The impact of conditional stability estimates

on variational regularization and
the distinguished case of oversmoothing penalties

BERND HOFMANN

FEH TU Chemnitz
I L Faculty of Mathematics
Tz T 09107 Chemnitz, GERMANY

Talk to be presented at the Workshop
“Reconstruction Methods for Inverse Problems”
Banff Int. Research Station (Canada), June 23 — 28, 2019
Research is part of the FWF-DFG joint project SCIP (DFG grant HO 1454/12-1)

Email: hofmannb@mathematik.tu-chemnitz.de
www.tu-chemnitz.de/mathematik/ip/

Internet:



B. Hofmann

The talk presents joint work with:

Daniel Gerth and Christopher Hofmann (Chemnitz)
Otmar Scherzer and Peter Elbau (Vienna)
Herbert Egger (Darmstadt)

Peter Mathé (Berlin)

Robert Plato (Siegen)

Frank Werner (Gottingen)

Impact of conditional stability estimates and the case of oversmoothing penalties



Papers which are relevant for the talk:

> F. NATTERER: Error bounds for Tikhonov regularization in Hilbert scales.
Applicable Anal. 18 (1984), 29-37.

> B. HOFMANN, O. SCHERZER: Factors influencing the ill-posedness of nonlinear
problems. Inverse Problems 10 (1994), 1277-1297.

> J. CHENG AND M. YAMAMOTO: On new strategy for a priori choice of regularizing
parameters in Tikhonov’s regularization. Inverse Problems 31 (2000), L31-L38.

> H. EGGER, B. HOFMANN: Tikhonov regularization in Hilbert scales under
conditional stability assumptions. Inverse Problems 34 (2018), 115015.

> J. FLEMMING: Quadratic Inverse Problems and Sparsity Promoting Regularization
— Two Subjects, Some Links Between Them, and an Application in Laser Optics.
Birkhduser, Basel 2018.

> F. WEIDLING, B. SPRUNG, AND T. HOHAGE: Optimal convergence rates for
Tikhonov regularization in Besov spaces. arXiv:1803.11019, 2018.

> B. HOFMANN, P. MATHE: Tikhonov regularization with oversmoothing penalty for
non-linear ill-posed problems in Hilbert scales. Inverse Problems 34 (2018), 015007.

> F. WERNER, B. HOFMANN: Convergence analysis of (statistical) inverse problems
under conditional stability estimates. arXiv:1905.09765v1, 2019.

B. Hofmann Impact of conditional stability estimates and the case of oversmoothi



@ Introduction

B. Hofmann Impact of conditional stability estimates the case of oversmoothing penalties



@ Introduction

e Convergence

B. Hofmann Impact of conditional stability estimates and the case of oversmoothing penalties



@ Introduction
9 Convergence

e Convergence rates under conditional stability estimates

B. Hofmann Impact of conditional stability estimates and the case of oversmoothing penalties



@ Introduction
9 Convergence
e Convergence rates under conditional stability estimates

0 Convergence rates in case of oversmoothing penalties

B. Hofmann Impact of conditional stability estimates and the case of oversmoothing penalties



@ Introduction
9 Convergence
e Convergence rates under conditional stability estimates

0 Convergence rates in case of oversmoothing penalties

© Examples

B. Hofmann Impact of conditional stability estimates and the case of oversmoothing penalties



Introduction

Let X and Y denote infinite dimensional Hilbert spaces,
equipped with norms || - |[x and || - || y.

We consider the (possibly non-linear) operator equation

Fx) =y (xeD(F)cX,yeY) (%

as a model of an inverse problem
with forward operator F : D(F) ¢ X — Y and domain D(F).

Let xT € D(F) denote the uniquely determined solution to (*).
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The goal is to find stable approximations to x' with
good properties based on noisy data y° € X such that

ly =¥lly <9,

with noise level § > 0.

Since equation (x) is the model of an inverse problem,
the forward operator F is in general ‘smoothing’.
Hence, a least squares approach

|F(x) — ¥°||3 — min, subjectto x € D(F),

is mostly not successful, even if xT is the unique solution to (x).
Precisely, the stable approximate solution of (x) requires some
kind of regularization.
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We exploit closed balls BZ(z) :={z€ Z: ||z— 2|z < r} and
recall an ill-posedness concept adapted to nonlinear problems:

Definition > H./ScHerzer IP 1994

The equation (x) is called locally well-posed at the solution
point x™ € D(F) if there is a ball BX(x") with radius r > 0 and
center x' such that for each sequence

{xn}22, € BX(x") N D(F) the implication

Jim [|F(x0) — FO)lly =0 = lim lx; — x{[lx =0

holds true. Otherwise (x) is called locally ill-posed at x'.

Note that local well-posedness requires local injectivity.
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We focus on nonlinear F and local ill-posedness at x. Then
Ix = x"llx < Ke(IF(x) = F(x")ly) forall x € BY(x") N D(F)

cannot hold for any constants K, r > 0 and index functions .

However, such conditional stability estimates can hold if
|x — xT||x is substituted by weaker norms || x — x'||_5 (a > 0)
in the context of Hilbert scales { X },cr generated by a
densely defined, unbounded, linear, and self-adjoint operator
B: D(B) c X — X with ||x]|; :=||B"x||x and D(B) = X;.
|Bx||x > cgl|x||x is valid for all x € X; with constant cg > 0.
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A powerful tool in the Hilbert scale { X:}.cr generated by B is
the interpolation inequality, which attains for —a<t<p
the form

p—t t+a
x|l < ||| p+aHXHp+a forall x e Xp.
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Assumption 1

@ The operator F is weak-to-weak sequentially continuous.
@ The domain D(F) is a convex and closed subset of X.

@ D =D(F) n D(B) # 0.

e xt € D(F) is the uniquely determined solution to (x).

@ Regularized solutions x? are minimizers of

To(x) := ||F(x) — ¥°||3 + «||Bx||% — min, s.t. x € D(F),

consequently x3 € D = D(F) N X;.

This assumption ensures the existence and stability
of regularized solutions x? for all a > 0.
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Case distinction

(a) x' € X, for some p > 1, which means that | Bx'||x < oo
and there is some source element w € X. (¢ > 0) such
that x = B~'w. (undersmoothing penalty case)

(b) xt € Xi, which means that | Bx*| x < oo, but xt ¢ X;. for
all e > 0. (borderline case)

(c) xT € X, for some 0 < p < 1, but x™ ¢ X;, which means
that ||Bx||x = co. (oversmoothing penalty case).
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Convergence

By definition of the Tikhonov functional we have xg € Xy, but
only in the cases (a) and (b) one can take profit of the inequality

Ta(xa) < To(x'),

which implies for all « > 0 that

52
Ixalle </ IbxFIE +

In the case (c), however, due to x' ¢ Xy and hence ||xT|; = 0o
we have no such uniform bounds of ||x3 ||y from above.
Evidently, in case (c), ||x2|l1 — oc as § — O is necessary for
convergence of the regularized solutions x? to x.
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Proposition 1 (convergence)
Let the regularization parameter « > 0 fulfill the conditions

2
a—0 and % -0 as 0 — 0.
Then we have under Assumption 1 and for cases (a) and (b) by
setting an = a(6pn) Or ap = a6, yo"), Xn = x40, that for 6, — 0
as n— oo
Jim_lxalls = T,

and

lim | x, — x|, =0 forall 0<w<A1.
n—oo
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Under the assumptions and for a-choices of Proposition 1 we
have for cases (a) and (b) that the regularized solutions x?
belong to the ball Bﬁ("(xT) for prescribed values r > 0 and

0 < v < 1 whenever § > 0 is sufficiently small.

In general, in case (c) one cannot even show weak
convergence of x2 as 6 — 0. Regularized solutions xJ
need not belong to a ball BX(x") with small radius r > 0
if & > 0 is sufficiently small. Under stronger conditions,
however, convergence can be the consequence of
proven convergence rates.
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Convergence rates under conditional stability
estimates

Assumption 2

Leta> 0, 0 < v <1, and let the conditional stability estimates
Ix — xt|—a < K(o) |IF(x) — F(x")|[3, forall x € BY(0)ND(F)

hold, where constants K(g) > 0 are supposed to exist for all
radii o > 0.

Extension to general concave index function ¢ as
Ix=x[|l-a < K(2) p(IF(x)~F(x")|ly) forall x € B)1(0)"D(F)

was recently outlined in > WerNEr/H. 2019.
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Proposition 2 (undersmoothing penalties) > Eccer/H. IP 2018

Under the Assumptions 1 and 2 and for xT € X, with
1 < p < a+ 2 we have the rate of convergence of regularized
solutions x3 € D(F) ND(B) to the solution x! € D(F) N X, as

ng—xTHx:O(ép%) as ¢ —0,

provided that the regularization parameter o = «(4) is chosen
a priori as

(8) ~ 62D 57,

For that choice of the regularization parameter we have

a(é) =0 and — —0 as Jd— 0.
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Proposition 3 > cHena/Yamamoro IP 2000
Under the Assumptions 1 and 2 and for x! € X; we have the
rate of convergence of regularized solutions x$ € D(F) N D(B)
to the solution xt € D(F) N D(B) as

||x3—X*||x=O(61W?) as 0 —0,

if the regularization parameter o = «(0) is chosen a priori as

a(8) ~ 2.

This result is also valid for borderline case.

For that choice of the regularization parameter we have for
constants 0 < c < ¢ <

a(d) =0 and c<—<c as 60— 0.
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Leta,r >0, 0 <y <1, and let the conditional stability estimate

Ix — xT||—a < K(r) |F(x) — F(xD)||}, forall x € BX(x")nD(F)

hold, where the constant K(r) > 0 depends on the prescribed r.

As a consequence of the above Corollary Proposition 2 remains
valid if Assumption 2 is substituted by Assumption 3.
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Convergence rates in case of oversmoothing penalties

Assumption 4
@ Leta>0,r > 0andlet x' € int(D(F)) with BX(x") ¢ D(F).
@ Let there exist constants 0 < K < K < oo such that

Kl x—xT||_a < |[F(x)—F(x")|ly forall x e D(F)nX; ($L)
and

IF(x)—F(xN)|ly < K|x—x|_a forall x € BX(x")nX;. ($R)

v
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Theorem (case of oversmoothing penalties)
Let xT € X, for some 0 < p < 1, but assume x' ¢ X;. Under
Assumptions 1 and 4 we then have the rate of convergence of
regularized solutions to the exact solution as

[1xS. —XTHx=O<5Ti3> as §—0,

if the regularization parameter is chosen a priori as

a, = a(d) = 22,

For that choice of the regularization parameter we have

a(é) =0 and a(0) — 00 as 0 —0.
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Sketch of a proof: For simplicity we set E := || xT||.
To prove the rate result it is sufficient to show that,
for sufficiently small § > 0, there are two constants
K > 0 and E > 0 such that the inequalities

Ixo, = xT|l_a< K& (1)

and 5
Ix0, — xV|p < E (12)

hold. Then the rate follows directly from
8 5 s = P~ a P
165, = xtlx < x5, = xTIZ2 IS, = xH|g™ < Kaw Ew 5w,

which is valid, for sufficiently small § > 0, as a consequence of
(11), (12) and of the interpolation inequality for the Hilbert scale.

Now it remains to prove (/1) and (/2).
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As an essential tool for the proof we use auxiliary elements x,,
which are, for all o > 0, the uniquely determined minimizers
over all x € X of the artificial Tikhonov functional

T_aa(X) = x = xT|2 5 + o] B]l%-

The mapping x! — x, is a variant of proximal operator.

Note that the elements x, are independent of the noise level §
and belong by definition to Xj, in strong contrast to xT ¢ X;.
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Lemma > H./MATHE IP 2018

Let || x|, = E and x, be the minimizer of the functional T_,,.

Given o
ay = a8) = 627 %p > 0,

the resulting element x,,, obeys the bounds
IXa. — xTllx < ESP/(@P) - (13)
1B-3(Xa, —xN)lx < E5,  (14)

|BXa, ||x < EsP—1/(@+P) — E 0

Jan

(1)

and

o, ~xtlp < E. (I6)
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Due to (/3) we have || x,, — xf||x — 0asé — 0.

Hence by Assumption 4 (x' is an interior point of D(F))
we have that, for sufficiently small § > 0 the element x,,
belongs to BX(x!) ¢ D(F) and moreover with x,, € X;
the right-hand side inequality ($R) applies for x = X, .

Instead of the usual regularizing property T2(x3) < T3(x1),
which is missing in case of oversmoothing penalties, we use

To. () < To.(xa.)  (MP)

as a helpful minimizing property for the Tikhonov functional.
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Using the minimizing property (MP) it is enough to bound
_ _ _ 1/2

T3 (X,.) by C°62 with C := <(KE F12 4 E2>

in order to obtain the estimates

IF(x2,) = ¥’lly < Co

and

1)
Var

1Bx, lx < C
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Since the inequality ($R) applies for x = x,,, and sufficiently
small 6 > 0, we can estimate with (/5) for such ¢ as follows:

06) = (IF0) = FOO) v + IFG0) = V) 0B [
S( % — x|~ a+5) 1 E24, 62p—1)/(a+p)
S( 5+5> | E242
:<KE+1 +E2>52
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Based on this we can show that (/1) is valid for some K > 0.
Here, we use the left-hand inequality ($L) of Assumption 4,
which applies for x = x3_ € D(F) N X, and we find

’
Ixe. = Xl-a < £ IFO.) = FODIly

< 2 (IFOR) = Vv + IFO) =yl
< :( (65+5) - ; (6+1)5: K.

=]

Hence, we derive K := <5+ 1) for the constant in (/1).
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Finally, we still have to show the existence of a constant £ > 0
such that the inequality (/2) holds.

By exploiting the triangle inequality we find that

—= )
1BOxa. = Xa)llx < [1BXC, llx + |BXa.llx < (C+ E)—.

Jas
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Using the interpolation inequality we can estimate further as

6 < 6 % 6 :Tf
HX Xa*HP—HXa* Xa*H1 HXa* Xa*H—a

Qs

1—p

— ) a+1 £
<(@+B22)" (1 =t I =) ™

atp

0 ) (K + By

NG

< ((C+ E)

<(C+ E)s(P- 1)/(a+p)) a (K + E)§)a+ = E.
Consequently, we have now

166 = XMl < X6, = Xaullp + 1%, = xT[lp < E+ E = E.

This shows (/2) and thus completes the proof. O
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Example (exponential growth model)

We aim at identifying the time dependent growth rate
x(t) (0 <t < T) from observations of the size y(t) (0 <t < T)
of a population with y(0) = yo > 0 such that the problem

Yy =x()yt) 0<t<T), y(0)=y,

is satisfied.
For X = Y = L2(0, T) the forward operator attains the form

t
[F(x)](t) = yo exp (/0 x(T)dT) 0<t<T).

We note that the corresponding nonlinear operator equation (x)
is locally ill-posed everywhere in X.
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Moreover, the operator F is continuously Fréchet differentiable
on the whole Hilbert space L2(0, 1) and has the derivative

[F'(x"R](t) = [F(xD](}) /Ot h(r)dr (0<t<T), hel?0,T).

One easily verifies that

IF() = F(xH) = F'(x ) (x=xM) |y < K|IF(x) = FO v lIx—x"1x

holds with some constant K > 0 for all x € X. For  := rK < 1
IF(x) = F(xT) = F(xM)(x = x|y < nlF(x) = F(xY)lly

is satisfied with 0 < n < 1 and yields for such r and x € BX(x")

Kiow [|F' (x") (x=x")ly < [FO)=F(xDly < Kup | F'(x")(x=xT) 1y

with Kiow = 1/(1 +n) and Kyp = 1/(1 — 7).
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Now set for simplicity 7 := 1. In order to generate a Hilbert
scale { X} cr, we exploit the simple integration operator

[H(1) = /Oth(f)df (0<t<1)

of Volterra-type mapping in X = Y = L?(0, 1) and set

B =

(J*J)~1/2,

By considering the Riemann-Liouville fractional integral
operator JP and its adjoint (J*)P = (JP)* for0 < p < 1

we have with X, =

Xp:

D(BP) =

R((J*I)P/?) =

Hp(O 1)

{erz (0,1)
{x € HP(O, 1)

f XOF gt < 50}

x(1) = 0}

R((J*)P)

where the fractional Sobolev spaces HP(0, 1) occur.
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Now we have that
IJhlly = 1(J*I)'2hllx = B hilx =[]+ forall heX
and that there are constants 0 < ¢ < ¢ < oo such that
c<[FMI(h<e (0<t<1)
for the multiplier function in F’(x"). Thus we have for all x € X
cllx = x|y < [F (M= xDly <ellx — x4

and consequently estimates ($L) as well as ($R) with a =1
and K = cKjow, K = CKyp, but both restricted to x € BX(xT)
and sulfficiently small r > 0.
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Example (autoconvolution)

With the same Hilbert scale generator B based on J we can
consider the autoconvolution operator in X = Y = L?(0,1)

[F(¥)](s) = /tx(s “Ox(t)dt (0<s<1),
0
where D(F) = X and we have the Fréchet derivative
[F'(x)hl(s) 2/ (s—t)h(t)dt (0<s<1, heX)

satisfying for all x € X the estimate

IF(x) = F(xT) = F'(x")(x = xN)lly = 1Fx = xN)ly < [1x = x|I%.
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For the specific solution x(f) =1 (0 <t < 1) we have that
IF'(x"hlly = 2||Jhlly = 2B~ hl|lx = ||h] 4 forall he X.
Using the interpolation inequality || h||5 < ||h||_1]|h||s we derive
Ix=x1]l 1 < 2IFO)~FO)—F O (x| FO)~FOxly
< LI~ FODlly + gl —x x|y for x—xT € X
and for || x — xt||y < k < 2 even the conditional stability estimate
1

[x — xT||_1 < 5 |F(x) = F(x")|y forall x—x'e BX(0).
— KR

Note that x € X, ifanonly if p < 0.5 = xJ — x' ¢ BX(0).
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Figure: x' = 1 and regularized solutions x? for varying noise levels §
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Figure: x' = 1 and regularized solutions x? for varying noise levels §
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