STABLE DETERMINATION OF POLYGONAL AND POLYHEDRAL INTERFACES FROM BOUNDARY MEASUREMENTS

Elisa Francini

UNIVERSITȦ
DEGLI STUDI
FIRENZE
DIMAI
DIPARTIMENTO DI MATEMATICA E INFORMATICA
"ULISSE DINI"

in collaboration with E. Beretta and S. Vessella

Reconstruction Methods for Inverse Problems, BIRS, 2019

Calderón problem - Electrical Impedance Tomography

Recover $\gamma>0$ defined in Ω from boundary values of solutions of the equation

$$
\operatorname{div}(\gamma \nabla u)=0 \quad \text { in } \Omega
$$

Boundary measurements are encoded in the Dirichlet to Neumann map:

$$
\begin{aligned}
\Lambda_{\gamma}: H^{1 / 2}(\partial \Omega) & \rightarrow H^{-1 / 2}(\partial \Omega) \\
f & \rightarrow \gamma \frac{\partial u}{\partial \nu}
\end{aligned}
$$

where u solves

$$
\left\{\begin{aligned}
\operatorname{div}(\gamma \nabla u) & =0 \quad \text { in } \Omega \\
u & =f \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

The forward map is the nonlinear map

$$
F: \gamma \in L^{\infty}(\Omega) \rightarrow \Lambda_{\gamma} \in \mathcal{L}\left(H^{1 / 2}(\partial \Omega), H^{-1 / 2}(\partial \Omega)\right)
$$

We are interested in

(1) Uniqueness of the solution: injectivity of F.

$$
F\left(\gamma_{0}\right)=F\left(\gamma_{1}\right) \stackrel{?}{\Rightarrow} \gamma_{0}=\gamma_{1}
$$

Are the measurements enough to distinguish between two different coefficients?
(2) Stability: continuity of F^{-1}.

$$
\left\|\gamma_{0}-\gamma_{1}\right\| \stackrel{?}{\leq} \omega\left(\left\|F\left(\gamma_{0}\right)-F\left(\gamma_{1}\right)\right\|\right)
$$

for $\omega(t) \rightarrow 0$ as $t \rightarrow 0$.

Uniqueness for Calderón problem

$$
F\left(\gamma_{0}\right)=F\left(\gamma_{1}\right) \stackrel{?}{\Rightarrow} \gamma_{0}=\gamma_{1}
$$

Isotropic conductivities

- $n \geq 2, \gamma_{0}, \gamma_{1}$ piecewise analytic $\operatorname{Kohn} \operatorname{Vogelius}(1984,1985)$
- $n \geq 3$ and $\gamma_{0}, \gamma_{1} \in C^{2}(\bar{\Omega})$ Sylvester Uhlmann (1987), $W^{1, \infty}(\Omega)$ Caro Rogers (2016), $W^{1,3}(\Omega)$ Haberman (2015)
- $n=2$ and $\gamma_{0}, \gamma_{1} \in W^{2, p}(\Omega)$ Nachman (1995), Brown Uhlmann (1997) , $\gamma_{0}, \gamma_{1} \in L^{\infty}(\Omega)$ Astala Paivairinta (2006)

Anisotropic conductivities

- Nonuniqueness Kohn-Vogelius (1984) counterexample. When γ is a matrix function (anisotropic materials), it is impossible to determine γ uniquely.

Instability of Calderón problem

Stability of the inverse problem \Longleftrightarrow Continuity of F^{-1}

$$
\left\|\gamma_{0}-\gamma_{1}\right\|=\left\|F^{-1}\left(\Lambda_{\gamma_{0}}\right)-F^{-1}\left(\Lambda_{\gamma_{1}}\right)\right\| \stackrel{?}{\leq} \omega\left(\left\|\Lambda_{\gamma_{0}}-\Lambda_{\gamma_{1}}\right\|_{\star}\right)
$$

Positivity and boundness of conductivity are not enough to guarantee stability, Example of instability Alessandrini (1988)

Stability in ill-posed problems can be restored conditionally to a-priori bounds on the unknowns that guarantee compactness

Tikhonov (1943)
$F: K \subset X \rightarrow Y$, where X, Y are Banach spaces, K compact set and F injective and continuous operator. Then,

$$
\left(F_{\mid K}\right)^{-1}: F(K) \rightarrow K
$$

is continuous.

Conditional stability for Calderón problem

- Alessandrini (1988) $n \geq 3,\|\gamma\|_{W^{2, \infty}(\Omega)} \leq E$
- Barcelo, Faraco, Ruiz (2007) $n=2,\|\gamma\|_{C^{\alpha}(\bar{\Omega})} \leq E$.

$$
\left\|\gamma_{0}-\gamma_{1}\right\|_{L^{\infty}(\Omega)} \leq \omega\left(\left\|\Lambda_{\gamma_{0}}-\Lambda_{\gamma_{1}}\right\|_{\star}\right)
$$

- Clop, Faraco, Ruiz (2010) $n=2,\|\gamma\|_{W^{\alpha, p}(\Omega)} \leq E, \alpha>0$

$$
\left\|\gamma_{0}-\gamma_{1}\right\|_{L^{2}(\Omega)} \leq \omega\left(\left\|\Lambda_{\gamma_{0}}-\Lambda_{\gamma_{1}}\right\|_{\star}\right)
$$

- Caro, García, Reyes (2013) $n \geq 3, \gamma \in C^{1, \epsilon}(\bar{\Omega}) \leq E$

$$
\left\|\gamma_{0}-\gamma_{1}\right\|_{C^{0, \delta}(\Omega)} \leq \omega\left(\left\|\Lambda_{\gamma_{0}}-\Lambda_{\gamma_{1}}\right\|_{\star}\right)
$$

In all these results $\omega(t)=C|\log t|^{-\eta}$.

A Limit to stability with information on REGULARITY

Mandache (2001) has proved that logarithmic stability is the best possible stability using as a-priori assumption of the form

$$
\|\gamma\|_{C^{k}(\bar{\Omega})} \leq E, \quad \forall k=0,1,2 \ldots
$$

Strategy:

Look for a-priori assumptions on conductivity

- physically relevant
- give rise to better stability (Lipschitz stability)

REDUCE THE NUMBER ON UNKNOWNS

Assume $F: K \subset L^{\infty} \rightarrow \mathcal{L}, K$ subset of a finite dimensional space unknown conductivity depends on finitely many parameters
For example

$$
\gamma(x)=\sum_{j=1}^{N} \gamma_{j} \chi_{D_{j}}(x)
$$

- Reasonable for most applications, e.g. medical imaging (different tissues), geophysical prospection (different rocks, layers of the earth), nondestructive testing of materials (composite materials)
- Finite element discretization for effective reconstruction

STRATEGY OF THE PROOF

$F: \gamma \in K \subset L^{\infty} \rightarrow \Lambda_{\gamma} \in \mathcal{L}$, where K denotes compact subset of a finite dimensional space.

Steps to prove Lipschitz stability estimate:
(1) prove that F is injective (uniqueness);
(2) prove that F is differentiable and evaluate the Frechét derivative $D F$;
(3) prove that $D F$ is bounded from below.

The bound from below of the derivative DF gives a bound from above of the constant C in the stability estimate

$$
\left\|\gamma_{0}-\gamma_{1}\right\| \leq C\left\|\Lambda_{\gamma_{0}}-\Lambda_{\gamma_{1}}\right\|_{\star}
$$

Main tools

(I) Unique continuation property

$$
\operatorname{div}(\gamma \nabla u)=0 \quad \text { in } \quad \Omega
$$

(UCP) $u=0$ in $B_{r}\left(x_{0}\right) \subset \Omega \Rightarrow u=0$ in Ω
(QUCP) $\|u\|_{L^{2}\left(B_{r}\left(x_{0}\right)\right)} \leq \epsilon,\|u\|_{L^{2}(\Omega)} \leq E \Rightarrow\|u\|_{L^{2}(G)} \leq C \epsilon^{\delta}$

$$
B_{r}\left(x_{0}\right) \subset G \subset \Omega \text { and } C \text { and } \delta \in(0,1) \text { depend on } d(G, \partial \Omega) .
$$

(II) Regularity estimates for solutions of equations and systems with discontinuous coefficients
(III) Singular solutions for equations and systems with discontinuous coefficients. Asymptotic behaviour near discontinuity interfaces

PARAMETER IDENTIFICATION

$$
\gamma=\sum_{j=1}^{N} \gamma^{j} \chi_{D_{j}}, \quad \bigcup_{j=1}^{N} \bar{D}_{j}=\Omega \subset \mathbb{R}^{n}
$$

known domains D_{j}
unknown parameters γ^{j}

Lipschitz stability estimates

$$
\sum_{j=1}^{N}\left|\gamma_{0}^{j}-\gamma_{1}^{j}\right| \leq C\left\|\Lambda_{\gamma_{0}}-\Lambda_{\gamma_{1}}\right\|_{\star}
$$

Alessandrini, Vessella (2005)

Differentiability of F

$F: K \subset L^{\infty} \rightarrow \mathcal{L}$ is differentiable: for given f and $g \in H^{1 / 2}(\partial \Omega)$

$$
F(\gamma)(f, g)=<\Lambda_{\gamma} f, g>
$$

and for any direction h

$$
<D F_{\gamma}[h] f, g>=\frac{d}{d t}<\Lambda_{\gamma+t h} f, g>_{\mid t=0}=\int_{\Omega} h \nabla u \nabla v
$$

where u and v are solutions to

$$
\left\{\begin{array} { r l }
{ \operatorname { d i v } (\gamma \nabla u) } & { = 0 \text { in } \Omega , } \\
{ u } & { = f \text { on } \partial \Omega . }
\end{array} \quad \left\{\begin{array}{rl}
\operatorname{div}(\gamma \nabla v) & =0 \text { in } \Omega, \\
v & =g \text { on } \partial \Omega .
\end{array}\right.\right.
$$

Injectivity of DF

$$
\int_{\Omega} h \nabla u \nabla v \quad \forall u, v \Rightarrow h=0
$$

Take

$$
u(x)=G(x, y), \quad v(x)=G(x, z)
$$

with G Green function in an extended domain.

Other PDEs and systems

- Complex valued coefficients γ

> Beretta, F. (2011)

- Elasticity

Beretta, F., Vessella (2014)
Beretta, F., Morassi, Rosset, Vessella (2014)
Beretta, de Hoop, F., Vessella, Zhai (2017)

- Anisotropic equation

Gaburro, Sincich (2015)

- Helmholtz equation $\Delta u+q u=0$

Beretta, de Hoop, Qiu (2013)
Beretta, de Hoop, Faucher, Scherzer (2016)

- Piecewise linear coefficients

Alessandrini, de Hoop, Gaburro, Sincich (2016 and 2017)

Interface identification

$$
\gamma=\sum_{j=1}^{N} \gamma_{j} \chi_{D_{j}}, \quad \bigcup_{j=1}^{N} \bar{D}_{j}=\Omega
$$

"known" parameters γ_{j} unknown polygonal or polihedral domains D_{j}

Helmholtz equation

$$
\Delta u+\omega^{2} q u=0 \quad \text { in } \Omega \quad \text { for } q=\sum_{j=1}^{N} q_{j} \chi T_{j}
$$

"known" parameters q_{j}, unknown domains T_{j}.

Theorem

Let $q_{0}=\sum_{j=1}^{N} q_{0}^{j} \chi_{T_{j}^{0}}, q_{1}=\sum_{j=1}^{M} q_{1}^{j} \chi_{T_{j}^{1}}$, with $\left\{T_{j}^{k}\right\}$ regular partitions of tetrahedra, q_{k}^{j} in a given set of finite, "distinguished" positive values, and ω small, there exist ϵ_{0} and C_{0}, such that if $\left\|\Lambda_{q_{0}}-\Lambda_{q_{1}}\right\|_{\star} \leq \epsilon_{0}$ then

$$
N=M, \quad q_{0}^{j}=q_{1}^{j} \quad \text { and } \quad d_{\mathcal{H}}\left(T_{j}^{0}, T_{j}^{1}\right) \leq C_{0}\left\|\Lambda_{q_{0}}-\Lambda_{q_{1}}\right\|_{\star}
$$

Beretta, F., De Hoop, Vessella (2015)

Derivative of the DN map with Respect to movements of vertices

$$
q_{0}=\sum_{j=1}^{N} q_{0}^{j} \chi_{T_{j}^{0}} \quad q_{t}=\sum_{j=1}^{N} q_{0}^{j} \chi_{T_{j}^{t}}
$$

$P_{j, i}^{0}\left(\right.$ vertex of $\left.T_{j}^{0}\right) \Rightarrow P_{j, i}^{0}+t V_{i, j}\left(\right.$ vertex of $\left.T_{j}^{t}\right)$

$$
\frac{d}{d t}<\Lambda_{q_{t}} f, g>_{\left.\right|_{t=0}}=\omega^{2} \sum_{j=1}^{N} q_{0}^{j} \int_{\partial T_{j}^{0}} u_{0} v_{0}\left(\Phi_{j}^{V} \cdot n_{j}\right) d \sigma
$$

Where u_{0} and v_{0} are solutions to

$$
\left\{\begin{array} { r l }
{ \Delta u _ { 0 } + \omega ^ { 2 } q _ { 0 } u _ { 0 } } & { = 0 \text { in } \Omega , } \\
{ u _ { 0 } } & { = f \text { on } \partial \Omega . }
\end{array} \quad \left\{\begin{array}{rl}
\Delta v_{0}+\omega^{2} q_{0} v_{0} & =0 \text { in } \Omega, \\
v_{0} & =g \text { on } \partial \Omega .
\end{array}\right.\right.
$$

Φ_{j}^{V} is an piecewise linear function such that $\Phi_{j}^{V}\left(P_{i, j}^{0}\right)=V_{i, j}$

CALDERÓN PROBLEM

Difficulty:

Solutions to the conductivity equation are less regular: the gradient jumps on the boundary of the inclusion and might become singular at vertices and edges of the partition.

Particular case:

$$
\gamma(x)=\chi_{\Omega \backslash D}(x)+k \chi_{D}(x), D \subset \Omega
$$

D smooth logarithmic stability Alessandrini-DI Cristo (2005)
If D is a polygon then we show that Lipschitz stability holds

Simplified 2-DIMENSIONAL GEOMETRY

- Let D^{0} be a non degenerate polygon with vertices $P_{j}^{0}, j=1, \ldots, N$ and

$$
\gamma_{0}(x)=1+(k-1) \chi_{D^{0}}(x)
$$

- Let D^{t} be the polygon with vertices

$$
P_{j}^{t}=P_{j}^{0}+t V_{j} \text { and }
$$

$$
\gamma_{t}(x)=1+(k-1) \chi_{D^{t}}(x)
$$

- For $f, g \in H^{1 / 2}(\partial \Omega)$ consider

$$
<F\left(\gamma_{t}\right) f, g>=<\Lambda_{\gamma_{t}} f, g>
$$

- Compute $\frac{d}{d t} F\left(\gamma_{t}\right)_{\mid t=0}=\frac{d}{d t} \Lambda_{\left.\gamma_{t}\right|_{t=0}}$

Boundary representation of the derivative

$$
\begin{gathered}
\left\{\begin{aligned}
& \operatorname{div}\left(\gamma_{0} \nabla u_{0}\right)=0 \text { in } \Omega, \\
& u_{0}=f \text { on } \partial \Omega . \\
& u_{0}^{e}=\left.u_{0}\right|_{\Omega \mid D^{0}}
\end{aligned} \text { and } v_{0}^{e}=\left.v_{0}\right|_{\Omega \mid D^{0}}\right. \\
v_{0}
\end{gathered}=g \text { on } \partial \Omega . ~ \begin{aligned}
& \operatorname{div}\left(\gamma_{0} \nabla v_{0}\right)=0 \text { in } \Omega, \\
&<\frac{d}{d t} F\left(\gamma_{t}\right) f, g>\left.\right|_{t=0}=(k-1) \int_{\partial D^{0}}\left(M_{0} \nabla u_{0}^{e} \cdot \nabla v_{0}^{e}\right)\left(\phi_{0}^{\vec{v}} \cdot n_{0}\right)
\end{aligned}
$$

with $M_{0}=\tau_{0} \otimes \tau_{0}+\frac{1}{k} n_{0} \otimes n_{0}$ where τ_{0} and n_{0} are the tangent and outer normal directions on ∂D^{0} and $\Phi_{0}^{\vec{V}}$ is a piecewise affine map such that

$$
\Phi_{0}^{\vec{V}}\left(P_{j}^{0}\right)=V_{j}, \text { for } j=1,2, \ldots, N
$$

Beretta-F.-Vessella (2017)

Singularity at vertices

$$
\operatorname{div}\left(\left(1+(k-1) \chi_{S_{1}}\right) \nabla u\right)=0 \text { in } B_{R}(0)
$$

Set

$$
u_{j}=u_{\mid s_{j}}
$$

There exist $\omega>1 / 2$ and C depending only on k, R and β such that

$$
\left|\nabla u_{j}(x, y)\right| \leq C\|u\|_{L^{2}\left(B_{R}(0)\right)}\left(x^{2}+y^{2}\right)^{\frac{\omega-1}{2}}
$$

Bellout, Friedman, Isakov (1992)

INCLUSION DETERMINATION

Let D^{1} and D^{2} be polygonal conductivity inclusions in $\Omega \subset \mathbb{R}^{2}$.

$$
\operatorname{dist}\left(D^{j}, \partial \Omega\right) \geq r_{0}, \text { length }\left(\operatorname{sides}\left(D^{j}\right)\right) \geq r_{0}, \text { internal angles } \geq \alpha_{0}
$$

Let $k \neq 1$ and define $\gamma_{j}(x)=\chi_{\Omega \backslash D^{j}}(x)+k \chi_{D^{j}}(x)$

LIPSCHITZ STABILITY

There exists ϵ_{0} and C such that

$$
\left\|\Lambda_{\gamma_{0}}-\Lambda_{\gamma_{1}}\right\|_{\star} \leq \epsilon_{0}
$$

then D^{1} and D^{2} have the same number of vertices $\left\{P_{j}^{1}\right\}_{1}^{N}$ and $\left\{P_{j}^{2}\right\}_{1}^{N}$ respectively and

$$
d\left(P_{j}^{1}, P_{j}^{2}\right) \leq C\left\|\Lambda_{\gamma_{0}}-\Lambda_{\gamma_{1}}\right\|_{\star} \forall j=1, \ldots, N
$$

Beretta-F.-Vessella (Submitted)

Main step in The proof

Bound from below is the quantitative counterpart of injectivity of the derivative.

$$
\frac{d}{d t} \Lambda_{\left.\gamma_{t}\right|_{t=0}}=0 \quad \Rightarrow \quad V=0
$$

that is:

$$
\int_{\partial D^{0}}\left(M_{0} \nabla u_{0}^{e} \cdot \nabla v_{0}^{e}\right)\left(\Phi_{0}^{\vec{V}} \cdot n_{0}\right)=0
$$

for every u_{0}, v_{0} such that $\operatorname{div}\left(\gamma_{0} \nabla u_{0}\right)=\operatorname{div}\left(\gamma_{0} \nabla v_{0}\right)=0$ in Ω. implies

$$
V=0 .
$$

Singular solutions

Choose $u_{0}(x)=G_{0}(x, y)$ and $v_{0}(x)=G_{0}(x, z)$, where G_{0} is the Green's function in a larger domain $\Omega_{0} \supset \Omega$
The function

$$
S(y, z)=\int_{\partial D^{0}}\left(M_{0} \nabla G_{0}^{e}(\cdot, y) \cdot \nabla G_{0}^{e}(\cdot, z)\right)\left(\Phi_{0}^{\vec{V}} \cdot n_{0}\right)
$$

- is harmonic with respect to both y and z in $\Omega_{0} \backslash D^{0}$,
- is zero for $y, z \in \Omega_{0} \backslash \Omega$,
- $M_{0} \nabla G_{0}^{e}(\cdot, y) \cdot \nabla G_{0}^{e}(\cdot, z)$ diverges to ∞ as y, z tends to ∂D_{0}
- $\Rightarrow \Phi_{0}^{\vec{V}} \cdot n_{0}=0 \Rightarrow V=0$.

SHAPE DERIVATIVE

Minimize with respect to all possible affine motions of the polygon D^{0}

$$
\mathcal{J}\left(D^{t}\right)=\frac{1}{2} \int_{\partial \Omega}\left(u_{t}-u_{\text {meas }}\right)^{2}
$$

for

$$
\left\{\begin{aligned}
\operatorname{div}\left(\gamma_{t} \nabla u_{t}\right)= & 0 \text { in } \Omega, \\
\gamma_{t} \frac{\partial u_{t}}{\partial \nu}=g \text { on } \partial \Omega, & \int_{\partial \Omega} u_{t}=0 .
\end{aligned}\right.
$$

Theorem

$$
\lim _{t \rightarrow 0} \frac{\mathcal{J}\left(D^{t}\right)-\mathcal{J}\left(D^{0}\right)}{t}=(k-1) \int_{\partial D^{0}}\left(M_{0} \nabla u_{0}^{e} \cdot \nabla w_{0}^{e}\right)\left(\Phi_{0}^{\vec{V}} \cdot n_{0}\right) d \sigma
$$

where w_{0} is the solution to

$$
\left\{\begin{aligned}
\operatorname{div}\left(\gamma_{0} \nabla w_{0}\right) & =0 \text { in } \Omega \\
\gamma_{0} \frac{\partial w_{0}}{\partial \nu} & =u_{0}-u_{\text {meas }} \text { on } \partial \Omega, \int_{\partial \Omega} w_{0}=0 .
\end{aligned}\right.
$$

Distributed representation of the derivative

$$
\begin{gathered}
\gamma_{0}=1+\sum_{j=1}^{M}\left(\gamma^{j}-1\right) \chi_{D^{j}} \\
\Phi_{t}(x)=x+t V(x), \quad D_{t}^{j}=\Phi_{t}\left(D^{j}\right)
\end{gathered}
$$

$$
\gamma_{t}=1+\sum_{j=1}^{M}\left(\gamma^{j}-1\right) \chi_{D_{t}^{j}} \quad F(t)=<\Lambda_{\gamma_{t}} f, g>
$$

$$
\frac{d}{d t}\left\langle\Lambda_{q_{t}} f, g\right\rangle_{\mid t=0}=-\int_{\Omega} \gamma_{0} \mathcal{A} \nabla u_{0} \nabla v_{0} d x
$$

where

$$
\mathcal{A}=\operatorname{div}(V) I-\left(\nabla V+\nabla^{\top} V\right)
$$

and $\operatorname{div}\left(\gamma_{0} \nabla u_{0}\right)=\operatorname{div}\left(\gamma_{0} \nabla v_{0}\right)=0$ in $\Omega, u_{0}=f$ and $v_{0}=g$ on $\partial \Omega$.

Beretta, Micheletti, Perotto, Santacesaria (2018)

Singularity at vertices with 3 REGUlAR SECTORS

$$
\operatorname{div}(\gamma \nabla u)=0 \text { in } B_{R}(0)
$$

with

$$
\bar{\beta} \leq \beta_{j} \leq \pi-\bar{\beta} \text { and } \bar{\gamma} \leq \gamma_{j} \leq \bar{\gamma}^{-1} \text { for } j=1,2,3
$$

Set

$$
u_{j}=u_{\left.\right|_{j}}
$$

There exist $\omega>1 / 2$ and C depending only on $\bar{\gamma}, R$ and $\bar{\beta}$ such that

$$
\left|\nabla u_{j}(x, y)\right| \leq C\|u\|_{L^{2}\left(B_{R}(0)\right)}\left(x^{2}+y^{2}\right)^{\frac{\omega-1}{2}}
$$

Non integrable singularities

3 sectors with $\beta_{3}>\pi$

4 regular sectors

Admissible partitions

Let us consider a polygonal inclusion

$$
\mathcal{P}=\cup_{i=1}^{M} \bar{D}^{i},
$$

where D^{i} is an open polygon and $d(\mathcal{P}, \partial \Omega) \geq d_{0}$. We assume that:

- each vertex does not belong to more the three sides of polygons;
- the length of each side is bigger than d_{0}
- each polygon D^{i} contains a disk of radius greater than r_{1}
- denoting by $\beta_{j}^{k}, k=1, \ldots, k_{j} \leq 3$, the angles in the vertex Q_{j}, we assume there exists $\bar{\beta} \in(0, \pi)$ such that

$$
\begin{aligned}
& \text { if } k_{j}=2, \quad 0<\bar{\beta}<\beta_{j}^{k}<2 \pi-\bar{\beta} \text { for } k=1,2 \\
& \text { if } k_{j}=3, \quad 0<\bar{\beta}<\beta_{j}^{k}<\pi-\bar{\beta} \text { for } k=1,2,3 .
\end{aligned}
$$

Admissible configurations

Derivative

$$
\frac{d}{d t}<\Lambda_{\gamma_{t}} f, g>_{\left.\right|_{t=0}}=\sum_{k=1}^{M_{1}} \int_{S_{k}}\left(\gamma_{k}^{-}-\gamma_{k}^{+}\right) M_{k} \nabla u^{+} \nabla v^{+}\left(\Phi_{k}^{V} \cdot n_{k}\right) d \sigma
$$

where $M_{k}=\tau_{k} \otimes \tau_{k}+\frac{\gamma_{k}^{+}}{\gamma_{k}^{-}} n_{k} \otimes n_{k}$ and $\operatorname{div}(\gamma \nabla u)=\operatorname{div}(\gamma \nabla v)=0$ in Ω, $u=f$ and $v=g$ on $\partial \Omega$.

Work in progress

- Stable determination of a general nondegenerate partition in 2 dimensions;
- Stable determination of a polyhedral inclusion in 3 dimensions;
- Elastic inclusions.

