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Introduction

• Throughout this talk, let X and Y be two real Hilbert spaces and L : X → Y be a bounded,
linear operator.

• We consider the inverse problem

Lx = y

to determine for a given approximation y ∈ B̄δ(y
∗) of the exact data y∗ ∈ Y a good approxima-

tion of the minimum norm solution x∗ ∈ L−1({y∗}) characterised by

‖x∗‖ = inf{‖x‖ | Lx = y∗}.

• A classical way to solve this is by Tikhonov regularisation where regularised solutions Xα(y),
y ∈ Y , α > 0, are defined via

Ty,α(Xα(y)) = inf
x∈X
Ty,α(x),

with the functionals

Ty,α : X → [0,∞), Ty,α(x) = ‖Lx− y‖2 + α‖x‖2.

• These regularised solutions are well-defined and we can write Xα(y) explicitly in the form

Xα(y) = (L∗L+ α)−1L∗y.
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Regularisation by Bounded Approximations of the Inverse

• In the following, we want to focus on regularisation methods of the form

Xα(y) = Rα(L∗L)L∗y

for some family (Rα)α>0 of continuous functions Rα : [0,∞)→ [0,∞).

• Hereby,Rα(L∗L) should be considered as a bounded approximation of the inverse of L∗L|N (L)⊥ ,
which converges to it for α→ 0.

• For this kind of methods, we want to study how fast the regularised solution converges to the
exact solution as the error in the data disappears.

• If we choose the regularisation parameter α optimal, this means to estimate the best worst case
error

sup
y∈B̄δ(y∗)

inf
α>0
‖Xα(y)− x∗‖2.

• As an intermediate step, it is helpful to consider the regularisation error which is introduced by
the regularisation for exact data y∗:

‖Xα(y∗)− x∗‖2.

H. W. Engl, M. Hanke, and A. Neubauer
Regularization of Inverse Problems
Kluwer Academic Publishers, 1996

A. Neubauer
On Converse and Saturation Results for Tikhonov Regularization of
Linear Ill-Posed Problems
SIAM Journal on Numerical Analysis 34.2. 1997 3



Example: Regularisation Error for Tikhonov Regularisation

• Tikhonov regularisation corresponds to the choice

Rα(σ) =
1

σ + α
.

• Consider as an example the operator

L : `2 → `2, L(xk)
∞
k=1 = (λkxk)

∞
k=1,

with a monotonically decreasing sequence λk ↓ 0.
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• Then, the singular values of L are σk = λ2
k and

‖Xα(y∗)−x∗‖2 = ‖Rα(L∗L)L∗y∗−x∗‖2 =
∥∥(Rα(L∗L)L∗L− 1

)
x∗
∥∥2

=
∞∑
k=1

[
αx∗k
σk + α

]2

.

• For those k where σk � α, we get α
σk+α

= O(α), that is, as the regularisation parameter α
vanishes, the components Xα,k(y

∗) belonging to large singular values converge linearly to those
of the exact solution.

• For those k with σk � α, we have on the other hand α
σk+α

= O(1). Therefore, the error from
the components corresponding to the small singular values behaves as the values x∗k.
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Example: Regularisation Error for Tikhonov Regularisation and Spectral Tail

We thus define the spectral tail

e : (0,∞)→ R, e(σ) =
∑

{k|σk≤σ}
(x∗k)

2.

Proposition: Regularisation Error for Tikhonov Regularisation

Let µ < 2. Then, there exists a constant C1 > 0 with

e(σ) ≤ C1σ
µ for all σ > 0 [spectral tail]

if and only if there exists a constant C2 > 0 with

‖Xα(y∗)− x∗‖2 ≤ C2α
µ for all α > 0 [regularisation error].

That the spectral tail estimate follows from the convergence rate part can be seen from

α

σk + α
≥ 1

2
for all σk ≤ α,

which implies

1

4
e(α) ≤

∑
{k|σk≤α}

α2

(σk + α)2
x∗k

2 +
∑

{k|σk>α}

α2

(σk + α)2
x∗k

2 = ‖Xα(y∗)− x∗‖2.
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Example: Error for Noisy Data for Tikhonov Regularisation

• To get from this an expression for the best worst case error, we use the triangular inequality to
estimate

‖Xα(y)− x∗‖2 ≤
(
‖Xα(y)−Xα(y∗)‖+ ‖Xα(y∗)− x∗‖

)2
.

• The first term can be bounded by a multiple of ‖y − y∗‖2 because of the boundedness of the
operator Rα(L∗L)L∗:

‖Xα(y)−Xα(y∗)‖2 = ‖Rα(L∗L)L∗(y − y∗)‖2 =
〈
y − y∗, R2

α(LL∗)LL∗(y − y∗)
〉
.

With

σR2
α(σ) =

σ

(σ + α)2
≤ 1

4α
for all σ ≥ 0,

we explicitly get

‖Xα(y)−Xα(y∗)‖2 ≤ 1

4

δ2

α
for all y ∈ B̄δ(y

∗).

• The second term is the regularisation error which we estimated before.
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Example: Best Worst Case Error for Tikhonov Regularisation

• Thus, the best worst case error can be estimated by

sup
y∈B̄δ(y∗)

inf
α>0
‖Xα(y)− x∗‖2 ≤ inf

α>0

(
1

2

√
δ2

α
+ ‖Xα(y∗)− x∗‖

)2

.

• An order optimal choice for the parameter α in this infimum can be achieved by balancing both
terms δ2

α
and ‖Xα(y∗)− x∗‖2.

0.1 0.2 0.3 0.4 0.5
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α

α 7→ ‖Xα(y
∗)− x∗‖

α 7→
√

δ2

α

α 7→
√

δ2

α + ‖Xα(y
∗)− x∗‖

The error ‖Xα(y)− x∗‖ is estimated by the sum of the monotonically increasing regularisation error and the

monotonically decreasing term
√

δ2

α from the noise.
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Noise-free to Noisy Transform and the Best Worst Case Error for Tikhonov Regularisation

This leads us to choose α such that δ2 = α‖Xα(y∗)− x∗‖2.

Definition: Noise-free to Noisy Transform

Let ϕ : (0,∞) → [0,∞) be a monotonically increasing function which is not everywhere zero.
We define the noise-free to noisy transform

Φ[ϕ] : (0,∞)→ (0,∞), Φ[ϕ](δ) =
δ2

ϕ̂−1(δ)
,

where

ϕ̂(α) =
√
αϕ(α) and ϕ̂−1(δ) = inf{α > 0 | ϕ̂(α) ≥ δ}.

• We remark that the definition is monotone in the sense that ϕ ≤ ψ implies Φ[ϕ] ≤ Φ[ψ].

• If we have that

‖Xα(y∗)− x∗‖2 ≤ ϕ(α) for all α > 0

for some non-trivial, monotonically increasing function ϕ : (0,∞) → [0,∞), then we can thus
estimate the best worst case error by

sup
y∈B̄δ(y∗)

inf
α>0
‖Xα(y)− x∗‖2 ≤ 4Φ

[
α 7→ ‖Xα(y∗)− x∗‖2

]
(δ) ≤ Φ[ϕ](δ) for all δ > 0.
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Generalisation to Monotonic Regularisation Methods

Definition: Monotonic Regularisation Method

A family of continuous functions Rα : [0,∞)→ [0,∞) is a monotonic regularisation method if

(i) we have Rα(σ) ≤ 1
σ

[no overshooting];

(ii) the error function

R̃α : (0,∞)→ [0, 1], R̃α(σ) = 1− σRα(σ),

is monotonically decreasing [the error is smaller for larger singular values];

(iii) the function

(0,∞)→ [0, 1], α 7→ R̃α(σ)

is for every σ > 0 continuous and monotonically increasing [the error decreases as α ↓ 0];

(iv) there exist constants β, β̃ ∈ (0, 1) such that Rα(σ) ≤ β√
ασ

and 1 − β ≤ R̃α(α) < β̃
[normalisation of the regularisation parameter α].

The error function R̃α is hereby introduced such that

x∗ −Xα(y∗) = (1−Rα(L∗L)L∗L)x∗ = R̃α(L∗L)x∗.
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Saturation of Convergence Rates

For this type of regularisation methods, we can characterise the convergence rates precisely in terms of
the spectral tail

e : (0,∞)→ [0,∞), e(σ) = ‖E(0,σ]x
∗‖2

of the exact solution x∗. Here, A 7→ EA denotes the spectral measure of the operator L∗L.

Since the convergence rates cannot exceed the rate at which the components of the large singular values
are restored to its exact values, we only consider convergence functions which do not decay too fast.

Definition: Compatibility of Convergence Rates

A monotonically increasing function ϕ : (0,∞)→ (0,∞) is called compatible with the regular-
isation method (Rα)α>0 if there exists for arbitrary Λ > 0 a monotonically decreasing, integrable
function F : [1,∞)→ R such that

R̃2
α(σ) ≤ F

(
ϕ(σ)

ϕ(α)

)
for all 0 < α ≤ σ ≤ Λ.

For the Tikhonov example, we may consider convergence rates of the form ϕ(α) = αµ. Then, with the
error function R̃α(σ) = α

σ+α
, this condition reads

α2

(σ + α)2
≤ F

(
(σ
α

)µ
)

for all 0 < α ≤ σ ≤ Λ, that is,
1

(z
1
µ + 1)2

≤ F (z) for all z ∈ [1,∞),

which is only possible for µ < 2 (with F (z) = z−
2
µ , for example).
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Optimal Convergence Rates

Theorem: Characterisation of Convergence Rates

Let ϕ : (0,∞) → (0,∞) be a monotonically increasing function which is compatible with
(Rα)α>0 and there exists a continuous and monotonically increasing function G : (0,∞) →
(0,∞) with ϕ(γα) ≤ G(γ)ϕ(α) for all γ ≥ 1, α > 0. Then, the following statements are
equivalent:

(i) There exists a constant C1 > 0 with

‖E(0,σ]x
∗‖2 ≤ C1ϕ(σ) for all σ > 0 [spectral tail].

(ii) There exists a constant C2 > 0 with

‖Xα(y∗)− x∗‖2 ≤ C2ϕ(α) for all α > 0 [regularisation error].

(iii) There exists a constant C3 > 0 with

sup
y∈B̄δ(y∗)

inf
α>0
‖Xα(y)− x∗‖2 ≤ C3Φ[ϕ](δ) for all δ > 0 [best worst case error].

A. Neubauer
On Converse and Saturation Results for Tikhonov Regularization of
Linear Ill-Posed Problems
SIAM Journal on Numerical Analysis 34.2. 1997

R. Boţ, G. Dong, P. Elbau, and O. Scherzer
Convergence Rates of First and Higher Order Dynamics for Solving
Linear Ill-posed Problems
arXiv: 1812.09343, 2018 11

http://arxiv.org/abs/1812.09343


Choice of Convergence Rate Functions

• The most common choices for the convergence rate function ϕ are the Hölder rates φµ,

φµ(α) = αµ, µ > 0,

for which we have with φ̂µ(α) =
√
αφµ(α) = α

1+µ
2 that

Φ[φµ](δ) =
δ2

δ
2

1+µ

= δ
2µ

1+µ .

• But also, for example, logarithmic rates ψµ,ν ,

ψµ,ν(α) =

{
|log(α)|−µ if α < e−

µ
ν ,

( ν
µ
)µ if α ≥ e−

µ
ν ,

with µ > 0, ν > 0,

are a valid choice for ϕ.

Because of the estimate

ψµ,ν(σ)

ψµ,ν(α)
≤
(σ
α

)ν
for all 0 < α ≤ σ,

the compatibility condition for ψµ,ν can be easily derived from the ones for φµ.

And for its noise-free to noisy transform, we get with some constants C, c > 0:

cψµ,ν(δ) ≤ Φ[ψµ,ν ](δ) ≤ Cψµ,ν(δ) for all δ > 0.
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The Standard Source Condition

• One of the first conditions on the source x∗ to obtain convergence rates was the range condition

x∗ ∈ R(ϕ
1
2 (L∗L)).

• This condition implies (by plugging in x∗ = ϕ
1
2 (L∗L)ξ for some ξ ∈ X ) that

‖E(0,σ]x
∗‖2 ≤ C1ϕ(σ) for all σ > 0

for some constant C1 > 0.

• Thus, this standard source condition is sufficient to guarantee with some constants C2 > 0 and
C3 > 0 the convergence rates

‖Xα(y∗)− x∗‖2 ≤ C2ϕ(α) for all α > 0

and

sup
y∈B̄δ(y∗)

inf
α>0
‖Xα(y)− x∗‖2 ≤ C3Φ[ϕ](δ) for all δ > 0.

• However, the condition is not optimal in the sense that the method can converge at these rates
without x∗ fulfilling the standard source condition.

C. W. Groetsch
The Theory of Tikhonov Regularization for Fredholm Equations of
the First Kind
Pitman Publishing, 1984

A. Neubauer
On Converse and Saturation Results for Tikhonov Regularization of
Linear Ill-Posed Problems
SIAM Journal on Numerical Analysis 34.2. 1997 13



Variational Source Conditions

A way to optimal source conditions was found in variational inequalities, originally introduced in the
general setting of non-linear operators on Banach spaces. For linear operators, we consider here the
homogeneous version.

Theorem: Variational Inequalities and Spectral Tail

Let η ∈ (0, 1) and ϕ : (0,∞) → (0,∞) be a monotonically increasing function.Then, there
exists a constant C1 > 0 with

‖E(0,σ]x
∗‖2 ≤ C1ϕ(σ) for all σ > 0 [spectral tail]

if and only if there exists a constant Cη with

〈x∗, x〉 ≤ Cη‖ϕ
1
2η (L∗L)x‖η ‖x‖1−η for all x ∈ X [variational source condition].

That the variational inequality is sufficient, is easy to see by evaluating it at x = E(0,σ]x
∗.

B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer
A convergence rates result for Tikhonov regularization in Banach
spaces with non-smooth operators
Inverse Problems 23.3. 2007

T. Hein and B. Hofmann
Approximate source conditions for nonlinear ill-posed problems –
chances and limitations
Inverse Problems 25, 035003, 2009

R. Andreev, P. Elbau, M. V. de Hoop, L. Qiu, and O. Scherzer
Generalized Convergence Rates Results for Linear Inverse Problems
in Hilbert Spaces
Numerical Functional Analysis and Optimization 36.5. 2015

V. Albani, P. Elbau, M. V. de Hoop, and O. Scherzer
Optimal Convergence Rates Results for Linear Inverse Problems in
Hilbert Spaces
Numerical Functional Analysis and Optimization 37.5. 2016 14



Proof of the Necessity

• We estimate the left hand side by choosing a Λ > 0 so that

1

2
|〈x∗, x〉| ≤

∣∣〈E(0,Λ]x
∗, x
〉∣∣ and

1

2
|〈x∗, x〉| ≤

∣∣〈E[Λ,∞)x
∗, x
〉∣∣ .

• The first term is directly estimated by∣∣〈E(0,Λ]x
∗, x
〉∣∣ ≤ ‖E(0,Λ]x

∗‖ ‖x‖ ≤ C1‖x‖ϕ
1
2 (Λ).

• For the second term, we consider the bounded, invertible operator T = ϕ
1
2η (L∗L)|R(E[Λ,∞)).

Then, we have with some C > 0 that

∣∣〈E[Λ,∞)x
∗, x
〉∣∣ =

∣∣〈T−1E[Λ,∞)x
∗, TE[Λ,∞)x

〉∣∣ ≤ √C ‖ϕ 1
2η (L∗L)x‖
ϕ

1−η
2η (Λ)

,

since we have a C > 0 so that

‖T−1E[Λ,∞)x
∗‖2 ≤ lim

ε↓0

∫ ‖L‖2
Λ−ε

1

ϕ
1
η (σ)

de(σ) ≤ C
1

ϕ
1
η
−1(Λ)

.

• Thus, with some constant Cη > 0 (independent of Λ)

1

2
|〈x∗, x〉| ≤

∣∣〈E(0,Λ]x
∗, x
〉∣∣1−η ∣∣〈E[Λ,∞)x

∗, x
〉∣∣η ≤ Cη‖ϕ

1
2η (L∗L)x‖η‖x‖1−η.

15



Approximative Source Conditions

Another equivalent source condition can be obtained by considering how fast the distance of the solu-
tion x∗ to the set {ψ(L∗L)ξ | ξ ∈ B̄ρ(0)} converges to zero as ρ→∞.

Theorem: Approximative Source Condition and Spectral Tail

Let η ∈ (0, 1) and ϕ : (0,∞) → (0,∞) be a monotonically increasing function which is
compatible with (Rα)α>0. Then, there exists a constant C1 > 0 with

‖E(0,σ]x
∗‖2 ≤ C1ϕ(σ) for all σ > 0 [spectral tail]

if and only if there exists a constant Cη with

inf
ξ∈B̄ρ(0)

‖x∗ − ϕ
1
2η (L∗L)ξ‖ ≤ Cηρ

− η
1−η for all ρ > 0 [approximative source condition].

That the spectral tail implies the approximative source condition can be directly checked by inserting
ξ = T−1E(α,∞)x

∗, where T = ϕ
1
2η (L∗L)|R(E(α,∞)). Then, we have

‖x∗−ϕ
1
2η (L∗L)ξ‖2 = ‖E(0,α]x

∗‖2 ≤ ϕ(α) and ‖ξ‖2 ≤
∫ ‖L‖2
α

1

ϕ
1
η (σ)

d‖E(0,σ]x∗‖2 ≤ Cϕ1− 1
η (α).

B. Hofmann and P. Mathé
Analysis of Profile Functions for General Linear Regularization
Methods
SIAM Journal on Numerical Analysis 45.3. 2007

J. Flemming, B. Hofmann, and P. Mathé
Sharp converse results for the regularization error using distance
functions
Inverse Problems 27, 025006, 2011 16



Iterative Regularisation Methods and their Continuous Limits

• A classical example of an interative regularisation algorithm is Landweber’s method, which can
be seen as a gradient descent method for minimising the convex energy Sy(x) = 1

2
‖Lx− y‖2:

x(k+1)(y) = x(k)(y)− τ∇Sy(x(k)(y)) = x(k)(y)− τL∗(Lx(k)(y)− y), k ∈ N0,

with appropriately chosen τ ∈ (0, 2
‖L‖2 ) and x(0)(y) = 0.

• If we stop the iteration at a certain iteration k, then we may consider x(k)(y) as a regularised
solution for the data y, where k takes the role of the regularisation parameter.

• This can be interpreted as an explicit Euler discretisation of the differential equation

∂tξ(t; y) +∇Sy(ξ(t; y)) = 0,

which with the initial condition ξ(0; y) = 0 is known as Showalter’s method.

• Then, ξ(t; y) is a regularised solution for the data y and t takes the role of the regularisation
parameter.

D. W. Showalter
Representation and Computation of the Pseudoinverse
Proceedings of the American Mathematical Society 18. 1967

D. W. Showalter and A. Ben-Israel
Representation and Computation of the Generalized Inverse of a
Bounded Linear Operator Between Hilbert Spaces
Atti della Accademia Nazionale dei Lincei. Rendiconti della Classe
di Scienze Fisiche, Matematiche e Naturali 48. 1970 17



Nesterov’s Algorithm

• An accelerated version of this first order method was suggested by Nesterov:

x(k+1)(y) = x̃(k)(y)− τ̂ 2∇Sy(x̃(k)(y)),

x̃(k)(y) = x(k)(y) +
k − 1

k + 2
(x(k)(y)− x(k−1)(y)).

• This has the increased rate of

Sy(x(k)(y))−min
x∈X
Sy(x) = O( 1

k2 )

in the image domain.

• Writing x(k)(y) = ξ(kτ̂ ; y) and doing a Taylor approximation

x(k+1)(y)− x(k)(y) = τ̂ ∂tξ(kτ̂ ; y) +
τ̂ 2

2
∂ttξ(kτ̂ ; y) + o(τ̂ 2),

we find by setting t = kτ̂ and plugging this in the algorithm that

τ̂ ∂tξ(kτ̂ ; y) +
τ̂ 2

2
∂ttξ(kτ̂ ; y) =

(
1− 3τ̂

t+ 2τ̂

)(
τ̂ ∂tξ(kτ̂ ; y)− τ̂ 2

2
∂ttξ(kτ̂ ; y)

)
− τ̂ 2∇Sy

(
ξ(kτ̂ ; y) + O(τ̂)

)
+ o(τ̂ 2).

Y. Nesterov
A method of solving a convex programming problem with conver-
gence rateO( 1

k2
)

Soviet Mathematics. Doklady 27.2. 1983 18



Vanishing Viscosity Flow

Taking the formal limit τ̂ → 0 of this equation

τ̂ ∂tξ(kτ̂ ; y) +
τ̂ 2

2
∂ttξ(kτ̂ ; y) =

(
1− 3τ̂

t+ 2τ̂

)(
τ̂ ∂tξ(kτ̂ ; y)− τ̂ 2

2
∂ttξ(kτ̂ ; y)

)
− τ̂ 2∇Sy

(
ξ(kτ̂ ; y) + O(τ̂)

)
+ o(τ̂ 2),

the terms of order τ̂ 2 give us the vanishing viscosity flow equation

∂ttξ(t; y) +
3

t
∂tξ(t; y) +∇Sy(ξ(t; y)) = 0.

Theorem: Continuous Version of Nesterov’s Algorithm

Let ξ be the solution of this differential equation with ξ(0; y) = x(0)(y) and ∂tξ(0; y) = 0, and
x(k)(y) be the iterates of Nesterov’s algorithm.
Then, we have for arbitrary T > 0 that

lim
τ̂→0

max
k≤T

τ̂

‖x(k)(y)− ξ(kτ̂ ; y)‖ = 0.

W. Su, S. Boyd, and E. J. Candès
A Differential Equation for Modeling Nesterov’s Accelerated Gradi-
ent Method: Theory and Insights
Journal of Machine Learning Research 17.153. 2016 19



Heavy Ball Method

• A physical interpretation of the vanishing viscosity flow

∂ttξ(t; y) +
b

t
∂tξ(t; y) +∇Sy(ξ(t; y)) = 0, t > 0,

ξ(0; y) = 0,

for arbitrary coefficient b > 0 in the case X = R3 is that of a particle moving along the curve
t 7→ ξ(t; y) in the potential field Sy suffering from the viscous resistance b

t
∂tξ(t; y), which is

linear in the velocity and tends to zero as the time t increases.

• An interesting comparision can be the corresponding flow for a non-vanishing resistance term,
that is, considering the heavy ball equation

∂ttξ(t; y) + b∂tξ(t; y) +∇Sy(ξ(t; y)) = 0, t > 0,

∂tξ(0; y) = 0,

ξ(0; y) = 0

for b > 0.

• In contrast to the vanishing viscosity equation, where ∂tξ(0; y) = 0 is enforced by the singularity
at t = 0, we have to specify two initial conditions for the heavy ball equation.

Y. Zhang and B. Hofmann
On the second-order asymptotical regularization of linear ill-posed
inverse problems
Applicable Analysis: An International Journal. 2018 20



Writing Iterative Methods in the Form of Regularisation Methods

• We thus consider a differential equation of the form

∂Nt ξ(t; y) +
N∑
k=1

ak(t)∂
k
t ξ(t; y) + L∗(Lξ(t; y)− y) = 0 for all t > 0,

∂kt ξ(0; y) = 0 for all k = 0, . . . , N − 1.

• To find the solution, we write

ξ(t; y) =

∫
(0,‖L‖2]

ρ(t;σ) dEσL
∗y.

• Then, the equation reduces to the initial value problem

∂Nt ρ(t;σ) +
N∑
k=1

ak(t)∂
k
t ρ(t;σ) + σρ(t;σ) = 1 for all σ ≥ 0, t > 0,

∂kt ρ(0;σ) = 0 for all σ ≥ 0, k = 0, . . . , N − 1.

• As before for the regularisation methods, let us introduce the error function

ρ̃(t;σ) = 1− σρ(t;σ) for all σ ≥ 0, t > 0.

• The function ρ̃ solves the homogeneous equation with the initial conditions

ρ̃(0;σ) = 1 and ∂kt ρ̃(0;σ) = 0 for k = 1, . . . , N − 1 for all σ ≥ 0.
21



Solutions for Showalter’s, Heavy Ball, and Vanishing Viscosity Methods

Solving the corresponding equations, we have

• for Showalter’s method the equation ∂tρ̃(t;σ) + σρ̃(t;σ) = 0 with the solution

ρ̃(t;σ) = e−σt;

• for the heavy ball method the equation ∂ttρ̃(t;σ) + b∂tρ̃(t;σ) + σρ̃(t;σ) = 0 with the solution

ρ̃(t;σ) =


e−

bt
2

(
cosh

(
β−(σ) bt

2

)
+ 1

β−(σ)
sinh

(
β−(σ) bt

2

))
if σ ∈ (0, b

2

4
),

e−
bt
2

(
cos
(
β+(σ) bt

2

)
+ 1

β+(σ)
sin
(
β+(σ) bt

2

))
if σ ∈ ( b

2

4
,∞),

e−
bt
2 (1 + bt

2
) if σ = b2

4
,

where

β−(σ) =

√
1− 4σ

b2
and β+(σ) =

√
4σ

b2
− 1;

• and for the vanishing viscosity method the equation ∂ttρ̃(t;σ) + b
t
∂tρ̃(t;σ) + σρ̃(t;σ) = 0 with

the solution

ρ̃(t;σ) = u(t
√
σ) with u(τ) =

(
2

τ

) 1
2

(b−1)

Γ(1
2
(b+ 1))J 1

2
(b−1)(τ).
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Showalter’s Method

If we thus identify

Rα(σ) = ρ( 1
α

;σ) =
1− e−

σ
α

σ
, and correspondingly, R̃α(σ) = ρ̃( 1

α
;σ) = e−

σ
α ,

we find that (Rα)α>0 fulfils all requirements of a monotonic regularisation method.

Corollary: Convergence Rates of Showalter’s Method

Let η ∈ (0, 1), µ > 0. Then, the following statements are equivalent (Xα(y) = Rα(L∗L)L∗y)

(i) There exists a constant C1 > 0 with

‖ξ(t; y∗)− x∗‖2 = ‖X 1
t
(y∗)− x∗‖2 ≤ C1t

−µ for all t > 0.

(ii) There exists a constant C2 > 0 with

inf
t>0
‖ξ(t; y)− x∗‖2 = inf

t>0
‖X 1

t
(y)− x∗‖2 ≤ C2‖y − y∗‖

2µ
1+µ for all y ∈ Y .

(iii) There exists a constant Cη > 0 with 〈x∗, x〉 ≤ Cη‖(L∗L)
µ
2ηx‖η ‖x‖1−η for all x ∈ X .

H. W. Engl, M. Hanke, and A. Neubauer
Regularization of Inverse Problems
Kluwer Academic Publishers, 1996
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Heavy Ball and Vanishing Viscosity Methods as Regularisation Method

• The solution for the heavy ball method has the following form

5 10

−0.5

0.5

1

t

t 7→ ρ̃(t; 0.5)

t 7→ ρ̃(t; 1)

t 7→ ρ̃(t; 5)

50 100

−0.5

0.5

1

σ

σ 7→ ρ̃(0.5;σ)

σ 7→ ρ̃(1;σ)

σ 7→ ρ̃(1.5;σ)

• Similarly, the function u, and thus ρ̃(·;σ) and ρ̃(t; ·), for the vanishing viscosity flow are oscil-
lating functions.

10 20 30

0.5

1

τ

• Therefore, these methods do not fit our definition of a monotonic regularisation method.
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Non-Monotonic Regularisation Methods

We thus generalise our convergence rates results to regularisation methods with non-monotonic error
functions.

Definition: Non-Monotonic Regularisation Method

A family of continuous functions rα : [0,∞) → [0,∞) is a non-monotonic regularisation
method if

(i) we have rα(σ) ≤ 2
σ

[overshooting allowed but not more than 100% error];

(ii) the error function

r̃α : (0,∞)→ [−1, 1], r̃α(σ) = 1− σrα(σ),

is non-negative and monotonically decreasing on (0, α) [monotonic for small singular
values at least up to the regularisation parameter];

(iii) there exists a monotonic regularisation method (Rα)α>0 with

|r̃α| ≤ R̃α

[there exists a monotonic envelope for the error];

(iv) there exists a constant β ∈ (0, 1) such that rα(σ) ≤ β√
ασ

[normalisation of the regularisa-
tion parameter].
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Convergence Rates of Non-Monotonic Regularisation Methods

Let (rα)α>0 be a regularisation method and (Rα)α>0 be a monotonic regularisation method with |r̃α| ≤
R̃α. We denote the regularised solution by xα(y) = rα(L∗L)L∗y.

Theorem: Convergence Rates of Non-Monotonic Regularisation Methods

Let ϕ : (0,∞) → (0,∞) be a monotonically increasing, G-homogeneous function which is
compatible with (Rα)α>0. Then, the following statements are equivalent:

(i) There exists a constant C1 > 0 with

‖E(0,σ]x
∗‖2 ≤ C1ϕ(σ) for all σ > 0 [spectral tail].

(ii) There exists a constant C2 > 0 with

‖xα(y∗)− x∗‖2 ≤ C2ϕ(α) for all α > 0 [regularisation error].

(iii) There exists a constant C3 > 0 with

sup
y∈B̄δ(y∗)

inf
α>0
‖xα(y)− x∗‖2 ≤ C3Φ[ϕ](δ) for all δ > 0 [best worst case error].

R. Boţ, G. Dong, P. Elbau, and O. Scherzer
Convergence Rates of First and Higher Order Dynamics for Solving Linear Ill-posed Problems
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Proof for Exact Data

• We write e(σ) = ‖E(0,σ]x
∗‖2.

• Since r̃α is monotonically decreasing for small singular values, we have that

r̃2
α(α)e(α) ≤

∫ α

0

r̃2
α(σ) de(σ) ≤ ‖r̃α(L∗L)x∗‖2 = ‖x∗ − xα(y∗)‖2 ≤ ‖x∗ −Xα(y∗)‖2.

• On the other hand, we have with 0 ≤ R̃α ≤ 1 that∫ α

0

R̃2
α(σ) de(σ) ≤

∫ α

0

de(σ) = e(α)

and thanks to the compatibility of ϕ to (Rα):∫ ‖L‖2
α

R̃2
α(σ) de(σ) ≤

∫ ‖L‖2
α

F

(
ϕ(σ)

ϕ(α)

)
de(σ) ≤ ϕ(α)(1 + ‖F‖L1).

• Putting this together, we find

C1e(α) ≤ ‖x∗ − xα(y∗)‖2 ≤ ‖x∗ −Xα(y∗)‖2 ≤ C2e(α) + C3ϕ(α).

• This shows that for exact data, the convergence rates of the non-monotonic and its monotonic
envelope as well as the spectral tail are equivalent to each other.
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Proof for Noisy Data

• For the upper bound, we use (exactly as in the introductory example) the boundedness of the
operator rα:

‖Xα(y)−Xα(y∗)‖2 ≤ ‖xα(y)− xα(y∗)‖2 =
〈
y − y∗, r2

α(LL∗)LL∗(y − y∗)
〉

≤ δ2 sup
σ
σr2

α(σ) ≤ β
δ2

α
,

which gives us from convergence rates ϕ for the exact data that

sup
y∈B̄δ(y∗)

inf
α>0
‖Xα(y)− x∗‖2 ≤ Φ[ϕ](δ) and sup

y∈B̄δ(y∗)
inf
α>0
‖xα(y)− x∗‖2 ≤ Φ[ϕ](δ).

• For the lower bound, we write

‖xα(y)− x∗‖2 = ‖xα(y∗)− x∗‖2 +
〈
y − y∗, r2

α(LL∗)LL∗(y − y∗)
〉

+ 2 〈rα(LL∗)(y − y∗), rα(LL∗)LL∗y∗ − y∗〉 .

• We pick the special value αδ = ê−1(δ), ê(α) =
√
αe(α), and assume that αδ ∈ σ(L∗L) \ {0}.

(We can later do an interpolation argument to get the result also for values δ without this prop-
erty.)
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Proof for Noisy Data

• Then, for the interval [aδ, 2αδ] with R̃α(aδ) < β̃, we pick an element

y = y∗ + δ
zα,δ
‖zα,δ‖

with zα,δ ∈ R(F[aδ,2αδ]),

where F is the spectral measure of LL∗, in such a way that the last term in the previous equation
becomes non-negative, and we find

‖xα(y)− x∗‖2 ≥ ‖xα(y∗)− x∗‖2 + δ2 min
σ∈[aδ,2αδ]

σr2
α(σ).

• By using the equivalence of the regularisation error to the spectral tail and R̃α(aδ) < β̃, we can
estimate this further by

inf
α>0
‖xα(y)− x∗‖2 ≥ min

{
c1e(αδ), c2

δ2

αδ

}
.

• However, since αδ = ê−1(δ), we have by definition of the noise-free to noisy transform Φ that

inf
α>0
‖xα(y)− x∗‖2 ≥ c0Φ[e](δ).

• Analogously, we get the lower bound for infα>0 ‖Xα(y)− x∗‖2.
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Convergence Rates for the Heavy Ball Method

If we set with the solutions ρ and ρ̃ for heavy ball method

rα(σ) = ρ( b
2α

;σ), and correspondingly, r̃α(σ) = ρ̃( b
2α

;σ),

then it can be shown that (rα)α>0 fulfils all requirements of a non-monotonic regularisation method.

Corollary: Convergence of the Heavy Ball Method

Let η ∈ (0, 1) and µ > 0. Then, the following statements are equivalent:

(i) There exists a constant C1 > 0 with

‖ξ(t; y∗)− x∗‖2 ≤ C1t
−µ for all t > 0.

(ii) There exists a constant C2 > 0 with

inf
t>0
‖ξ(t; y)− x∗‖2 ≤ C2‖y − y∗‖

2µ
1+µ for all y ∈ Y .

(iii) There exists a constant Cη > 0 with 〈x∗, x〉 ≤ Cη‖(L∗L)
µ
2ηx‖η ‖x‖1−η for all x ∈ X .
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Convergence Rates for the Vanishing Viscosity Flow

Let ρ̃(t;σ) = u(t
√
σ) be the solution for the vanishing viscosity method. Setting r̃α(σ) = ρ̃( c√

α
;σ), for

a suitable constant c > 0, (rα)α>0 fulfils all requirements of a non-monotonic regularisation method.

In contrast to Showalter’s and the heavy ball method, the convergence for high singular values is not
exponentially fast and the compatibility condition only allows for rates up to some Hölder rate.

Corollary: Convergence of the Vanishing Viscosity Solution

Let η ∈ (0, 1) and µ ∈ (0, b
2
). Then, the following statements are equivalent

(i) There exists a constant C1 > 0 with

‖ξ(t; y∗)− x∗‖2 ≤ C1t
−2µ for all t > 0.

(ii) There exists a constant C2 > 0 with

inf
t>0
‖ξ(t; y)− x∗‖2 ≤ C2‖y − y∗‖

2µ
1+µ for all y ∈ Y .

(iii) There exists a constant Cη > 0 with 〈x∗, x〉 ≤ Cη‖(L∗L)
µ
2ηx‖η ‖x‖1−η for all x ∈ X .
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Convergence Rates of the Residuum without Source Conditions

• Without a source condition on the solution x∗, we do not get any convergence rates for the
regularisation error ‖xα(y∗)− x∗‖2.

• However, we have for the convergence in the image domain:

‖Lxα(y∗)−y∗‖2 = ‖Lrα(L∗L)L∗Lx∗−Lx∗‖2 = ‖rα(L∗L)L∗Lx̄∗− x̄∗‖2 = ‖xα(ȳ∗)− x̄∗‖2

with x̄∗ =
√
L∗Lx∗ and ȳ∗ = Lx̄∗.

Therefore, the convergence in the image domain corresponds to the convergence to the minimum-
norm solution x̄∗ ∈ R((L∗L)

1
2 ), which allows us to apply the previous results, even in the case

without source conditions on x∗.

• In particular, we find for the vanishing viscosity flow that

‖Lξ(t; y∗)− y∗‖2 = o(t−b) + o(t−2),

slightly improving the previously known rates of O(t−
2b
3 ) for b ∈ (0, 3) in the setting of general

convex data terms Sy.

H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont
Fast convergence of inertial dynamics and algorithms with asymp-
totic vanishing viscosity
Mathematical Programming. A Publication of the Mathematical Op-
timization Society 168.1–2. 2018
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Summary

• We have introduced a class of non-monotonic regularisation methods of the form

xα(y) = rα(L∗L)L∗y

for a linear inverse problem Lx = y for which the convergence rates of the regularisation error

‖xα(y∗)− x∗‖2

and the best worst case error

sup
y∈B̄δ(y∗)

inf
α>0
‖xα(y)− x∗‖2

can be uniquely characterised by the behaviour of the spectral tail ‖E(0,σ]x
∗‖2 of the minimum

norm solution x∗, by a variational source condition, or by an approximative source condition.

• We applied this result in particular to the vanishing viscosity flow, which is the second order
dynamical system

∂ttξ(t; y) +
b

t
∂tξ(t; y) + L∗(Lξ(t; y)− y) = 0,

which corresponds for b = 3 to the continuum limit of Nesterov’s accelerated gradient descent
method, and the resulting convergence rates of the residual error show the same quadratic con-
vergence as Nestrov’s algorithm.

Thank you very much for your attention!
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