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Birkhäuser, Basel 2018.

B F. WEIDLING, B. SPRUNG, AND T. HOHAGE: Optimal convergence rates for
Tikhonov regularization in Besov spaces. arXiv:1803.11019, 2018.
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Introduction

Let X and Y denote infinite dimensional Hilbert spaces,
equipped with norms ‖ · ‖X and ‖ · ‖Y .

We consider the (possibly non-linear) operator equation

F (x) = y (x ∈ D(F ) ⊆ X , y ∈ Y ) (∗)

as a model of an inverse problem

with forward operator F : D(F ) ⊂ X → Y and domain D(F ).

Let x† ∈ D(F ) denote the uniquely determined solution to (∗).
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The goal is to find stable approximations to x† with
good properties based on noisy data yδ ∈ X such that

‖y − yδ‖Y ≤ δ,

with noise level δ > 0.

Since equation (∗) is the model of an inverse problem,
the forward operator F is in general ‘smoothing’.
Hence, a least squares approach

‖F (x)− yδ‖2Y → min, subject to x ∈ D(F ),

is mostly not successful, even if x† is the unique solution to (∗).
Precisely, the stable approximate solution of (∗) requires some
kind of regularization.
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We exploit closed balls BZ
r (z̄) := {z ∈ Z : ‖z − z̄‖Z ≤ r} and

recall an ill-posedness concept adapted to nonlinear problems:

Definition B H./SCHERZER IP 1994

The equation (∗) is called locally well-posed at the solution
point x† ∈ D(F ) if there is a ball BX

r (x†) with radius r > 0 and
center x† such that for each sequence
{xn}∞n=1 ⊂ BX

r (x†) ∩ D(F ) the implication

lim
n→∞

‖F (xn)− F (x†)‖Y = 0 =⇒ lim
n→∞

‖xn − x†‖X = 0

holds true. Otherwise (∗) is called locally ill-posed at x†.

Note that local well-posedness requires local injectivity.
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We focus on nonlinear F and local ill-posedness at x†. Then

‖x − x†‖X ≤ K ϕ(‖F (x)− F (x†)‖Y ) for all x ∈ BX
r (x†) ∩ D(F )

cannot hold for any constants K , r > 0 and index functions ϕ.

However, such conditional stability estimates can hold if
‖x − x†‖X is substituted by weaker norms ‖x − x†‖−a (a > 0)

in the context of Hilbert scales {Xτ}τ∈R generated by a
densely defined, unbounded, linear, and self-adjoint operator
B : D(B) ⊂ X → X with ‖x‖τ := ‖Bτx‖X and D(B) = X1.
‖Bx‖X ≥ cB‖x‖X is valid for all x ∈ X1 with constant cB > 0.

B. Hofmann Impact of conditional stability estimates and the case of oversmoothing penalties 12



A powerful tool in the Hilbert scale {Xτ}τ∈R generated by B is

the interpolation inequality, which attains for −a < t ≤ p

the form

‖x‖t ≤ ‖x‖
p−t
p+a
−a ‖x‖

t+a
p+a
p for all x ∈ Xp.
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Assumption 1
The operator F is weak-to-weak sequentially continuous.
The domain D(F ) is a convex and closed subset of X .
D = D(F ) ∩ D(B) 6= ∅.
x† ∈ D(F ) is the uniquely determined solution to (∗).
Regularized solutions xδα are minimizers of

T δ
α(x) := ‖F (x)− yδ‖2Y + α‖Bx‖2X → min, s.t. x ∈ D(F ),

consequently xδα ∈ D = D(F ) ∩ X1.

This assumption ensures the existence and stability
of regularized solutions xδα for all α > 0.

B. Hofmann Impact of conditional stability estimates and the case of oversmoothing penalties 14



Case distinction
(a) x† ∈ Xp for some p > 1, which means that ‖Bx†‖X <∞

and there is some source element w ∈ Xε (ε > 0) such
that x† = B−1w . (undersmoothing penalty case)

(b) x† ∈ X1, which means that ‖Bx†‖X <∞, but x† /∈ X1+ε for
all ε > 0. (borderline case)

(c) x† ∈ Xp for some 0 < p < 1, but x† /∈ X1, which means
that ‖Bx†‖X =∞. (oversmoothing penalty case).
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Convergence

By definition of the Tikhonov functional we have xδα ∈ X1, but
only in the cases (a) and (b) one can take profit of the inequality

T δ
α(xδα) ≤ T δ

α(x†),

which implies for all α > 0 that

‖xδα‖1 ≤
√
‖x†‖21 +

δ2

α
.

In the case (c), however, due to x† /∈ X1 and hence ‖x†‖1 =∞
we have no such uniform bounds of ‖xδα‖1 from above.
Evidently, in case (c), ‖xδα‖1 →∞ as δ → 0 is necessary for
convergence of the regularized solutions xδα to x†.
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Proposition 1 (convergence)
Let the regularization parameter α > 0 fulfill the conditions

α→ 0 and
δ2

α
→ 0 as δ → 0.

Then we have under Assumption 1 and for cases (a) and (b) by
setting αn = α(δn) or αn = α(δn, yδn ), xn = xδn

αn , that for δn → 0
as n→∞

lim
n→∞

‖xn‖1 = ‖x†‖1,

and
lim

n→∞
‖xn − x†‖ν = 0 for all 0 ≤ ν ≤ 1.
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Corollary
Under the assumptions and for α-choices of Proposition 1 we
have for cases (a) and (b) that the regularized solutions xδα
belong to the ball BXν

r (x†) for prescribed values r > 0 and
0 ≤ ν ≤ 1 whenever δ > 0 is sufficiently small.

In general, in case (c) one cannot even show weak
convergence of xδα as δ → 0. Regularized solutions xδα
need not belong to a ball BX

r (x†) with small radius r > 0
if δ > 0 is sufficiently small. Under stronger conditions,
however, convergence can be the consequence of
proven convergence rates.
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Convergence rates under conditional stability
estimates

Assumption 2
Let a > 0, 0 < γ ≤ 1, and let the conditional stability estimates

‖x − x†‖−a ≤ K (%) ‖F (x)− F (x†)‖γY for all x ∈ BX1
% (0) ∩ D(F )

hold, where constants K (%) > 0 are supposed to exist for all
radii % > 0.

Extension to general concave index function ϕ as

‖x−x†‖−a ≤ K (%)ϕ(‖F (x)−F (x†)‖Y ) for all x ∈ BX1
% (0)∩D(F )

was recently outlined in B WERNER/H. 2019.
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Proposition 2 (undersmoothing penalties) B EGGER/H. IP 2018

Under the Assumptions 1 and 2 and for x† ∈ Xp with
1 < p ≤ a + 2 we have the rate of convergence of regularized
solutions xδα ∈ D(F ) ∩ D(B) to the solution x† ∈ D(F ) ∩ Xp as

‖xδα − x†‖X = O
(
δ

γp
p+a

)
as δ → 0,

provided that the regularization parameter α = α(δ) is chosen
a priori as

α(δ) ∼ δ2−2γ p−1
p+a .

For that choice of the regularization parameter we have

α(δ)→ 0 and
δ2

α(δ)
→ 0 as δ → 0.
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Proposition 3 B CHENG/YAMAMOTO IP 2000

Under the Assumptions 1 and 2 and for x† ∈ X1 we have the
rate of convergence of regularized solutions xδα ∈ D(F ) ∩ D(B)
to the solution x† ∈ D(F ) ∩ D(B) as

‖xδα − x†‖X = O
(
δ

γ
1+a

)
as δ → 0,

if the regularization parameter α = α(δ) is chosen a priori as

α(δ) ∼ δ2.

This result is also valid for borderline case.
For that choice of the regularization parameter we have for
constants 0 < c ≤ c <∞

α(δ)→ 0 and c ≤ δ2

α(δ)
≤ c as δ → 0.
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Assumption 3
Let a, r > 0, 0 < γ ≤ 1, and let the conditional stability estimate

‖x − x†‖−a ≤ K (r) ‖F (x)− F (x†)‖γY for all x ∈ BX
r (x†) ∩D(F )

hold, where the constant K (r) > 0 depends on the prescribed r .

As a consequence of the above Corollary Proposition 2 remains
valid if Assumption 2 is substituted by Assumption 3.
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Convergence rates in case of oversmoothing penalties

Assumption 4

Let a > 0, r > 0 and let x† ∈ int(D(F )) with BX
r (x†) ⊂ D(F ).

Let there exist constants 0 < K ≤ K <∞ such that

K ‖x−x†‖−a ≤ ‖F (x)−F (x†)‖Y for all x ∈ D(F )∩X1 ($L)

and

‖F (x)−F (x†)‖Y ≤ K ‖x−x†‖−a for all x ∈ BX
r (x†)∩X1. ($R)
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Theorem (case of oversmoothing penalties)

Let x† ∈ Xp for some 0 < p < 1, but assume x† /∈ X1. Under
Assumptions 1 and 4 we then have the rate of convergence of
regularized solutions to the exact solution as

‖xδα∗ − x†‖X = O
(
δ

p
p+a

)
as δ → 0,

if the regularization parameter is chosen a priori as

α∗ = α(δ) = δ
2−2 p−1

p+a .

For that choice of the regularization parameter we have

α(δ)→ 0 and
δ2

α(δ)
→∞ as δ → 0.
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Sketch of a proof: For simplicity we set E := ‖x†‖p.
To prove the rate result it is sufficient to show that,
for sufficiently small δ > 0, there are two constants
K > 0 and Ẽ > 0 such that the inequalities

‖xδα∗ − x†‖−a ≤ K δ (I1)

and
‖xδα∗ − x†‖p ≤ Ẽ (I2)

hold. Then the rate follows directly from

‖xδα∗ − x†‖X ≤ ‖xδα∗ − x†‖
p

a+p
−a ‖xδα∗ − x†‖

a
a+p
p ≤ K

p
a+p Ẽ

a
a+p δ

p
a+p ,

which is valid, for sufficiently small δ > 0, as a consequence of
(I1), (I2) and of the interpolation inequality for the Hilbert scale.
Now it remains to prove (I1) and (I2).
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As an essential tool for the proof we use auxiliary elements xα,
which are, for all α > 0, the uniquely determined minimizers
over all x ∈ X of the artificial Tikhonov functional

T−a,α(x) := ‖x − x†‖2−a + α‖Bx‖2X .

The mapping x† 7→ xα is a variant of proximal operator.

Note that the elements xα are independent of the noise level δ
and belong by definition to X1, in strong contrast to x† /∈ X1.
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Lemma B H./MATHÉ IP 2018

Let ‖x†‖p = E and xα be the minimizer of the functional T−a,α.
Given

α∗ = α(δ) = δ
2−2 p−1

p+a > 0,

the resulting element xα∗ obeys the bounds

‖xα∗ − x†‖X ≤ Eδp/(a+p), (I3)

‖B−a(xα∗ − x†)‖X ≤ Eδ, (I4)

‖Bxα∗‖X ≤ Eδ(p−1)/(a+p) = E
δ
√
α∗

(I5)

and
‖xα∗ − x†‖p ≤ E . (I6)
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Due to (I3) we have ‖xα∗ − x†‖X → 0 as δ → 0.
Hence by Assumption 4 (x† is an interior point of D(F ))
we have that, for sufficiently small δ > 0 the element xα∗

belongs to BX
r (x†) ⊂ D(F ) and moreover with xα∗ ∈ X1

the right-hand side inequality ($R) applies for x = xα∗ .

Instead of the usual regularizing property T δ
α(xδα) ≤ T δ

α(x†),
which is missing in case of oversmoothing penalties, we use

T δ
α∗(xδα∗) ≤ T δ

α∗(xα∗) (MP)

as a helpful minimizing property for the Tikhonov functional.
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Using the minimizing property (MP) it is enough to bound

T δ
α∗(xα∗) by C

2
δ2 with C :=

(
(K E + 1)2 + E2

)1/2

in order to obtain the estimates

‖F (xδα∗)− yδ‖Y ≤ Cδ

and

‖Bxδα∗‖X ≤ C
δ
√
α∗
.
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Since the inequality ($R) applies for x = xα∗ and sufficiently
small δ > 0, we can estimate with (I5) for such δ as follows:

T δ
α∗(xα∗) ≤

(
‖F (xα∗)− F (x†)‖Y + ‖F (x†)− yδ‖Y

)2
+ α∗‖Bxα∗‖2X

≤
(

K‖xα∗ − x†‖−a + δ
)2

+ E2α∗δ
2(p−1)/(a+p)

≤
(

K Eδ + δ
)2

+ E2δ2

=
(

(K E + 1)2 + E2
)
δ2.
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Based on this we can show that (I1) is valid for some K > 0.
Here, we use the left-hand inequality ($L) of Assumption 4,
which applies for x = xδα∗ ∈ D(F ) ∩ X1, and we find

‖xδα∗ − x†‖−a ≤
1
K
‖F (xδα∗)− F (x†)‖Y

≤ 1
K

(
‖F (xδα∗)− yδ‖Y + ‖F (x†)− yδ‖Y

)
≤ 1

K

(
Cδ + δ

)
=

1
K

(
C + 1

)
δ = K δ.

Hence, we derive K := 1
K

(
C + 1

)
for the constant in (I1).

B. Hofmann Impact of conditional stability estimates and the case of oversmoothing penalties 34



Finally, we still have to show the existence of a constant Ẽ > 0
such that the inequality (I2) holds.

By exploiting the triangle inequality we find that

‖B(xδα∗ − xα∗)‖X ≤ ‖Bxδα∗‖X + ‖Bxα∗‖X ≤ (C + E)
δ
√
α∗
.
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Using the interpolation inequality we can estimate further as

‖xδα∗ − xα∗‖p ≤ ‖xδα∗ − xα∗‖
a+p
a+1
1 ‖xδα∗ − xα∗‖

1−p
a+1
−a

≤
(

(C + E)
δ
√
α∗

) a+p
a+1 (
‖xδα∗ − x†‖−a + ‖x† − xα∗‖−a

) 1−p
a+1

≤
(

(C + E)
δ
√
α∗

) a+p
a+1

((K + E)δ)
1−p
a+1

(
(C + E)δ(p−1)/(a+p)

) a+p
a+1

((K + E)δ)
1−p
a+1 =: Ē .

Consequently, we have now

‖xδα∗ − x†‖p ≤ ‖xδα∗ − xα∗‖p + ‖xα∗ − x†‖p ≤ Ē + E =: Ẽ .

This shows (I2) and thus completes the proof.
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Examples

Example (exponential growth model)

We aim at identifying the time dependent growth rate
x(t) (0 ≤ t ≤ T ) from observations of the size y(t) (0 ≤ t ≤ T )

of a population with y(0) = y0 > 0 such that the problem

y ′(t) = x(t) y(t) (0 ≤ t ≤ T ), y(0) = y0 ,

is satisfied.
For X = Y = L2(0,T ) the forward operator attains the form

[F (x)](t) = y0 exp
(∫ t

0
x(τ)dτ

)
(0 ≤ t ≤ T ).

We note that the corresponding nonlinear operator equation (∗)
is locally ill-posed everywhere in X .
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Moreover, the operator F is continuously Fréchet differentiable
on the whole Hilbert space L2(0,1) and has the derivative

[F ′(x†)h](t) = [F (x†)](t)
∫ t

0
h(τ)dτ (0 ≤ t ≤ T ), h ∈ L2(0,T ).

One easily verifies that

‖F (x)−F (x†)−F ′(x†)(x−x†)‖Y ≤ K̂ ‖F (x)−F (x†)‖Y‖x−x†‖X

holds with some constant K̂ > 0 for all x ∈ X . For η := r K̂ < 1

‖F (x)− F (x†)− F ′(x†)(x − x†)‖Y ≤ η ‖F (x)− F (x†)‖Y

is satisfied with 0 < η < 1 and yields for such r and x ∈ BX
r (x†)

Klow ‖F ′(x†)(x−x†)‖Y ≤ ‖F (x)−F (x†)‖Y ≤ Kup ‖F ′(x†)(x−x†)‖Y

with Klow = 1/(1 + η) and Kup = 1/(1− η).
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Now set for simplicity T := 1. In order to generate a Hilbert
scale {Xτ}τ∈R, we exploit the simple integration operator

[Jh](t) :=

∫ t

0
h(τ)dτ (0 ≤ t ≤ 1)

of Volterra-type mapping in X = Y = L2(0,1) and set

B := (J∗J)−1/2.

By considering the Riemann-Liouville fractional integral
operator Jp and its adjoint (J∗)p = (Jp)∗ for 0 < p ≤ 1
we have with Xp = D(B p) = R((J∗J)p/2) = R((J∗)p)

Xp =


Hp(0,1) for 0 < p < 1

2

{x ∈ H
1
2 (0,1) :

1∫
0

|x(t)|2
1−t dt <∞} for p = 1

2

{x ∈ Hp(0,1) : x(1) = 0} for 1
2 < p ≤ 1

,

where the fractional Sobolev spaces Hp(0,1) occur.
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Now we have that

‖Jh‖Y = ‖(J∗J)1/2h‖X = ‖B−1h‖X = ‖h‖−1 for all h ∈ X

and that there are constants 0 < c ≤ c <∞ such that

c ≤ [F (x†)](t) ≤ c (0 ≤ t ≤ 1)

for the multiplier function in F ′(x†). Thus we have for all x ∈ X

c ‖x − x†‖−1 ≤ ‖F ′(x†)(x − x†)‖Y ≤ c ‖x − x†‖−1

and consequently estimates ($L) as well as ($R) with a = 1
and K = cKlow , K = cKup, but both restricted to x ∈ BX

r (x†)
and sufficiently small r > 0.
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Example (autoconvolution)

With the same Hilbert scale generator B based on J we can
consider the autoconvolution operator in X = Y = L2(0,1)

[F (x)](s) =

∫ t

0
x(s − t)x(t)dt (0 ≤ s ≤ 1),

where D(F ) = X and we have the Fréchet derivative

[F ′(x)h](s) = 2
∫ s

0
x(s − t) h(t)dt (0 ≤ s ≤ 1, h ∈ X )

satisfying for all x ∈ X the estimate

‖F (x)− F (x†)− F ′(x†)(x − x†)‖Y = ‖F (x − x†)‖Y ≤ ‖x − x†‖2X .
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For the specific solution x†(t) = 1 (0 ≤ t ≤ 1) we have that

‖F ′(x†)h‖Y = 2‖Jh‖Y = 2‖B−1h‖X = ‖h‖−1 for all h ∈ X .

Using the interpolation inequality ‖h‖2X ≤ ‖h‖−1‖h‖1 we derive

‖x−x†‖−1 ≤
1
2
‖F (x)−F (x†)−F ′(x†)(x−x†)‖Y +

1
2
‖F (x)−F (x†)‖Y

≤ 1
2
‖F (x)−F (x†)‖Y +

1
2
‖x − x†‖1‖x − x†‖−1 for x − x† ∈ X1

and for ‖x − x†‖1 ≤ κ < 2 even the conditional stability estimate

‖x − x†‖−1 ≤
1

2− κ
‖F (x)− F (x†)‖Y for all x − x† ∈ BX1

κ (0).

Note that x† ∈ Xp if an only if p < 0.5 ⇒ xδα − x† /∈ BX1
κ (0).
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Figure: x† ≡ 1 and regularized solutions xδ
α for varying noise levels δ

B. Hofmann Impact of conditional stability estimates and the case of oversmoothing penalties 44



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

exact solution

=0.00032629

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

exact solution

=0.0002223

Figure: x† ≡ 1 and regularized solutions xδ
α for varying noise levels δ
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