The impact of conditional stability estimates on variational regularization and the distinguished case of oversmoothing penalties

## Bernd Hofmann



TU Chemnitz Faculty of Mathematics 09107 Chemnitz, GERMANY



Talk to be presented at the Workshop

"Reconstruction Methods for Inverse Problems"

Banff Int. Research Station (Canada), June 23 – 28, 2019

Research is part of the FWF-DFG joint project SCIP (DFG grant HO 1454/12-1)

Email: hofmannb@mathematik.tu-chemnitz.de

Internet: www.tu-chemnitz.de/mathematik/ip/

The talk presents joint work with:

Daniel Gerth and Christopher Hofmann (Chemnitz) Otmar Scherzer and Peter Elbau (Vienna) Herbert Egger (Darmstadt) Peter Mathé (Berlin) Robert Plato (Siegen) Frank Werner (Göttingen)

#### Papers which are relevant for the talk:

▷ F. NATTERER: Error bounds for Tikhonov regularization in Hilbert scales. *Applicable Anal.* **18** (1984), 29–37.

▷ B. HOFMANN, O. SCHERZER: Factors influencing the ill-posedness of nonlinear problems. *Inverse Problems* **10** (1994), 1277–1297.

▷ J. CHENG AND M. YAMAMOTO: On new strategy for a priori choice of regularizing parameters in Tikhonov's regularization. *Inverse Problems* **31** (2000), L31–L38.

▷ H. EGGER, B. HOFMANN: Tikhonov regularization in Hilbert scales under conditional stability assumptions. *Inverse Problems* **34** (2018), 115015.

▷ J. FLEMMING: Quadratic Inverse Problems and Sparsity Promoting Regularization – Two Subjects, Some Links Between Them, and an Application in Laser Optics. Birkhäuser, Basel 2018.

▷ F. WEIDLING, B. SPRUNG, AND T. HOHAGE: Optimal convergence rates for Tikhonov regularization in Besov spaces. arXiv:1803.11019, 2018.

▷ B. HOFMANN, P. MATHÉ: Tikhonov regularization with oversmoothing penalty for non-linear ill-posed problems in Hilbert scales. *Inverse Problems* **34** (2018), 015007.

▷ F. WERNER, B. HOFMANN: Convergence analysis of (statistical) inverse problems under conditional stability estimates. arXiv:1905.09765v1, 2019.



# 2 Convergence

Convergence rates under conditional stability estimates

## Convergence rates in case of oversmoothing penalties



# 2 Convergence

3 Convergence rates under conditional stability estimates

## Convergence rates in case of oversmoothing penalties





# 3 Convergence rates under conditional stability estimates

#### 4 Convergence rates in case of oversmoothing penalties







# Convergence rates in case of oversmoothing penalties







# Convergence rates in case of oversmoothing penalties

Let *X* and *Y* denote infinite dimensional **Hilbert spaces**, equipped with norms  $\|\cdot\|_X$  and  $\|\cdot\|_Y$ .

We consider the (possibly non-linear) operator equation

$$F(x) = y$$
  $(x \in \mathcal{D}(F) \subseteq X, y \in Y)$   $(*)$ 

as a model of an inverse problem

with forward operator  $F : \mathcal{D}(F) \subset X \to Y$  and domain  $\mathcal{D}(F)$ .

Let  $x^{\dagger} \in \mathcal{D}(F)$  denote the uniquely determined solution to (\*).

The **goal** is to find **stable** approximations to  $x^{\dagger}$  with good properties based on **noisy data**  $y^{\delta} \in X$  such that

$$\|\boldsymbol{y}-\boldsymbol{y}^{\delta}\|_{\boldsymbol{Y}}\leq\delta,$$

with noise level  $\delta > 0$ .

Since equation (\*) is the model of an **inverse problem**, the **forward operator** *F* is in general **'smoothing'**. Hence, a least squares approach

$$\|m{F}(x)-m{y}^{\delta}\|_Y^2 o {\sf min}, \quad {\sf subject to} \quad x\in \mathcal{D}(m{F}),$$

is mostly not successful, even if  $x^{\dagger}$  is the unique solution to (\*). Precisely, the stable approximate solution of (\*) requires some kind of **regularization**. We exploit closed balls  $\mathcal{B}_r^Z(\bar{z}) := \{z \in Z : ||z - \bar{z}||_Z \le r\}$  and recall an ill-posedness concept adapted to nonlinear problems:

#### Definition > H./SCHERZER IP 1994

The equation (\*) is called **locally well-posed** at the solution point  $x^{\dagger} \in \mathcal{D}(F)$  if there is a ball  $\mathcal{B}_{r}^{X}(x^{\dagger})$  with radius r > 0 and center  $x^{\dagger}$  such that for each sequence  $\{x_{n}\}_{n=1}^{\infty} \subset \mathcal{B}_{r}^{X}(x^{\dagger}) \cap \mathcal{D}(F)$  the implication

$$\lim_{n\to\infty} \|F(x_n) - F(x^{\dagger})\|_Y = 0 \implies \lim_{n\to\infty} \|x_n - x^{\dagger}\|_X = 0$$

holds true. Otherwise (\*) is called **locally ill-posed** at  $x^{\dagger}$ .

#### Note that local well-posedness requires local injectivity.

We focus on nonlinear *F* and **local ill-posedness** at  $x^{\dagger}$ . Then  $\|x - x^{\dagger}\|_{X} \leq K \varphi(\|F(x) - F(x^{\dagger})\|_{Y})$  for all  $x \in \mathcal{B}_{r}^{X}(x^{\dagger}) \cap \mathcal{D}(F)$ 

cannot hold for any constants K, r > 0 and **index functions**  $\varphi$ .

However, such **conditional stability estimates** can hold if  $||x - x^{\dagger}||_X$  is substituted by weaker norms  $||x - x^{\dagger}||_{-a}$  (a > 0) in the context of **Hilbert scales**  $\{X_{\tau}\}_{\tau \in \mathbb{R}}$  generated by a densely defined, unbounded, linear, and self-adjoint operator  $B: \mathcal{D}(B) \subset X \to X$  with  $||x||_{\tau} := ||B^{\tau}x||_X$  and  $\mathcal{D}(B) = X_1$ .  $||Bx||_X \ge c_B ||x||_X$  is valid for all  $x \in X_1$  with constant  $c_B > 0$ . A powerful tool in the **Hilbert scale**  $\{X_{\tau}\}_{\tau \in \mathbb{R}}$  generated by *B* is the **interpolation inequality**, which attains for  $-a < t \le p$  the form

$$\|x\|_t \le \|x\|_{\rho-a}^{\frac{p-t}{p+a}} \|x\|_{\rho}^{\frac{t+a}{p+a}} \quad \text{for all} \quad x \in X_p.$$

#### Assumption 1

- The operator *F* is weak-to-weak sequentially continuous.
- The domain  $\mathcal{D}(F)$  is a convex and closed subset of X.

• 
$$\mathcal{D} = \mathcal{D}(F) \cap \mathcal{D}(B) \neq \emptyset$$
.

- x<sup>†</sup> ∈ D(F) is the uniquely determined solution to (\*).
- Regularized solutions  $x^{\delta}_{\alpha}$  are minimizers of

$$T^{\delta}_{\alpha}(\mathbf{x}) := \|\mathbf{F}(\mathbf{x}) - \mathbf{y}^{\delta}\|_{Y}^{2} + \alpha \|\mathbf{B}\mathbf{x}\|_{X}^{2} \to \min, \text{ s.t. } \mathbf{x} \in \mathcal{D}(\mathbf{F}),$$

consequently  $x_{\alpha}^{\delta} \in \mathcal{D} = \mathcal{D}(F) \cap X_1$ .

This assumption ensures the **existence** and **stability** of regularized solutions  $x_{\alpha}^{\delta}$  for all  $\alpha > 0$ .

#### Case distinction

- (a) x<sup>†</sup> ∈ X<sub>p</sub> for some p > 1, which means that ||Bx<sup>†</sup>||<sub>X</sub> < ∞ and there is some source element w ∈ X<sub>ε</sub> (ε > 0) such that x<sup>†</sup> = B<sup>-1</sup>w. (undersmoothing penalty case)
  (b) x<sup>†</sup> ∈ X = which means that ||Bx<sup>†</sup>|| = x = ||x| + z = ||x| + ||x| + z = ||x| + z = ||x| + |
- (b)  $x^{\dagger} \in X_1$ , which means that  $||Bx^{\dagger}||_X < \infty$ , but  $x^{\dagger} \notin X_{1+\varepsilon}$  for all  $\varepsilon > 0$ . (borderline case)
- (c)  $x^{\dagger} \in X_{p}$  for some  $0 , but <math>x^{\dagger} \notin X_{1}$ , which means that  $||Bx^{\dagger}||_{X} = \infty$ . (oversmoothing penalty case).



# 2 Convergence

3 Convergence rates under conditional stability estimates

# 4 Convergence rates in case of oversmoothing penalties

By definition of the Tikhonov functional we have  $x_{\alpha}^{\delta} \in X_1$ , but only in the cases (a) and (b) one can take profit of the inequality

$$\mathcal{T}^\delta_lpha(\pmb{x}^\delta_lpha) \leq \mathcal{T}^\delta_lpha(\pmb{x}^\dagger),$$

which implies for all  $\alpha > 0$  that

$$\|\boldsymbol{x}_{\alpha}^{\delta}\|_{1} \leq \sqrt{\|\boldsymbol{x}^{\dagger}\|_{1}^{2} + \frac{\delta^{2}}{\alpha}}.$$

In the case (c), however, due to  $x^{\dagger} \notin X_1$  and hence  $||x^{\dagger}||_1 = \infty$ we have no such uniform bounds of  $||x_{\alpha}^{\delta}||_1$  from above. Evidently, in case (c),  $||x_{\alpha}^{\delta}||_1 \to \infty$  as  $\delta \to 0$  is necessary for convergence of the regularized solutions  $x_{\alpha}^{\delta}$  to  $x^{\dagger}$ .

#### Proposition 1 (convergence)

Let the regularization parameter  $\alpha > 0$  fulfill the conditions

$$\alpha \to \mathbf{0} \quad \text{and} \quad \frac{\delta^2}{\alpha} \to \mathbf{0} \quad \text{as} \quad \delta \to \mathbf{0}.$$

Then we have under Assumption 1 and for cases (a) and (b) by setting  $\alpha_n = \alpha(\delta_n)$  or  $\alpha_n = \alpha(\delta_n, y^{\delta_n})$ ,  $x_n = x_{\alpha_n}^{\delta_n}$ , that for  $\delta_n \to 0$  as  $n \to \infty$ 

$$\lim_{n\to\infty}\|x_n\|_1=\|x^{\dagger}\|_1,$$

and

$$\lim_{n\to\infty} \|x_n - x^{\dagger}\|_{\nu} = 0 \quad \text{for all} \quad 0 \leq \nu \leq 1.$$

## Corollary

Under the assumptions and for  $\alpha$ -choices of Proposition 1 we have for cases (a) and (b) that the regularized solutions  $x_{\alpha}^{\delta}$  belong to the ball  $\mathcal{B}_{r}^{\chi_{\nu}}(x^{\dagger})$  for prescribed values r > 0 and  $0 \le \nu \le 1$  whenever  $\delta > 0$  is sufficiently small.

In general, in case (c) one cannot even show weak convergence of  $x_{\alpha}^{\delta}$  as  $\delta \to 0$ . Regularized solutions  $x_{\alpha}^{\delta}$ need not belong to a ball  $\mathcal{B}_{r}^{X}(x^{\dagger})$  with small radius r > 0if  $\delta > 0$  is sufficiently small. Under stronger conditions, however, convergence can be the consequence of proven convergence rates.





# 3 Convergence rates under conditional stability estimates

## 4 Convergence rates in case of oversmoothing penalties

# Convergence rates under conditional stability estimates

#### Assumption 2

Let a > 0,  $0 < \gamma \le 1$ , and let the conditional stability estimates

 $\|x - x^{\dagger}\|_{-a} \leq K(\varrho) \|F(x) - F(x^{\dagger})\|_{Y}^{\gamma}$  for all  $x \in \mathcal{B}_{\varrho}^{X_{1}}(0) \cap \mathcal{D}(F)$ 

hold, where constants  $K(\rho) > 0$  are supposed to exist for all radii  $\rho > 0$ .

Extension to general concave index function  $\varphi$  as

$$\|x - x^{\dagger}\|_{-a} \leq K(\varrho) \, \varphi(\|F(x) - F(x^{\dagger})\|_{Y}) \quad \text{for all } x \in \mathcal{B}_{\rho}^{\chi_{1}}(0) \cap \mathcal{D}(F)$$

was recently outlined in  $\triangleright$  WERNER/H. 2019.

## Proposition 2 (undersmoothing penalties) D EGGER/H. IP 2018

Under the Assumptions 1 and 2 and for  $x^{\dagger} \in X_{p}$  with  $1 we have the rate of convergence of regularized solutions <math>x_{\alpha}^{\delta} \in \mathcal{D}(F) \cap \mathcal{D}(B)$  to the solution  $x^{\dagger} \in \mathcal{D}(F) \cap X_{p}$  as

$$\|m{x}_lpha^\delta-m{x}^\dag\|_{m{X}}=\mathcal{O}\left(\delta^{rac{\gamma p}{p+a}}
ight) \qquad ext{as} \quad \delta o m{0},$$

provided that the regularization parameter  $\alpha = \alpha(\delta)$  is chosen a priori as

$$\alpha(\delta) \sim \delta^{2-2\gamma \frac{p-1}{p+a}}.$$

For that choice of the regularization parameter we have

$$lpha(\delta) o \mathsf{0} \qquad ext{and} \qquad rac{\delta^2}{lpha(\delta)} o \mathsf{0} \qquad ext{as} \qquad \delta o \mathsf{0}.$$

#### Proposition 3 > CHENG/YAMAMOTO IP 2000

Under the Assumptions 1 and 2 and for  $x^{\dagger} \in X_1$  we have the rate of convergence of regularized solutions  $x_{\alpha}^{\delta} \in \mathcal{D}(F) \cap \mathcal{D}(B)$  to the solution  $x^{\dagger} \in \mathcal{D}(F) \cap \mathcal{D}(B)$  as

$$\|m{x}_{lpha}^{\delta}-m{x}^{\dagger}\|_{m{X}}=\mathcal{O}\left(\delta^{rac{\gamma}{1+a}}
ight) \qquad ext{as} \quad \delta
ightarrow \mathbf{0},$$

if the regularization parameter  $\alpha = \alpha(\delta)$  is chosen a priori as

$$\alpha(\delta) \sim \delta^2$$
.

This result is also valid for borderline case.

For that choice of the regularization parameter we have for constants  $0 < \underline{c} \le \overline{c} < \infty$ 

$$lpha(\delta) o \mathsf{0} \qquad ext{and} \qquad \underline{c} \leq rac{\delta^2}{lpha(\delta)} \leq \overline{c} \qquad ext{as} \qquad \delta o \mathsf{0}.$$

#### Assumption 3

Let  $a, r > 0, 0 < \gamma \le 1$ , and let the conditional stability estimate

 $\|x - x^{\dagger}\|_{-a} \leq K(r) \, \|F(x) - F(x^{\dagger})\|_{Y}^{\gamma} \quad \text{for all } x \in \mathcal{B}_{r}^{X}(x^{\dagger}) \cap \mathcal{D}(F)$ 

hold, where the constant K(r) > 0 depends on the prescribed *r*.

As a consequence of the above Corollary Proposition 2 remains valid if Assumption 2 is substituted by Assumption 3.



# 2 Convergence

## 3 Convergence rates under conditional stability estimates

# Convergence rates in case of oversmoothing penalties

### Assumption 4

- Let a > 0, r > 0 and let  $x^{\dagger} \in int(\mathcal{D}(F))$  with  $\mathcal{B}_{r}^{X}(x^{\dagger}) \subset \mathcal{D}(F)$ .
- Let there exist constants  $0 < \underline{K} \leq \overline{K} < \infty$  such that

$$\underline{K} \|x - x^{\dagger}\|_{-a} \leq \|F(x) - F(x^{\dagger})\|_{Y}$$
 for all  $x \in \mathcal{D}(F) \cap X_{1}$  (\$L)

and

$$\|F(x) - F(x^{\dagger})\|_{Y} \le \overline{K} \|x - x^{\dagger}\|_{-a}$$
 for all  $x \in \mathcal{B}_{r}^{X}(x^{\dagger}) \cap X_{1}.$  (\$*R*)

#### Theorem (case of oversmoothing penalties)

Let  $x^{\dagger} \in X_p$  for some  $0 , but assume <math>x^{\dagger} \notin X_1$ . Under Assumptions 1 and 4 we then have the rate of convergence of regularized solutions to the exact solution as

$$\|x_{lpha_*}^\delta - x^\dagger\|_X = \mathcal{O}\left(\delta^{rac{p}{p+a}}
ight) \qquad ext{as} \quad \delta o \mathbf{0},$$

if the regularization parameter is chosen a priori as

$$\alpha_* = \alpha(\delta) = \delta^{2-2\frac{p-1}{p+a}}$$

For that choice of the regularization parameter we have

$$lpha(\delta) o \mathsf{0} \qquad ext{and} \qquad rac{\delta^2}{lpha(\delta)} o \infty \qquad ext{as} \qquad \delta o \mathsf{0}.$$

**Sketch of a proof**: For simplicity we set  $E := ||x^{\dagger}||_{p}$ . To prove the rate result it is sufficient to show that, for sufficiently small  $\delta > 0$ , there are two constants K > 0 and  $\tilde{E} > 0$  such that the inequalities

$$\| \pmb{x}_{lpha_*}^\delta - \pmb{x}^\dagger \|_{-\pmb{a}} \leq \pmb{K}\delta$$
 (/1)

and

$$\|m{x}_{lpha_*}^\delta - m{x}^\dagger\|_{m{
ho}} \leq ilde{m{E}}$$
 (12)

hold. Then the rate follows directly from

$$\|\boldsymbol{x}_{\alpha_*}^{\delta} - \boldsymbol{x}^{\dagger}\|_{\boldsymbol{X}} \leq \|\boldsymbol{x}_{\alpha_*}^{\delta} - \boldsymbol{x}^{\dagger}\|_{-\boldsymbol{a}}^{\frac{p}{a+p}} \|\boldsymbol{x}_{\alpha_*}^{\delta} - \boldsymbol{x}^{\dagger}\|_{\boldsymbol{p}}^{\frac{\boldsymbol{a}}{\boldsymbol{a}+\boldsymbol{p}}} \leq \boldsymbol{\mathcal{K}}^{\frac{p}{\boldsymbol{a}+\boldsymbol{p}}} \tilde{\boldsymbol{\mathcal{E}}}^{\frac{\boldsymbol{a}}{\boldsymbol{a}+\boldsymbol{p}}} \, \delta^{\frac{p}{\boldsymbol{a}+\boldsymbol{p}}},$$

which is valid, for sufficiently small  $\delta > 0$ , as a consequence of (11), (12) and of the interpolation inequality for the Hilbert scale. Now it remains to prove (11) and (12). As an essential tool for the proof we use **auxiliary elements**  $x_{\alpha}$ , which are, for all  $\alpha > 0$ , the uniquely determined minimizers over all  $x \in X$  of the **artificial Tikhonov functional** 

$$\mathcal{T}_{-\boldsymbol{a},\boldsymbol{\alpha}}(\boldsymbol{x}) := \|\boldsymbol{x} - \boldsymbol{x}^{\dagger}\|_{-\boldsymbol{a}}^{2} + \boldsymbol{\alpha}\|\boldsymbol{B}\boldsymbol{x}\|_{\boldsymbol{X}}^{2}.$$

The mapping  $x^{\dagger} \mapsto x_{\alpha}$  is a variant of **proximal operator**. Note that the elements  $x_{\alpha}$  are independent of the noise level  $\delta$  and belong by definition to  $X_1$ , in strong contrast to  $x^{\dagger} \notin X_1$ .

#### Lemma D H./MATHÉ IP 2018

Let  $||x^{\dagger}||_{p} = E$  and  $x_{\alpha}$  be the minimizer of the functional  $T_{-a,\alpha}$ . Given

$$\alpha_* = \alpha(\delta) = \delta^{2-2\frac{p-1}{p+a}} > \mathbf{0},$$

the resulting element  $x_{\alpha_*}$  obeys the bounds

$$\begin{aligned} \|x_{\alpha_*} - x^{\dagger}\|_X &\leq E\delta^{p/(a+p)}, \quad (I3) \\ \|B^{-a}(x_{\alpha_*} - x^{\dagger})\|_X &\leq E\delta, \quad (I4) \\ \|Bx_{\alpha_*}\|_X &\leq E\delta^{(p-1)/(a+p)} = E\frac{\delta}{\sqrt{\alpha_*}} \quad (I5) \end{aligned}$$

and

$$\|\mathbf{x}_{\alpha_*} - \mathbf{x}^{\dagger}\|_{\boldsymbol{p}} \leq \boldsymbol{E}.$$
 (16)

Due to (*I*3) we have  $||x_{\alpha_*} - x^{\dagger}||_X \to 0$  as  $\delta \to 0$ . Hence by Assumption 4 ( $x^{\dagger}$  is an interior point of  $\mathcal{D}(F)$ ) we have that, for sufficiently small  $\delta > 0$  the element  $x_{\alpha_*}$ belongs to  $\mathcal{B}_r^X(x^{\dagger}) \subset \mathcal{D}(F)$  and moreover with  $x_{\alpha_*} \in X_1$ the right-hand side inequality (\$*R*) applies for  $x = x_{\alpha_*}$ .

Instead of the usual regularizing property  $T_{\alpha}^{\delta}(x_{\alpha}^{\delta}) \leq T_{\alpha}^{\delta}(x^{\dagger})$ , which is missing in case of oversmoothing penalties, we use

$$T^{\delta}_{lpha_*}(\textit{x}^{\delta}_{lpha_*}) \leq T^{\delta}_{lpha_*}(\textit{x}_{lpha_*}) \qquad (MP)$$

as a helpful minimizing property for the Tikhonov functional.

Using the minimizing property (*MP*) it is enough to bound  $T_{\alpha_*}^{\delta}(x_{\alpha_*})$  by  $\overline{C}^2 \delta^2$  with  $\overline{C} := \left((\overline{K}E + 1)^2 + E^2\right)^{1/2}$ 

in order to obtain the estimates

$$\|F(\mathbf{x}_{\alpha_*}^{\delta}) - \mathbf{y}^{\delta}\|_{\mathbf{Y}} \leq \overline{C}\delta$$

and

$$\| B x_{lpha_*}^{\delta} \|_X \leq \overline{C} rac{\delta}{\sqrt{lpha_*}}$$

Since the inequality (\$*R*) applies for  $x = x_{\alpha_*}$  and sufficiently small  $\delta > 0$ , we can estimate with (*I*5) for such  $\delta$  as follows:

$$\begin{aligned} T^{\delta}_{\alpha_*}(x_{\alpha_*}) &\leq \left( \|F(x_{\alpha_*}) - F(x^{\dagger})\|_Y + \|F(x^{\dagger}) - y^{\delta}\|_Y \right)^2 + \alpha_* \|Bx_{\alpha_*}\|_X^2 \\ &\leq \left(\overline{K}\|x_{\alpha_*} - x^{\dagger}\|_{-a} + \delta\right)^2 + E^2 \alpha_* \delta^{2(p-1)/(a+p)} \\ &\leq \left(\overline{K}E\delta + \delta\right)^2 + E^2 \delta^2 \\ &= \left((\overline{K}E + 1)^2 + E^2\right) \delta^2. \end{aligned}$$

Based on this we can show that (11) is valid for some K > 0. Here, we use the left-hand inequality (\$L) of Assumption 4, which applies for  $x = x_{\alpha_*}^{\delta} \in \mathcal{D}(F) \cap X_1$ , and we find

$$\begin{split} \|x_{\alpha_*}^{\delta} - x^{\dagger}\|_{-a} &\leq \frac{1}{\underline{K}} \|F(x_{\alpha_*}^{\delta}) - F(x^{\dagger})\|_{Y} \\ &\leq \frac{1}{\underline{K}} \left( \|F(x_{\alpha_*}^{\delta}) - y^{\delta}\|_{Y} + \|F(x^{\dagger}) - y^{\delta}\|_{Y} \right) \\ &\leq \frac{1}{\underline{K}} \left( \overline{C}\delta + \delta \right) = \frac{1}{\underline{K}} \left( \overline{C} + 1 \right) \delta = K\delta. \end{split}$$

Hence, we derive  $K := \frac{1}{\underline{K}} \left( \overline{C} + 1 \right)$  for the constant in (11).

Finally, we still have to show the existence of a constant  $\tilde{E} > 0$  such that the inequality (*I*2) holds.

By exploiting the triangle inequality we find that

$$\|B(x_{\alpha_*}^{\delta}-x_{\alpha_*})\|_X \leq \|Bx_{\alpha_*}^{\delta}\|_X + \|Bx_{\alpha_*}\|_X \leq (\overline{C}+E)\frac{\delta}{\sqrt{\alpha_*}}.$$

Using the interpolation inequality we can estimate further as

 $2 \mid n$ 

1 n

$$\begin{aligned} \|\boldsymbol{x}_{\alpha_{*}}^{\delta} - \boldsymbol{x}_{\alpha_{*}}\|_{p} &\leq \|\boldsymbol{x}_{\alpha_{*}}^{\delta} - \boldsymbol{x}_{\alpha_{*}}\|_{1}^{\frac{a+p}{a+1}} \|\boldsymbol{x}_{\alpha_{*}}^{\delta} - \boldsymbol{x}_{\alpha_{*}}\|_{-a}^{\frac{1-p}{a+1}} \\ &\leq \left((\overline{C} + E)\frac{\delta}{\sqrt{\alpha_{*}}}\right)^{\frac{a+p}{a+1}} \left(\|\boldsymbol{x}_{\alpha_{*}}^{\delta} - \boldsymbol{x}^{\dagger}\|_{-a} + \|\boldsymbol{x}^{\dagger} - \boldsymbol{x}_{\alpha_{*}}\|_{-a}\right)^{\frac{1-p}{a+1}} \\ &\leq \left((\overline{C} + E)\frac{\delta}{\sqrt{\alpha_{*}}}\right)^{\frac{a+p}{a+1}} \left((K + E)\delta\right)^{\frac{1-p}{a+1}} \\ &\qquad \left((\overline{C} + E)\delta^{(p-1)/(a+p)}\right)^{\frac{a+p}{a+1}} \left((K + E)\delta\right)^{\frac{1-p}{a+1}} =: \bar{E}. \end{aligned}$$

Consequently, we have now

$$\|\boldsymbol{x}_{\alpha_*}^{\delta} - \boldsymbol{x}^{\dagger}\|_{\boldsymbol{p}} \leq \|\boldsymbol{x}_{\alpha_*}^{\delta} - \boldsymbol{x}_{\alpha_*}\|_{\boldsymbol{p}} + \|\boldsymbol{x}_{\alpha_*} - \boldsymbol{x}^{\dagger}\|_{\boldsymbol{p}} \leq \bar{\boldsymbol{E}} + \boldsymbol{E} =: \tilde{\boldsymbol{E}}.$$

This shows (12) and thus completes the proof.



# 2 Convergence

## 3 Convergence rates under conditional stability estimates

## 4 Convergence rates in case of oversmoothing penalties

## Example (exponential growth model)

We aim at identifying the time dependent growth rate x(t) ( $0 \le t \le T$ ) from observations of the size y(t) ( $0 \le t \le T$ ) of a population with  $y(0) = y_0 > 0$  such that the problem

$$y'(t) = x(t) y(t) \quad (0 \le t \le T), \qquad y(0) = y_0,$$

is satisfied.

For  $X = Y = L^2(0, T)$  the forward operator attains the form

$$[F(x)](t) = y_0 \exp\left(\int_0^t x(\tau) d\tau\right) \quad (0 \le t \le T).$$

We note that the corresponding nonlinear operator equation (\*) is **locally ill-posed everywhere** in *X*.

B. Hofmann

Moreover, the operator *F* is continuously Fréchet differentiable on the whole Hilbert space  $L^2(0, 1)$  and has the derivative

$$[F'(x^{\dagger})h](t)=[F(x^{\dagger})](t)\int_0^t h(\tau)d\tau\quad (0\leq t\leq T),\quad h\in L^2(0,T).$$

One easily verifies that

$$\|F(x) - F(x^{\dagger}) - F'(x^{\dagger})(x - x^{\dagger})\|_{Y} \le \hat{K} \|F(x) - F(x^{\dagger})\|_{Y} \|x - x^{\dagger}\|_{X}$$

holds with some constant  $\hat{K} > 0$  for all  $x \in X$ . For  $\eta := r\hat{K} < 1$ 

$$\|F(x) - F(x^{\dagger}) - F'(x^{\dagger})(x - x^{\dagger})\|_{Y} \le \eta \|F(x) - F(x^{\dagger})\|_{Y}$$

is satisfied with  $0 < \eta < 1$  and yields for such r and  $x \in \mathcal{B}_r^{\chi}(x^{\dagger})$ 

$$\mathcal{K}_{\textit{low}} \, \| F'(x^{\dagger})(x - x^{\dagger}) \|_{Y} \leq \| F(x) - F(x^{\dagger}) \|_{Y} \leq \mathcal{K}_{\textit{up}} \, \| F'(x^{\dagger})(x - x^{\dagger}) \|_{Y}$$

with  $K_{low} = 1/(1 + \eta)$  and  $K_{up} = 1/(1 - \eta)$ .

Now set for simplicity T := 1. In order to generate a Hilbert scale  $\{X_{\tau}\}_{\tau \in \mathbb{R}}$ , we exploit the simple integration operator

$$[Jh](t) := \int_0^t h(\tau) d\tau \quad (0 \le t \le 1)$$

of Volterra-type mapping in  $X = Y = L^2(0, 1)$  and set

$$B := (J^*J)^{-1/2}$$

By considering the Riemann-Liouville fractional integral operator  $J^p$  and its adjoint  $(J^*)^p = (J^p)^*$  for  $0 we have with <math>X_p = \mathcal{D}(B^p) = \mathcal{R}((J^*J)^{p/2}) = \mathcal{R}((J^*)^p)$ 

$$X_{p} = \begin{cases} H^{p}(0,1) & \text{for } 0$$

where the fractional Sobolev spaces  $H^p(0, 1)$  occur.

Now we have that

$$\|Jh\|_Y = \|(J^*J)^{1/2}h\|_X = \|B^{-1}h\|_X = \|h\|_{-1}$$
 for all  $h \in X$ 

and that there are constants 0  $<\underline{\textit{c}}\leq\overline{\textit{c}}<\infty$  such that

$$\underline{c} \leq [F(x^{\dagger})](t) \leq \overline{c} \qquad (0 \leq t \leq 1)$$

for the multiplier function in  $F'(x^{\dagger})$ . Thus we have for all  $x \in X$ 

$$\underline{c} \| x - x^{\dagger} \|_{-1} \leq \| F'(x^{\dagger})(x - x^{\dagger}) \|_{Y} \leq \overline{c} \| x - x^{\dagger} \|_{-1}$$

and consequently estimates (\$*L*) as well as (\$*R*) with a = 1and  $\underline{K} = \underline{c}K_{low}$ ,  $\overline{K} = \overline{c}K_{up}$ , but both restricted to  $x \in \mathcal{B}_r^X(x^{\dagger})$ and sufficiently small r > 0.

#### Example (autoconvolution)

With the same Hilbert scale generator *B* based on *J* we can consider the **autoconvolution operator** in  $X = Y = L^2(0, 1)$ 

$$[F(x)](s) = \int_0^t x(s-t)x(t)dt \quad (0 \le s \le 1),$$

where  $\mathcal{D}(F) = X$  and we have the Fréchet derivative

$$[F'(x)h](s) = 2 \int_0^s x(s-t)h(t)dt \quad (0 \le s \le 1, h \in X)$$

satisfying for all  $x \in X$  the estimate

$$\|F(x) - F(x^{\dagger}) - F'(x^{\dagger})(x - x^{\dagger})\|_{Y} = \|F(x - x^{\dagger})\|_{Y} \le \|x - x^{\dagger}\|_{X}^{2}.$$

For the specific solution  $x^{\dagger}(t) = 1$  ( $0 \le t \le 1$ ) we have that

$$\|F'(x^{\dagger})h\|_{Y} = 2\|Jh\|_{Y} = 2\|B^{-1}h\|_{X} = \|h\|_{-1}$$
 for all  $h \in X$ .

Using the interpolation inequality  $\|h\|_X^2 \le \|h\|_{-1} \|h\|_1$  we derive

$$\begin{split} \|x - x^{\dagger}\|_{-1} &\leq \frac{1}{2} \|F(x) - F(x^{\dagger}) - F'(x^{\dagger})(x - x^{\dagger})\|_{Y} + \frac{1}{2} \|F(x) - F(x^{\dagger})\|_{Y} \\ &\leq \frac{1}{2} \|F(x) - F(x^{\dagger})\|_{Y} + \frac{1}{2} \|x - x^{\dagger}\|_{1} \|x - x^{\dagger}\|_{-1} \quad \text{for} \quad x - x^{\dagger} \in X_{1} \\ \text{and for} \ \|x - x^{\dagger}\|_{1} &\leq \kappa < 2 \text{ even the conditional stability estimate} \\ \|x - x^{\dagger}\|_{-1} &\leq \frac{1}{2 - \kappa} \|F(x) - F(x^{\dagger})\|_{Y} \quad \text{for all} \quad x - x^{\dagger} \in \mathcal{B}_{\kappa}^{X_{1}}(0). \end{split}$$

Note that  $x^{\dagger} \in X_{\rho}$  if an only if  $\rho < 0.5 \Rightarrow x_{\alpha}^{\delta} - x^{\dagger} \notin \mathcal{B}_{\kappa}^{X_{1}}(0)$ .



Figure:  $x^{\dagger} \equiv 1$  and regularized solutions  $x_{\alpha}^{\delta}$  for varying noise levels  $\delta$ 



Figure:  $x^{\dagger} \equiv 1$  and regularized solutions  $x_{\alpha}^{\delta}$  for varying noise levels  $\delta$