem 3 Let $\alpha_{j}, j=1,2$ be two real numbers and let $r>0$. For any $u_{0} \in \mathcal{A}(r)$, there exist $T>0$ such that the Cauchy problem (1)-(2) has a unique solution $u \in C([-T, T] ; \mathcal{A}(r / 2))$ on $(-T, T)$. Moreover, T can be chosen as

$$
T \gtrsim \min \{1, r\}\left\|u_{0}\right\|_{\mathcal{A}(r)}^{-2}
$$

where the implicit constant does not depend on r and u_{0}.

Remark 8 Theorem 3 is a kind of the abstract Cauchy-Kowlevsky theorem. We do not have to assume $2 \alpha_{2} / 3 \alpha_{1} \notin \mathbf{Z}$ in Theorem 3. Even when $\alpha_{1}=\alpha_{2}=0$, Theorem 3 holds.

Open Problem It is not known if the solution given by Theorem 3 exists globally in time. Some numerical simulations suggest that when the initial datum is Gaussian or
super-Gaussian, the solution may exist globally in time or for a long period of time. What if the initial datum is a sech pulse of the cubic NLS?

- III-posedness in the Gevrey class

It is natural to ask if the Cauchy problem (1)-(2) is well-posed in the Gevrey class or not.
$\sigma \geq 1, \quad s \geq 0, \quad a>0$,

$$
\begin{aligned}
& G_{s, a}^{\sigma}=\left\{f \in C^{\infty}(\mathbf{T} ; \mathbf{C}) ;\right. \\
&\left.\hat{f}(k)=O\left(|k|^{-s} e^{-a|k|^{1 / \sigma}}\right),|k| \rightarrow \infty\right\}, \\
&\|f\|_{G_{s, a}^{\sigma}}^{\sigma}=\sup _{k \in \mathbf{Z}} e^{a|k|^{1 / \sigma}\langle k\rangle^{s}\left|\hat{f}_{k}\right|,} \\
&\langle k\rangle=\max \{1,|k|\} .
\end{aligned}
$$

$$
G^{\sigma}=\bigcup_{a>0} G_{0, a}^{\sigma}(\text { Gevrey class of order } \sigma)
$$

Remark 9 The space $G_{s, a}^{\sigma}$ is the Banach space while G^{σ} is not the Banach space. The Gevrey space G^{σ} is the topological space equipped with the inductive limit topology.

Theorem 4 (Kishimoto-Y.T, 2019) Let $\sigma>1$. For any $u_{0} \in G^{\sigma} \backslash \bigcap_{a^{\prime}>0} G_{0, a^{\prime}}^{\sigma}$ there exists no $T>0$ such that the Cauchy problem (1)-(2) has a solution in $C\left([-T, T] ; G^{\sigma}\right)$.

Theorem 4 follows from the following Gevrey smoothing effect.

Lemma 1 (Kishimoto-Y.T, 2019) Let $\sigma>1$, and let $u(t) \in C\left([-T, T] ; G^{\sigma}\right)$ be a solution to (1) on $(-T, T)$ for some $T>0$.
Then, $u(t) \in \bigcap_{a^{\prime}>0} G_{0, a^{\prime}}^{\sigma}$ for all $t \in(-T, T)$.

Thank you
 for your attention!

(Example of initial datum) Let s, s_{1} be such that $1 \leq s_{1} \leq s<s_{1}+1$. We take any $s_{0} \in\left(s, s_{1}+1\right)$ and choose initial data u_{0} as follows.
$\hat{u}_{0}(k):= \begin{cases}|k|^{-s_{0}} & \text { if } k= \pm 2^{j} \\ 0 & \text { otherwise },\end{cases}$ which is clearly in $H^{s}(\mathbf{T})$.
(periodic Gaussian pulse)

$$
\begin{aligned}
& g_{\lambda}(x)=\sum_{k=-\infty}^{\infty} \hat{g}_{\lambda}(k) e^{i k x}, \\
& \hat{g}_{\lambda}(k)=\lambda e^{-\lambda^{2} k^{2}}, \quad k \in \mathbf{Z}, \lambda>0 .
\end{aligned}
$$

(periodic hyperbolic secant pulse)

$$
h_{\lambda}(x)=\sum_{k=-\infty}^{\infty} \hat{h}_{\lambda}(k) e^{i k x},
$$

$$
\hat{h}_{\lambda}(k)=\lambda \pi \operatorname{sech}\left(\frac{\pi k}{2 \lambda}\right), \quad k \in \mathbf{Z}, \lambda>0
$$

