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1. Underdetermined linear inverse problems

Problem statement

Want to reconstruct x ∈ Rn from few indirect, noisy observations.
In the case of a linear observation model

b = Ax + e, A ∈ Rm×n, m� n.

Assume that

additive Gaussian noise e; where E ∼ N (0, Im)

x is believed to be sparse, i.e.,

‖x‖0 � n.

or to admit a sparse representation

x = Lz , ‖z‖0 � n.
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1. Underdetermined linear inverse problems

Sparsity Considerations

Sparsity means a signal with a sparse representation

The sparse vector in that case contains the coefficients of a suitable
representation, for example

Wavelet basis

Fourier basis

First order differencing matrix for piecewise constant signals in terms of their
increments

The conditionally Gaussian random variable is the presumably sparse coefficient
vector.
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2. Bayesian Sparsity promotion

Sparsity promotion via hierarchical model

Conditionally Gaussian prior for sparse object

X ∼ N (0,Dθ), Dθ = diag(θ1, . . . , θn),

πx|θ(x | θ) =
1

(2π)n/2
√
θ1 · · · θn

exp

−1

2

n∑
j=1

x2
j

θj

 .

Mutually independent unknown prior variances θj > 0 follow generalized
gamma distributions,

Θj ∼ GenGamma(r , ϑj , β), πΘj (θj) =
1

Γ(β)ϑj

(
θj
ϑj

)rβ−1

exp

(
− θj
ϑj

)r

.

Posterior density

πX ,Θ|B(x , θ) ∝ exp

−1

2
‖b − Ax‖2 − 1

2

n∑
j=1

x2
j

θj
+ η

n∑
j=1

log
θj
ϑj
−

n∑
j=1

(
θj
ϑj

)r


where η = rβ − 3/2 > 0.
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3. IAS algorithm: a bit of magic

Iterated Alternating Sequential (IAS) algorithm

To compute xMAP we minimize the Gibbs energy

E (x ; θ) =

(a)︷ ︸︸ ︷
1

2
‖b − Ax‖2 +

n∑
j=1

x2
j

2θj
−

n∑
j=1

(
η log

θj
ϑj
−
(
θj
ϑj

)r)
︸ ︷︷ ︸

(P(x,θ))

(1)

Given the initial value θ0 = ϑ, x0 = 0, and k = 0, iterate until convergence:

(a) Update xk → xk+1 by minimizing E (x | θk);

(b) Update θk → θk+1 by minimizing E (θ | xk+1).
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3. IAS algorithm: a bit of magic

IAS algorithm for Generalized Gamma hyperpriors

1 Given θ, xk+1 = argmin
{
‖b − Ax‖2 + ‖D−1/2

θ x‖2
}

solves

[
A

D
−1/2
θ

]
x =

[
b
0

]
in the least squares sense.

2 The update of θ is componentwise. From the first order optimality condition
θj must satisfy

−1

2

x2
j

θ2
j

−
(
rβ − 2

3

)
1

θj
+ r

θr−1
j

ϑrj
= 0, xj = x t+1

j .
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3. IAS algorithm: a bit of magic

Convexity and Convergence: r = 1

For the gamma hyperprior (r = 1):

The Gibbs energy functional E is strictly convex and has a unique minimizer

In exact arithmetic, the IAS algorithm converges to the global minimizer

For η > 0 small, the Gibbs energy (1) is approximately equal to the penalized
least squares functional with a weighted `1-penalty.

.

Theorem
For a gamma hyperprior, the exact IAS algorithm converges to the unique
minimizer (x̂ , θ̂) of the Gibbs energy functional. Moreover, the minimizer (x̂ , θ̂)
satisfies the fixed point condition

x̂ = argmin
{
E
(
x | F (x)

)}
, θ̂ = F (x̂),

where F is the map with jth component fj .
1.

1Calvetti D, Pascarella A, Pitolli F, Somersalo E, Vantaggi B (2015) A hierarchical
Krylov–Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse
Problems 31:125005
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3. IAS algorithm: a bit of magic

Scale parameter and sparsity: r = 1

Under the assumptions of our hierarchical Bayesian model we have shown that

The exact IAS iteration converges to the global minimizer of the functional

Lη(x) = E (x , f (x))

and, for small η > 0

Lη(x) = L1(x) + ηg(x , η)︸ ︷︷ ︸
→0 as η→0

,

where

L1(x) =
1

2
‖b − Ax‖2 +

√
2

n∑
j=1

|xj |√
ϑj
.

and the sum extends only over the support of x ,

S = supp(x) = {j | xj 6= 0}.
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3. IAS algorithm: a bit of magic

`2 Stable Recovery: r = 1

xη = argmin {Lη(x)}︸ ︷︷ ︸
=IAS solution

x1 = argmin {L1(x)}︸ ︷︷ ︸
=`1penalized solution

.

1 The size of xη − x1 depends continuously on η. Thus η controls the sparsity
of the solution.

2 If A is of the kind for which the `1-magic works and the data come from a
sparse vector2, then xη is close to the underlying sparse solution.

3 The scale parameters ϑj play the role of sensitivity weights in inverse
problems: Data components may have different sensitivity to different
components xj .

2Candes E, Romberg JK and Tao T(2006): Stable Signal Recovery from Incomplete and
Inaccurate Measurements, Comm Pure Appl Math LIX: 1207–1223
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4. Sensitivity scaling

Sparsity and exchangeability

Assume the underlying signal x is sparse supp(x) = S ⊂ {1, 2, . . . , n} and b0 is
the noiseless measurement. Define

SNRS =
E
{
‖b0‖2 | supp(x) = S

}
E {‖e‖2}

, e ∼ N (0,Σ).

Lemma
With our assumptions about X and the noise

SNRS =

∑
j∈I ν(r , β)ϑj‖Aej‖2

tr (Σ)
+ 1, ν(r , β) =

Γ(β + 1)r

Γ(βr)
.

Proof.

E
{
‖b0‖2

}
= TrE

{
b0b

T
0

}
= TrE

{
AxxTAT

}
= Tr

(
AE
{
xxT

}
AT
)
,

and from the generalized gamma hyperprior

E
{
xxT

}
= Eθ

{
E
{
xxT | θ

}}
= E

(
diag

(
θ
))

= diag
(
ν(r , β)ϑ

)
.
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4. Sensitivity scaling

Scale parameter and sensitivity scaling, in Bayesian way

How should ϑ be chosen?

Theorem

Given an estimate SNR of SNR, if

P
(
‖x‖0 = k

)
= pk , p0 = pn = 0,

n∑
k=1

pk = 1

and if
SNRS = SNRS′ , ∀ S,S′ : card(S) = card(S′),

then

ϑj =
C

‖Aej‖2
, C =

(
SNR− 1

)
Tr
(
Σ
)

ν(r , β)

n∑
j=1

pk
k

In the literature ‖Aej‖ is the sensitivity of the data to jth component of x .
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4. Sensitivity scaling

Sensitivity can make a difference.

Without sensitivity With sensitivity
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5. Converge rate: r = 1

Sparsity and quadratic convergence: r = 1

For the gamma hyperprior, as η goes to zero the sequence of IAS minimizers
remains bounded.

Lemma

There is a constant B > 0 such that

‖xη‖ ≤ B,

for all η, 0 ≤ η ≤ 1
2 .

Theorem
If the matrix A is such that the minimizer

x1 = argmin{F1(x)}

of the `1-penalized functional F1 is unique, then, as η → 0+, the minimizers xη
converge to the minimizer x1.
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5. Converge rate: r = 1

Intermezzo: Sparse or compressible?

Sparsity
If A is a matrix such that the `1 regularized solution x1 is sparse, then the
solution of the IAS algorithm with η > 0 small can be made arbitrarily small
outside the support of x1.

Compressibility
If the components of x1 are smaller than a threshold outside a set
S ⊂ {1, 2, . . . , n}, the same is true for the IAS solution xη with a slightly
larger threshold when η > 0 is small enough.

Bayesian Sparsity is Compressibility
The Bayesian target reconstruction of a sparse signal is a compressible signal.
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5. Converge rate: r = 1

Convergence of IAS for r = 1

Theorem

In the IAS algorithm, the updates of x converge at least θ̂-linearly, that is, linearly
in the Mahalanobis norm

‖x‖2
θ̂

= xTD−1

θ̂
x

evaluated at the MAP estimate. Moreover, if supp(x̂)  {1, 2, . . . , n}, the
convergence of θ in the complement of the support is quadratic3.

3D. Calvetti, E.Somersalo and A. Strang. Hierachical Bayesian models and sparsity: `2

-magic. Inverse Problems 35: 035003.
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6. Generalized Gamma Hyperpriors

Generalized gamma hyperpriors and IAS4

For the family of generalized gamma hyperpriors for sparse recovery we want to
investigate the

Convexity - or lack thereof - of Gibbs functional

Form and behavior of θ update

Type of regularization effect on components

Similarity with classical regularization functionals

Role of r and shape parameter.

Non-dimensionalization:

WLOG we assume that ϑj = 1 or, equivalently,

scale xj by
√
ϑj and θj by ϑj .

4D. Calvetti, M.Pragliola, E. Somersalo and A. Strang. Sparse reconstructions from few noisy
data via hierarchical Bayesian models with generalized gamma hyperpriors: convergence,
convexity and performance. Manuscript.
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6. Generalized Gamma Hyperpriors

The θ update as a function of r

For generalized gamma hyperpriors, the function θk+1 = f (xk+1) is the unique
solution of the IVP:

d

dx
f (x) =

2xf (x)

2r2f (x)r+1 + x2
, f (0) =

(η
r

) 1
r

, x > 0

and f (x) = f (−x). Moreover, f is

Monotonically increasing and unbounded above
Asymptotically, when |x | is small

f (x) ∝
(η
r

) 1
r

+
1

2ηr
x2

Asymptotically, when |x | is large

f (x) ∝ |x |p, p =
2

r + 1
r > 0

f (x) ∝ x2 r < 0,

with growth linear for r = 1, less than linear r > 1, quadratic r < 1 .
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6. Generalized Gamma Hyperpriors

Effective local penalty functional

Shape parameter determines initial value f (0)

Shape parameter does not affect variance of large |x |

Pj(xj | θj) =
x2
j

2θj
− η log θj + (θj)

r )

For small |xj |: Pj(x) is quadratic in |x |;
For large |xj |: Pj(x) is proportional to

|xj |p, p = 2r
1+r

, r > 0
log |xj |, r < 0.

When r = 2, p = 4/3.

When r = 1 p = 1, thus `1-like penalty.

When 0 < r < 1, p < 1 and the penalty strongly enforces sparsity.
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6. Generalized Gamma Hyperpriors

p	=	2/5 p	=	1 p	=	8/5
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6. Generalized Gamma Hyperpriors

Convexity, Sparsity and Penalization

The Gibbs functional E (x , θ) is convex

for all x , θ if r ≥ 1 and η > 0

for all x , θ < θ =
(

η
r(1−r)

)
if r < 1

Convexity region:

Let x = f −1(θ). The convexity region is all x : ‖x‖∞ < x .

The radius of the convexity region x increases monotonically with η

η is proportional to the radius of the convexity region centered at origin
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6. Generalized Gamma Hyperpriors
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6. Generalized Gamma Hyperpriors
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6. Generalized Gamma Hyperpriors

Support of the signal: the meaning of θ

In light of the Bayesian set up:

The entries of x with large variance are more likely to contain large values

The prior variance of xj is θj

The entries of θ above a threshold identify the support of the signal

The more sparsity promoting the hyperprior, the more θ greedy the IAS

At each IAS iteration, the system learns the support of the signal and uses it to
improve the reconstruction.
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6. Generalized Gamma Hyperpriors

IAS with bound constraints

The IAS method can be modified to include bounds on the entries of the solution.

Assume we believe
0 < xj < H

Define

G (x) =

{
0, when 0 < x ≤ H,
∞ otherwise,

Write posterior density with the bound constraints as

π(x , θ | b) ∝ exp (−E (x , θ)− G (x)) = exp (−EG (x , θ)) .

Daniela Calvetti Case Western Reserve University (CWRU) Sparsity via hierarchical models
Reconstruction Methods for Inverse Problems Banff, June 27, 2019 24

/ 34



6. Generalized Gamma Hyperpriors

Moreau-Yoshida envelope and box contraints

Consider the Moreau-Yoshida envelope

Φλ
G (x , θ) = E (x , θ) + Gλ(x),

where

Gλ(x) = minu∈Rn

{
G (u) +

1

2λ
‖x − u‖2

}
, λ > 0.

The Moreau-Yoshida envelope is differentiable and

∇xΦλ
G (x , θ) = ∇xE (x , θ) +

1

λ
(x − proxλG (x)),

where the proximal operator is

proxλG (x) = argminu∈Rn

{
G (u) +

1

2λ
‖x − u‖2

}
=

{
x , if G (x) = 0,
Pz , if G (x) =∞.

,

and P is the orthogonal projector on the feasible set [0,H]n.
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6. Generalized Gamma Hyperpriors

What is the Moreau-Yoshida envelope doing for us?

It has been shown that

as λ→ 0+,

the posterior distribution in terms of the Moreau-Yoshida envelope

converges to the posterior distribution + positivity constraint.

Daniela Calvetti Case Western Reserve University (CWRU) Sparsity via hierarchical models
Reconstruction Methods for Inverse Problems Banff, June 27, 2019 26

/ 34



6. Generalized Gamma Hyperpriors

IAS with bound constraint

The inclusion of the bounds does not change ∇θ,

The IAS algorithm can be extended for bound constrained problems

Replace the least squares minimization by the sequential procedure:

Given the current θt :

(a) Find x = x∗ solving ∇xE (x , θt) = 0 in the least squares sense,
(b) Update x t+1 = proxλ

G (x
∗) by projecting x∗ onto the feasible set.
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6. Generalized Gamma Hyperpriors

Approximate IAS and reduced model

In the case where A ∈ Rm×n, m < n at each IAS step, instead of solving[
A

D
−1/2
θ

]
x =

[
b
0

]
solve approximately

AD
1/2
θ w = b, x = D

1/2
θ w

with the CGLS methods equipped with stopping rule.

Each CGLS iteration requires only 1 matvec with A and one with A′

If θj is small, the corresponding column of AD
1/2
θ is almost deflated

Equivalently, the corresponding solution entry is made smaller

The more sparsity promoting the prior, the fewer the large θj
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6. Generalized Gamma Hyperpriors

Three computed examples

Example 1: Deconvolution of one dimensional staircase signal blurred with
Airy kernel5. Exact and CGLS-AS

Example 2: Reconstruction of two dimensional nearly black object recovery
from blurred, noisy data (Gaussian blur). Exact and CGLS-IAS

Example 3: Limited angle computed tomography problem. CGLS-IAS only.

5 J(k|x|)
k|x|
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6. Generalized Gamma Hyperpriors

r = 1, r = 0.5 and r = −0.5 with 1% noise
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6. Generalized Gamma Hyperpriors

Starry night: r = 1

Generative signal
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6. Generalized Gamma Hyperpriors

Limited angle tomography
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6. Generalized Gamma Hyperpriors

r = 1

r = 0.5
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6. Generalized Gamma Hyperpriors

Horizontal and vertical profiles, and CGLS steps

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

Outer iteration

30

35

40

45

50

55

N
u

m
b

e
r 

o
f 

C
G

L
S

 s
te

p
s

Number of steps = 783

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

Outer iteration

25

30

35

40

45

50

55

N
u

m
b

e
r 

o
f 

C
G

L
S

 s
te

p
s

Number of steps = 808

Daniela Calvetti Case Western Reserve University (CWRU) Sparsity via hierarchical models
Reconstruction Methods for Inverse Problems Banff, June 27, 2019 34

/ 34


	Underdetermined linear inverse problems
	Bayesian Sparsity promotion 
	IAS algorithm: a bit of magic
	Sensitivity scaling 
	Converge rate: r=1
	Generalized Gamma Hyperpriors

