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Inverse Scattering

Popular approaches to the inverse scattering problem for
acoustic/electromagnetic/elatic waves in the frequency domain:

1 Linearization: Ignores multiple scattering and hence model may
be incorrect.

2 Nonlinear Optimization: Typically reconstruct all the unknowns.
Possibly little date, but good a priori information. Convergence of
Newton’s Method for inverse scattering problem is not fully
established.

3 Data Driven Models: Being developed.

4 Qualitative Method: No a priori information, but needs a lot of
data. Only determines support of scattering object. It is
mathematically rigorous with correct model.

A. KIRSCH AND N. GRINBERG (2008), The Factorization Method for Inverse Problems, Oxford University.

F. CAKONI AND D. COLTON AND H. HADDAR (2016), Inverse Scattering Theory and Transmission
Eigenvalues, CBMS-NSF, SIAM Publication.



Qualitative Methods

Consider a family of interrogating incident fields ui (x ; y) for an array
of transmitters y ∈ Σ. Measure the corresponding scattered field
us(x ; y) at an array of receivers x ∈ Σ.
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The relative scattering operator

(Ng)(x) :=

∫
Σ

g(y)us(x ; y)dsy x ∈ Σ

Determine scatters’ support D from a knowledge of N.

In fact one test if ϕz ∈ Range(N) for particular functions ϕz
depending on z sampling a region containing D



Qualitative Methods

In principle one could use a single frequency. In this case for limited
aperture data and sparse array the method may provide a poor
reconstruction of D.

For example, consider the following scatterers and measurement
array where the point sources and receivers are at the point in the
grid above the scatterers.



The Linear Sampling Method

Below are the cross sections in the plane x1 = 0.25 corresponding to
k = 2.99 and k = 6.03. Note that the cross section for k = 6.03
misses the lower scatterer.



Examples of Reconstruction

D := B1, n = 16, k is not TE



Examples of Reconstruction

D := B1, n = 16, k a TE



Qualitative Methods

Problems with Qualitative Methods at a fixed frequency

1 The "good" frequency is not known a priori.

2 Dense spacial measurements of a large aperture are needed for
achieving reasonably good reconstructions.

How can these issues be remedied?

Approach 1: Use multifrequency data.

B. GUZINA, F. CAKONI, C. BELLIS (2010), R. GRIESMAIER, C. SCHMIEDECKE (2017),

Approach 2: Use directly time domain data.

D. R. LUKE, R. POTTHAST (2006), Q. CHEN, H. HADDAR, A. LECHLEITER, P. MONK (2010), H. HADDAR,

A. LECHLEITER, S. MARMORAT (2014), Y. GUO, P. MONK, D. COLTON (2013), (2015), F. CAKONI, J.

REZAC (2017), L. OKSANEN (2013), L. BOURGEOIS, D. PONOMAREV, J. DARTE (2019), M. IKEHATA, (a

series of papers on the enclosure method)



Examples of reconstruction with time domain data



Examples of reconstruction with time domain data

Examples taken from
Y. GUO, P. MONK, D. COLTON (2016), The linear sampling method for sparse small aperture data,
Applicable Analysis.



The Outline

Solvability of the time domain interior transmission problem

The beginning of the end story: justification of the linear sampling
method for inhomogeneous media

F. CAKONI, P. MONK, V. SELGAS (to appear), Analysis of the linear sampling method for imaging penetrable
obstacles in the time domain, Analysis & PDEs.

Toward a time domain factorization method

The beginning of an open story: the derivation of a mathematically
justified time domain qualitative approach.

F. CAKONI, H. HADDAR, A. LECHLEITER (2019), On the factorization method for a far field inverse scattering
problem in the time domain, SIAM J. Math. Anal.



Scattering in the Time Domain

Let X be a Hilbert space and f (t) is such that e−σt f (t) ∈ L1(R,X ) for
some σ > 0. Define the Fourier-Laplace transform by

L[f ](s) :=

∞∫
−∞

eist f (t)dt , s ∈ Cσ

where Cσ := {s ∈ C, =(s) > σ}. For m ∈ R define the Hilbert space

Hm
σ (R,X ) :=

f :

∞+iσ∫
−∞+iσ

|s|2m ‖L[f ](s)‖X ds <∞


endowed with the norm

‖f‖Hm
σ (R,X) =

 ∞+iσ∫
−∞+iσ

|s|2m ‖L[f ](s)‖X ds

1/2

.



Scattering in the Time Domain

Supp (1− n) = D ∂D Lipshitz f := (1− n)∂2
ttu

i

The scattered field us satisfy:

n(x)∂2
ttu

s −∆us = f in R3 for t > 0

us = 0 in R3 for t ≤ 0.

n(x) = c2
0/c

2(x) ≥ n0 > 0 is piecewise smooth.

The linear mapping G : f 7→ us is bounded as

Hm+1
σ (R,H−1(R3))→ Hm

σ (R,H1(R3))

Hm
σ (R+,L2(R3))→ Hm

σ (R+,H1(R3)).



Scattering in the Time Domain
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Let χ denote a smooth function
of compact support on (0, ∞).
Then the incident field ui is de-
fined by

ui (t , x ; y) =
χ(t − |x − y |)

4π|x − y |
.

Inverse Problem
Let Σ be a portion of an analytic surface lying outside D. Assume we
know the scattered field us(t , x ; y) for t > 0, x ∈ Σ, corresponding to
the incident field ui (t , x ; y), for y ∈ Σ. Determined D.



The Near Field Operator
Define the near field operator N : Hm

σ (R+,L2(Σ))→ Hm
σ (R+,L2(Σ))

(Nϕ) (t , x) =

∫
Σ

t∫
−∞

us(τ, x ; y)ϕ(t − τ, y)dτdsy

Then
Nϕ = γΣUϕ where Uϕ := G

[
(1− n)∂2

tt (Sϕ)
]

where retarded single layer potential S defined by

(Sϕ) (t , x) =

∫
Σ

t∫
−∞

ui (τ, x ; y)ϕ(t − τ, y)dτdsy .

N is injective with dense range

S
[
Hm
σ (R+,L2(Σ))

]
is dense in Hm+2

σ (R+,H1(R3))



The Near Field Equation

n(x)∂2
ttUϕ −∆Uϕ = (1− n)∂2

tt (Sϕ) in R3 for t > 0

and we also have ∂2
tt (Sϕ)−∆(Sϕ) = 0

We consider the near field equation

(Nϕz) (t , x) = Φz(x , t), for z ∈ R3, x ∈ Σ

where

Φz(x , t) :=
ξ(t − |x − z|)

4π|x − z|
, τ ∈ R ξ ∈ C∞(R+).

For z ∈ D, if ϕz solves the near field equation, we have that Nϕz and
Φz will coincide up to the boundary of D for all t > 0.



The Near Field Equation

Thus w := Uϕz + Sϕz and v := Sϕz satisfy the interior transmission
problem in the time domain

∂2
ttv −∆v = 0 in R× D

n(x)∂2
ttw −∆w = 0 in R× D

w − v = Φz on R× ∂D
∂νw − ∂νv = ∂νΦz on R× ∂D

w = v = 0 in D for t ≤ 0.

Solvability of the interior transmission problem in the time
domain was an open problem until now



Interior Transmission Problem
Time-Domain ITP

n
∂2w
∂t2 −∆w = F in R× D

∂2v
∂t2 −∆v = 0 in R× D

w = v on R× ∂D
∂w
∂ν

=
∂v
∂ν

on R× ∂D

w = v = 0 in D, t ≤ 0

Fourier-Domain ITP

∆ŵ + s2nŵ = F̂ in D
∆v̂ + s2v̂ = 0 in D

ŵ = v̂ on ∂D
∂ŵ
∂ν

=
∂v̂
∂ν

on ∂D

Laplace-Fourier Transform

f̂ := L[f ](s) =

∫
R

eist f (t) dt , s ∈ Cσ := {s ∈ C : =(s) > σ, σ > 0}



Time Domain Versus Frequency Domain

The relationship between resolvent estimates in the frequency
domain and solvability of the interior transmission problem in the
time-domain is arrived through the following lemma.

Lemma (Lubich)

Assume the mapping s ∈ Cσ 7→ Âs ∈ B(X ,Y ), σ > 0 is analytic

and ‖Âs‖B(X ,Y ) ≤ C |s|r for a.e. s ∈ Cσ and some r ∈ R

Set

a(t) =
1

2π

∫ ∞+iσ

−∞+iσ
e−ist Âs ds, and Ag =

∫ ∞
−∞

a(t) g(· − t) dt .

Then, A : Hm+r
σ (R,X ) to Hm

σ (R,Y ) is bounded for all m ∈ R.



Transmission Eigenvalues

The mail difficulty in establishing the solvability of the ITP was to
determine the location in the complex plane of transmission
eigenvalues in the frequency domain.

The transmission eigenvalue problem in the frequency domain is to
find s such that there exists a nontrivial solution ŵ , v̂ ∈ L2(D),
ŵ − v̂ ∈ H2

0 (D) such that

∆v̂ + s2v̂ = 0 in D
∆ŵ + s2n(x)ŵ = 0 in D

ŵ = v̂ on ∂D
∂νŵ = ∂ν v̂ on ∂D

F. CAKONI, D. COLTON AND H. HADDAR (2016), Transmission Eigenvalues and Inverse Scattering Theory,
CBMS-NSF, SIAM Publications, 88.



Solvability of ITP in Frequency Domain

ITP can be viewed as inverting the operator M(s)

M(s) := Ns,n −Ns,1

where Ns,q is the Dirichlet-to-Neuman operator for

∆u + s2qu = 0 in D

Assumptions: ∂D and n are piece-wise smooth and n − 1 have a
fixed sign in a neighborhood of ∂D.

M(s) : H−1/2+τ (∂D)→ H1/2+τ (∂D), 0 ≤ τ ≤ 1 is Fredholm operator
with index zero and analytic in C (except for a discrete real set).

F. CAKONI, D. GINTIDES, H. HADDAR (2010), SYLVESTER (2012), H-M NGUYEN (2017), F. CAKONI, R. KRESS
(2017)



Location of Transmission Eigenvalues

This is a problem with a perplexing structure.

Example

Let n(x) = 4/9 and D := {x : |x | < 1}. Then s is a TE⇐⇒

sin3
(s

3

)[
3 + 2 cos

2s
3

]
= 0

infinitely many complex transmission eigenvalues exist

Assume that D := {x : |x | < 1}, and n ∈ C2(D) and

n(1) = 1,
∫ 1

0

√
n(θ)dθ 6= 1 and n′′(1) 6= 0

Then the transmission eigenvalues do not lie inside a fixed strip
parallel to the real axis.

D.COLTON, Y.J.LEUNG, S. MENG (2015)



Location of Transmission Eigenvalues
The icebreaker was a recent result by Vodev (2018).

Main Assumptions: n ∈ C∞(D), ∂D is of C∞-class, and n 6= 1 on ∂D

Strip region for TE: there exists σ∗ > 0 sufficiently large such
that there exist no transmission eigenvalues in
Cσ∗ = {s ∈ C,=(s) > σ∗} .
Frequency dependent resolvent estimates for high frequencies

Combining the high frequency estimates from Vodev (2018) with finite
frequency estimates from Cakoni-Kress (2017), one can prove that
that for =(s) ≥ σ∗ for some σ∗ large enough, M(s) is invertible and
the inverse satisfies

‖M(s)−1‖H1/2+τ (∂D)→H−1/2+τ (∂D) ≤ C|s|−1/2−τ , 0 ≤ τ ≤ 1

G. VODEV (2018), High-frequency approximation of interior Dirichlet-to-Neumann map and applications to
transmission eigenvalues, Analysis and PDEs.



The Interior Transmission Problem
This result thanks to the Lemma by Lubich, can be turned to a
solvability theorem for the interior transmission problem in the time
domain.

Theorem

Let m ∈ R and σ > σ∗. Given h ∈ Hm
σ (R,H1(∂D)) and

g ∈ Hm+5/2
σ (R,H2(∂D)), the interior transmission problem in the time

domain

∂2
ttv −∆v = 0 in R× D

n(x)∂2
ttw −∆w = 0 in R× D

w − v = g on R× ∂D
∂νw − ∂νv = h on R× ∂D

w = v = 0 in D for t ≤ 0.

has a unique solution w , v ∈ Hm
σ (R,L2(D)) which depends

continuously on g and h.



The Linear Sampling Method in the Time Domain

Theorem
Let σ > σ∗ and m ∈ R.

1 For z ∈ D for every ε > 0, there exists some ϕεz ∈ Hm
σ (R,L2(Σ))

such that
‖Nϕεz − Φz‖Hm

σ (R,H1/2(Σ)) < ε

and
‖Sϕεz‖Hm+2

σ (R,L2(D)) < C as ε→ 0.

2 For z ∈ R3 \ D, every sequence {ϕεz}ε>0 ⊂ Hm
σ (R,L2(Σ))

satisfying
‖Nϕεz − Φz‖Hm

σ (R,H1/2(Σ)) < ε

is such that

‖Sϕεz‖Hm+2
σ (R,L2(D)) →∞ as ε→ 0.

Recall Φz(x , t) := ξ(t−|x−z|)
4π|x−z| , τ ∈ R ξ ∈ C∞(R+).



Toward a rigorous sampling method

What do we have? N = GS, Range(S) is dense in Dom(G),
Φz ∈ Range(G)⇐⇒ z ∈ D

What do we want to have? N 1/2N 1/2 = S∗T S, T coercive.
Then Range(G) = Range(S∗) = Range(N 1/2).

Such approach is referred to as the Factorization Method.
A. KIRSCH AND N. GRINBERG (2008), The Factorization Method for Inverse Problems, Oxford University.

Developing a time domain factorization method is a long standing
open problem. Some initial efforts were made in

P. TIETÄVÄINEN (2011), A factorization method for the inverse scattering of the wave equation, Ph.D. Thesis,
Alto University.

I will briefly discuss some recent progress toward a time domain
factorization method.

F. CAKONI, H. HADDAR AND A. LECHLEITER (2019), On the factorization method for a far field inverse
scattering problem in the time domain , SIAM Math Anal.



The Scattering Problem

D ⊂ R3 is a Lipschitz domain such that R3 \ D is connected, and
denote by S2 the unit sphere. The scattered field us(x , t) satisfies:

u 

s

D
i

u 

∂ttus −∆us = 0 in R3 \ D × R
us = h on ∂D × R
us = 0 in R3 \ D × (−∞,0)

h := −ui |∂D where the incident field ui (x , t) is a causal solution
to the wave equation.

u∞(ξ, t) = lim
r→∞

rus(rξ, r + t) for ξ ∈ S2 and t ∈ R

u∞ : S2 × R→ R is called the far field pattern of the causal scattered
field us

see Friedlander 1962-1963-1964



Measured Data - Inverse Problem

Physical incident fields are traveling wavefront ui (x , t ; θ) := δ(t − θ · x)
with incident direction θ ∈ S2. These are distributional causal
solutions, ui = 0 for t < T with −T > d := supx∈D |x |.

Inverse Problem

Reconstruct D from a knowledge of u∞(ξ, t ; θ) on S2 × R× S2

The far field operator

(Fg)(ξ, t) :=

∫
R

∫
S2

u∞(ξ, t − τ ; θ)g(θ, τ) dθdτ, g ∈ C∞0 (S2×R)

Fg is the far field associated with the incident field

vg(x , t) :=

∫
R

∫
S2
δ(t − τ − θ · x)g(θ, τ) dθdt0 =

∫
S2

g(θ, t−θ·x) dθ

The time domain Herglotz operator Hg := vg |∂D×R.



Time-Domain Integral Operators

The single-layer potentials causal solutions to the wave equation

(SLψ)(x , t) :=

∫
∂D

ψ(x0, t − |x − x0|)
4π|x − x0|

dx0 ψ ∈ C∞0 (R; C∞(∂D))

We call Sψ := SLψ|∂D,R.

For h ∈ Hm
σ (R>T ; H1/2(∂D)) there is a unique solution

u = SL(S−1h) ∈ Hm−3/2
σ (R>T ; H1

loc(R \ D))

of the initial-boundary value problem with initial data h.

It can be shown that the far field pattern (SLψ)∞ := Rψ where

Rψ =
1

4π

∫
∂D
ψ(x0, t + ξ · x0) dx0, ξ ∈ S2, t ∈ R



Factorization of Far Field Operator

F = −RS−1H

We must work with Gelfand triples

Hm
σ (R>T ; X )) ⊂ L2

σ((R>T ; H) ⊂ H̃−m
σ (R>T ; X ∗),

where X ⊂ H ⊂ X ∗ a Gelfand triple with respect to duality

〈f ,g〉 =

∫ ∞+iσ

−∞+iσ
〈L[g](s),L[f ](s)〉X∗,X ds =

∫ ∞
−∞

e−2σt 〈g(t), f (t)〉X∗,X dt

F : H5/2
σ (R>T ; L2(S2))→ H̃−5/2

σ (R>T ; L2(S2))

mapping g 7→ Fg|t>T is bounded



Coercivity of the Middle Operator

(A Coercivity Property - due Bamberger and Ha Duong (1986))

−
∫
R

e−2σt
∫
∂D

S−1(ψ) ∂tψ dxdt ≥ C(σ)‖ψ‖2
L2
σ(R;H1/2(∂D))

for some C(σ) > 0 such that C(σ)→ 0 as σ → 0.

Define T := (∂tS−1 − 2σS−1)

T : H3/2
σ (R>T ; H1/2(∂D))→ H̃−3/2

σ (R>T ; H−1/2(∂D)) is coercive

〈T ψ,ψ〉L2
σ
≥ C(σ)‖ψ‖2

L2
σ(R>T ;H1/2(∂D))



An Adjointness Properties

F = −RS−1H

4πR = H∗ψ the L2- adjoint.∫
∂D

∫
R
Hg ψ dt dx0 = 4π

∫
S2

∫
R

gRψ dt dθ

But unfortunately this does hold with respect to the L2
σ inner product!

Recall

〈f ,g〉 =

∫ ∞+iσ

−∞+iσ
〈L[g](s),L[f ](s)〉X∗,X ds =

∫ ∞
−∞

e−2σt 〈g(t), f (t)〉X∗,X dt



Perturbed Far Field Operator

Take ui
σ(x , t ; θ) := δ(t − θ · x)e2σ(θ·x), θ ∈ S2

(causal functions but not solution to the wave equation).

uσ∞(ξ, t − t0; θ) be the far field pattern of the scattered field with
boundary data h := ui

σ(x , t ; θ)|∂D.

(Perturbed Far Field Operator)

The perturbed far field operator is defined by

(Fσg)(ξ, t) :=

∫
R

∫
S2

uσ∞(ξ, t − t0; θ)g(θ, t0) dθdt0

4πFσ = −H∗σS−1Hσ, where Hσg := vσg |∂D×R

vσg (x , t) =
∫
R

∫
S2

δ(t − τ − θ · x)e2σ(θ·x)g(θ, τ) dθdτ =
∫
S2

g(θ, t−θ·x)e2σ(θ·x) dθ



Perturbed Far Field Operator

F̃ T
σ := 4π(∂tFσ − 2σFσ) = (Hσ)∗T Hσ

(Symmetric Factorization)

F̃σ + (F̃σ)∗ = Q∗F QF , has a positive square root QF

F̃σ + (F̃σ)∗ = (QTHσ)∗ (QTHσ),

where QT is the positive root of T + T ∗.

the ranges of Q∗F and (QTHσ)∗ coincide.



The Factorization Method

Consider

ϕ∞σz(ξ, t) := χ(t + ξ · z), ξ ∈ S2

where χ : R→ R is smooth with compact support. Then

z ∈ D ⇐⇒ ϕ∞σz ∈ Range
[
F̃σ + (F̃σ)∗

]1/2
= Range(Hσ)∗

Although Fσ → F as σ → 0 in the operator norm, to formalize a
rigorous range test for the liming operator F (which is the physical
measurements operator) is still an open problem.



Less Data: Quasi-backscattering, Single Wave

Quasi-backscattering F. CAKONI, J. REZAC (2017) JCP

(Nquasiϕ) (t , y) =

∫
R

∫
Γ

(y)
m

us(x , t − τ ; y)ϕ(τ, x)dsxdτ

Time domain qualitative methods with one incident wave

Work in progress: F. CAKONI, G. NAKAMURA, J.N. WANG, M.
YAMAMOTO


