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A basic equation

Pure power NLW

Consider the focussing/defocussing nonlinear wave
equation(NLW)

�u = ∓|u|p−1u, � = −∂2t +4, p > 1,

which we study on R3+1, say.

Interesting because we we have an energy sub-critical (p < 5),
energy critical (p = 5), and energy super-critical(p > 5)
regime.

Problem extensively studied in the defocussing energy
critical and subcritical cases and completely understood
there as far as regularity is concerned. However, the situation
is much more delicate in the focussing case as well as for both
focussing and defocussing in the supercritical case.
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A basic equation

Pure power NLW ; supercritical defocussing case

In defocussing case, the conserved energy is positive definite :

E =

∫
R3

[1

2
|∇t,xu|2 +

1

p + 1
|u|p+1

]
dx

Hence singularities would have to be by a ’concentration
scenario’.

It is well-known folklore, backed by a number of examples,
that a promising way to build blow ups is by a self-similar
ansatz

u(t, x) = t−
2

p−1Q(
x

t
),

which leads to a nonlinear ODE for the putative profile Q(a).

For example, when p = 7, we get

(a2−1)Q ′′(a)+
(8

3
a− 2

a

)
Q ′(a)+

4

9
Q(a)+Q(a)7 = 0, a =

|x |
t
.
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A basic equation

Pure power NLW ; supercritical defocussing case

Imposing boundary conditions Q(0) = q0 > 0,Q ′(0) = 0, one
finds a smooth solution on [0, 1), which behaves like

q1(1− a)
2
3 + q2 + o((1− a)

2
3 )

when a→ 1. Here q1 6= 0.

The significance of the exponent 2
3 is that the function

(1− a)
2
3 just fails to be (locally) in the scaling critical Sobolev

space

Ḣ
7
6

The problem �u = u7 on R3+1 is strongly locally well-posed

in H
7
6 and ill-posed below this regularity. Thus simple minded

self-similar solutions live just outside the natural
well-posedness class.
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A basic equation

Pure power NLW ; supercritical focussing case

The focussing case for p = 7 behaves fundamentally different.
Similar equation for Q :

(a2−1)Q ′′(a)+
(8

3
a− 2

a

)
Q ′(a)+

4

9
Q(a)−Q(a)7 = 0, a =

|x |
t
.

Work by Bizon-Maison-Wasserman(’07) shows that there is a
countable family of q0 for which there is a smooth solution
across the light cone. The first of these is the constant q∗
such that

4

9
q∗ − q7∗ = 0.

For the remaining values of q one again encounters the

(1− a)
2
3 singularity across the light cone. Hence either C∞ or

not even minimal regularity. The infinite family of self-similar
solutions is supercritical phenomenon !
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A basic equation

Energy critical nonlinear waves

It appears that the situation for critical equations is more
complicated, in that there is a richer picture of dynamics.

Key example : energy critical Wave Maps problem
u : R2+1 → S2,

�u = −u(−|ut |2 + |∇xu|2) (1)

One can try to find self-similar solution u(t, x) = W ( xt ). In
fact

W (a) = Q(
a

1 +
√

1− a2
)

works where Q : R2 −→ S2 is a harmonic map. This is of
infinite energy, and hence just fails to be in the largest space
for which the problem has a meaningful local well-posedness
theory.
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A basic equation

Singularities for energy critical Wave Maps I

The problem (1) is strongly locally well-posed in H1+ε for any
ε > 0 (Klainerman-Machedon, mid 90s). It is natural to
consider solutions of such regularity.

Co-rotational ansatz : u(t, re iθ) =

 sinU cos θ
sinU sin θ

cosU

, where

U = U(t, r).

Leads to the scalar equation

− Utt + Urr +
1

r
Ur =

sin(2U)

2r2
. (2)

After some numerical works, it was proved about 10 years ago
that (2) admits finite time singularities of the form
U(t, r) = Q(λ(t)r) + ε(t, r), Q(r) = 2 arctan r the ground
state harmonic map.
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A basic equation

Singularities for energy critical Wave Maps II

Two approaches : Raphael-Rodnianski approach with C∞

data giving stable within co-rotational class finite time blow

up with essentially uniquely determined λ(t) ∼ t−1e
√
| log t|.

K.-Schlag-Tataru approach with H1+ν , ν > 1
2 regularity data

with λ(t) = t−1−ν prescribed. Here ν > 1
2 can be varied

freely ! No stability assertion. Construction later generalised to
all ν > 0 (Gao-K. ’13).

For small ν > 0, the stability of the K.-Schlag-Tataru
solutions was established recently by K.-Miao(’18) within the
co-rotational class. Hence stability per se does not select a
unique blow up speed.
Both methods of construction have been applied in numerous
other contexts, on which more later.
Both methods rely on the construction of an approximate
solution via suitable elliptic auxiliary problems, which then get
completed to an exact solution via an iterative scheme using
energy type methods.
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A basic equation

Singularities for energy critical Wave Maps :
Raphael-Rodnianski

The idea is to depart from an ansatz u(t, r) ∼ Qb(λ(t)r),
where b = b(t) ∼ 1

λ(t)·t is a new time dependent parameter
whose precise evolution will be determined uniquely. The
choice b = 1 in fact corresponds to the self-similar infinite
energy profile, and Qb will be chosen to be an approximate
solution. For fixed b, the equation is

−4Qb + b2D(ΛQb) +
sin(2Qb)

2r2
, Λ = r∂r , D = 1 + Λ

Instead of solving this exactly, one tries a finite expansion

Qb =

j∑
l=0

b2lTl =

j∑
l=0

1

(λt)2l
Tl , T0 = Q

This is then completed to an exact solution Qb + ε.
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A basic equation

Singularities for energy critical Wave Maps :
K.-Schlag-Tataru

Here one also builds an approximate solution
uapp(t, r) = u0 +

∑N
j=1 vj , where u0 = Q(λ(t)r).

However, the vj are chosen very differently. To begin with, one
fixes λ(t) = t−1−ν . Then one seeks functions vj of a special
form. Specifically, one sets essentially.

v2j(t, r) =
1

(λ · t)j
qj(a), a =

r

t
,

the idea being that the v2j model the behaviour near the light
cone.

One gets an ode for qj which is singular both at a = 0 and
a = 1 :

(1− a2)∂2aqj + [a−1 − 2(2 + jν)a]∂aqj + cjqj = hj
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A basic equation

Singularities for energy critical Wave Maps : comparison of
the solutions

The operator on the left has a fundamental system near a = 1

with one singular solution which behaves like ∼ (1− a)
1
2
+jν .

A fundamental difference between the approximations is that
for the KST solutions the vj are chosen to vanish to third
order at the origin R = 0. On the other hand, the correction
T1 in the Raphael-Rodniansi ansatz only vanishes the first
order at R = 0.

The final correction ε in the Raphael-Rodnianski approach
needs to be orthogonal to the resonant mode ΛQ, due to the
scaling invariance of the problem. This is not required in the
KST approach.

This is of course related to the fact that the blow up rate in
the Raphael-Rodnianski approach is basically determined,
while the rate in the KST approach is variable.
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A basic equation

How to characterise the blow up solutions I

It is natural to suspect that imposing C∞ smoothness or also
lesser (but more than H1+) smoothness on the data as well as
stability of blow up (within the co-rotational class) will
essentially select the Raph.-Rod. solutions :
Conjecture : If u(t, r) = Q(λ(t)r) + ε(t, r) is a finite time
blow up (at t = 0) with C∞ initial data, then we have

λ(t) = t−j · f (| log t|), j ∈ N

where f (|logt|) stands for a logarithmic correction. Only the
case j = 1 leads to stable (within the co-rotational class) blow
ups.

Characterizing the non-smooth KST blow ups may involve the
regularity of the outgoing radiation past the blow up point.
While the KST solutions are constructed within the backward
light cone at the singularity, it is natural to expect that ε may
be continued in the H1+ν−-topology up to t = 0 (blow up).
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A basic equation

How to characterise the blow up solutions II

Conjecture : Assume that the finite time blow up (at t = 0)
solution u(t, r) = Q(λ(t)r) + ε(t, r) is such that
limt→0 ε(t, r) = ε∗ ∈ H1+ν , limt→0 ∂tε(t, r) = ε∗∗ ∈ Hν ,
ν > 0. Then we have

λ(t) ≥ t−1−ν

for t sufficiently small.

Remark : Observe that due to work by
Duyckaerts-Jia-Kenig-Merle one has the soliton resolution for
finite time blow up solutions which are sufficiently close to Q.
This, however, is only in the energy topology, while here a
finer topology is being imposed.
Results in this direction have been proved for the energy

critical focussing NLW �u = −u
n+2
n−2 and type II blow ups in

dimensions n = 3, 4, 5 by J. Jendrej, but these results are still
far from the precision in the above conjecture.
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A basic equation

How to characterise the blow up solutions III

In n = 3, the energy critical focussing NLW �u = −u5 admits

a static solution W (x) =
(
1 + |x |2

3

)− 1
2 , which is analogous to

Q for critical Wave Maps.

K.-Schlag-Tataru(’09) constructed finite time blow ups of the
form

u(t, x) = λ
1
2 (t)W (λ(t)x) + ε(t, x), λ(t) = t−1−ν ,

with ε ∈ H1+ ν
2
−. Similar construction as for critical WM.

On the other hand, assuming one has a solution of the
preceding form with limt→0 ε(t, r) = ε∗ ∈ H1+ν ,
limt→0 ∂tε(t, r) = ε∗∗ ∈ Hν ,we have
Theorem(Jendrej ’15) If the radiation (ε∗, ε∗∗) ∈ H2 × H1,

then λ(t) ≥ t−
4
3 .

The KST solutions require λ(t) ≥ t−3 to get H2 radiation
part at blow up time.
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A basic equation

Comparison to the harmonic map heat flow

The parabolic analogue of the co-rotational Wave Maps is the
following parabolic problem :

ut = urr +
1

r
ur −

sin 2u

2r2
.

admits a quantised set of blow up scales λ(t) ∼ tk

| log t|ck ,
discovered heuristically by VandenBerg-Hulshof-King, and
constructed rigorously by Raphael-Schweyer(’13).

The continuum of blow up rates for the Wave Maps model is
clearly impossible here, due to parabolic smoothing. The
quantised rates for the parabolic rates correspond roughly to
the (conjectured) quantised set of λ(t) corresponding to C∞

smooth data resulting in finite time blow up for Wave Maps.
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A basic equation

Stability of blow up solutions

An important issue already alluded to is the stability of these
blow up dynamics . For Wave Maps, given that in the energy
critical case thus far all blow ups have been obtained in a
suitable symmetry reduction (co-rotational or higher
equivariance class), there are two questions.

(1) Symmetry under co-rotational perturbations. (2)
Symmetry under general perturbations.

Here the the second question is significantly harder than the
first since it deals with a system, while the co-rotational
problem is scalar. Moreover, the co-rotational problem is truly
semilinear (in the sense of no derivatives in nonlinearity),
while the second problem does have derivatives.

Stability within co-rotational class of KST solutions for small
enough ν > 0 (recall λ(t) = t−1−ν) is a recent result of
K.-Miao (’18). It is based on Fourier methods.
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A basic equation

Stability of KST solutions I

Let uν = Q(λ(t)r) + εν(t, r) be one of the co-rotational Wave
Maps blow ups constructed by KST with λ(t) = t−1−ν , ν > 0
on some internal interval (0, t0], t0 > 0.

Theorem(K.-Miao ’18) Let ν > 0 be small enough. Let
(ε0(r), ε1(r)) be such that the maps (r , θ) −→ εj(r)e iθ,
interpreted as maps from R2 into itself have sufficiently small
H4
R2 , resp. H3

R2-norm. In particular, we have
εj(0) = 0, j = 0, 1. Then the perturbed data(

uν(t0) + ε0, ∂tuν(t0) + ε1
)

lead to another finite time blow up solution of the form

u(t, r) = Q(λ(t)r) + ε1(t, r).

Thus the KST blow up is stable (under suitable co-rotational
perturbations) for ν > 0 small enough.
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A basic equation

Stability of KST solutions, remarks

A puzzling feature here is the fact that the perturbed
solutions blow up in the same space time location, which may
sound paradoxical at first. This is due to the shock the
solution experiences across the light cone, and which imparts
a certain rigidity to these solutions ; the functions ε0,1 are
smoother than the solutions uν being perturbed, thus not
affecting the shock.

The same method ought to give finite co-dimension stability
for larger values of ν.

A similar result, but co-dimension one stability, holds for the
KST solutions with ν > 0 small enough in the context of
�u = −u5 (Burzio-K. ’17).

There are special features in the context of critical Wave
Maps, first observed in work by Gustafson-Kang-Tsai, which
lead to a more conceptual and elegant method there.
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A basic equation

Stability of KST solutions, proof of stability

Let uν(t, r) = Q(λ(t)r) + η(t, r) the given blow up solution
to be perturbed, and let uν + ε(t, r) be the perturbation. One
gets the equation

(
− ∂tt + ∂rr +

1

r
∂r
)
ε− cos(2Q(λ(t)r)

r2
ε = N(ε),

with

N(ε) =
cos(2uν)− cos(2Q(λ(t)r)

r2
+

sin(2uν)

2r2
(cos(2ε)− 1)

+
cos(2uν)

2r2
(sin(2ε)− 2ε)

Passage to the new coordinates τ =
∫∞
t λ(s) ds, R = λ(t)r

leads to time independent potential term.
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A basic equation

First setup of perturbation problem

Write ε̃(τ,R) = R
1
2 ε(t(τ), r(τ,R)). Obtain perturbation

problem(
− (∂τ +

λτ
λ
R∂R)2 +

1

4
(
λτ
λ

)2 +
1

2
∂τ (

λτ
λ

)
)
ε̃− Lε̃

= λ−2(τ)R
1
2N(ε)

where L is a singular operator

L = −∂2R +
3

4R2
− 8

(1 + R2)2

Spec(L) = [0,∞), purely absolutely continuous. There is a
resonance at zero

R
1
2∂λQ(λr)|λ=1 = φ0(R) =

R
3
2

1 + R2
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A basic equation

First setup of perturbation problem

One can associate a Fourier base to L, of the form

φ(R, ξ) = φ0(R)(1+O(R2ξ)), R2ξ . 1, φ(R, ξ) ∼
∑
±

a±(ξ)
e±iRξ

1
2

R
1
2 ξ

3
4

, Rξ
1
2 & 1.

Then one gets a associated Fourier representation

f (R) =

∫ ∞
0

φ(R, ξ)x(ξ)ρ(ξ) dξ, x(ξ) = 〈f , φ(R, ξ)〉L2dR

However, the spectral measure is very singular at the origin,
in that one has the asymptotics

ρ(ξ) ∼ 1

ξ log2 ξ
, ξ � 1, ρ(ξ) ∼ ξ, ξ � 1.

This causes complications when controlling the low frequency
contributions.
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A basic equation

Some remarkable identities

From now on, we shall use the notation φ0(R) = R
1+R2 , i. e.

we divide by R
1
2 to go back to the 2− d setting.

Introduce the operator

D = ∂R +
1

R

R2 − 1

R2 + 1
,

as well as its adjoint (with respect to 〈·, ·〉L2R dR
)

−D∗ = ∂R +
1

R
(1 +

1− R2

1 + R2
)

Then one has the relations

Dφ0(R) = 0, L = D∗D.
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A basic equation

Introduction of better variables

Formally one has an inverse of D given by

φ(g) = φ0(R)

∫ R

0
(φ0(s))−1g(s) ds

One then infers a representation of ε(τ,R) as

ε(τ,R) = φ(Dε) + c(τ)φ0(R).

It then suffices to work with the quantites
(
Dε, c(τ)

)
.

The function Dε solves a wave equation with an elliptic
operator which has a much improved spectral representation
associated with it.

On the other hand, the function c(τ) satisfies a fairly simple
ODE.
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A basic equation

The system for Dε, c(τ)

Applying D to the equation for ε and computing a bunch of
commutators, one finds

−
(
(∂τ +

λτ
λ
R∂R)2 + 3

λτ
λ

(∂τ +
λτ
λ
R∂R)

)
Dε− L̃Dε

= λ−2D (N(ε))− 4R

(R2 + 1)2

(
2

(
λ′

λ

)2

+

(
λ′

λ

)′)
ε

− λ′

λ

4R

(R2 + 1)2

(
∂τ +

λ′

λ
R∂R

)
ε− λ′

λ

(
∂τ +

λ′

λ
R∂R

)(
4R

(R2 + 1)2
ε

)
+

(
2

(
λ′

λ

)2

+

(
λ′

λ

)′)
Dε

=:λ−2D (N(ε)) +R(ε,Dε) +

(
2

(
λ′

λ

)2

+

(
λ′

λ

)′)
Dε.

Here L̃ = DD∗ has a much better spectral representation.
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A basic equation

Spectral theory associated with L̃

The generalised eigenfunctions φ(R, ξ) associated with L̃ can
be easily computed from those used previously for L. Calling
the latter φKST (R, ξ), we can set

φ(R, ξ) = ξ−1D
(
R−

1
2φKST

)
.

Also, define ρ̃(ξ) := ξρ(ξ), so we now have the asymptotics

ρ̃(ξ) ∼ log−2(ξ), ξ � 1.

Then we get the Fourier representation (due first to
Bejenaru-K.-Tataru’13)

f (R) =

∫ ∞
0

φ(R, ξ)x(ξ)ρ̃(ξ) dξ, x(ξ) = 〈f , φ(R, ξ)〉L2R dR

We shall represent the function Dε in terms of the basis
φ(R, ξ), and translate things to the Fourier side.
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A basic equation

Translation of equation to Fourier side

The issue comes up that the operator R∂R occurring in the
equation for Dε does not translate to −2ξ∂ξ. Instead we have
the relation

F
(
R∂R f

)
+ 2ξ∂ξF(f ) = (−2 +K0)F(f ),

where the operator K0 is again a Calderon-Zygmund operator
of the form

K0g(ξ) =

∫ ∞
0

F (ξ, η)ρ̃(η)

ξ − η
g(η) dη,

with F satisfying certain decay bounds.

Write now Dε(τ,R) =
∫∞
0 φ(R, ξ)x(τ, ξ)ρ̃(ξ) dξ.

Introduce the operator Dτ = ∂τ − 2λτλ ξ∂ξ −
λτ
λ .
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A basic equation

The equation on Fourier side I

The equation for x now becomes(
D2
τ +

λτ
λ
Dτ + ξ

)
x(τ, ξ) = F

(
λ−2(τ)DN(ε)

)
+R(x , τ), (3)

Here the term R(x τ) arises due to the operator K0, and
comprises expressions of the form

(
λτ
λ

)2K0x ,
λτ
λ
K0Dτx ,

as well as similar ones morally equivalent to these,

The transport operator on the left in (3) again admits a
rather simple explicit propagator. Translated to the physical
side, it will not lead to any growth.
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A basic equation

The equation on Fourier side I

(
D2
τ + λτ

λ Dτ + ξ
)
x(τ, ξ) = 0,

(
x(τ0, ·),Dτx(τ0, ·)

)
= (x0, x1)

solved by

x(τ, ξ) =
λ(τ)

λ(τ0)
cos

(
λ(τ)ξ

1
2

∫ τ

τ0

λ(u)−1du

)
x0

(
λ(τ)2

λ(τ0)2
ξ

)
+ ξ−

1
2 sin

(
λ(τ)ξ

1
2

∫ τ

τ0

λ(u)−1du

)
x1

(
λ(τ)2

λ(τ0)2
ξ

)

This leads to good weighted energy type bounds. Let∥∥x(ξ)
∥∥
S0

:=
∥∥〈ξ〉2+κξ 1

2 〈log ξ〉−1−κx(ξ)
∥∥
L2dξ

Then the following energy type bound applies :
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A basic equation

Bounds for the parametrix

We have the bound

sup
τ≥τ0

λ(τ)

λ(τ0)
〈log(

λ(τ)

λ(τ0)
)〉1+κ[

∥∥x(τ, ·)
∥∥
S0

+
∥∥ξ− 1

2Dτx(τ, ·)
∥∥
S0

]

.
∥∥x0∥∥S0 +

∥∥ξ− 1
2 x1
∥∥
S0
.

Recall that λ(τ) ∼ τ1+ν−1
, so we get decay which becomes

better when ν shrinks.

We also control the amplitude of ε via the norm ‖ · ‖S0 .
Specifically, putting

ε(R) = φ(Dε), Dε(R) =

∫ ∞
0

φ(R, ξ)x(ξ)ρ̃(ξ) dξ,

we get the bound ∥∥ ε(R)

〈logR〉R
∥∥
L∞dR
.
∥∥x∥∥

S0
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A basic equation

The equation for the resonant part c(τ).

Recall that we write ε(τ,R) = φ(Dε) + c(τ)φ0(R). The first
term here behaves like O(R3) at the origin, while the second
one is O(R) only. This suffices to extract the equation for
c(τ) from the equation for ε.

Equation governing resonant mode :(
∂τ +

λτ
λ

)2
c(τ) +

λτ
λ

(
∂τ +

λτ
λ

)
c(τ) + h(τ) + n(τ) = 0,

where

h(τ) = lim
R→0

R−1D∗Dε(τ,R), n(τ) = lim
R→0

R−1λ−2(τ)N(ε)(τ,R).

The operator Lc :=
(
∂τ + λτ

λ

)2
+ λτ

λ

(
∂τ + λτ

λ

)
has

fundamental system

φ1(τ) = τ−1−ν
−1
, τ−1−

2
ν
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A basic equation

Setting up the final fixed point

In the end, one works with Fourier coefficients x(τ, ξ) for Dε
which admit a decomposition of the form

x(τ, ξ) =
∑

N≥k≥1,N≥j≥1
χξ>1a

±
kj(τ)

e±iντξ
1
2

ξ2+
kν
2

〈log ξ〉j + χξ>1
b(τ, ξ)

ξ
5
2
+ ν

2
−

+ xgood(τ, ξ)

where finally xgood ∈ S0.

To simplify the discussion, we shall pretend in the sequel that
x ∈ S0.

The point is now to solve the system(
D2
τ +

λτ
λ
Dτ + ξ

)
x(τ, ξ) = F

(
λ−2(τ)DN(ε)

)
+R(x , τ)(

∂τ +
λτ
λ

)2
c(τ) +

λτ
λ

(
∂τ +

λτ
λ

)
c(τ) + h(τ) + n(τ) = 0.
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A basic equation

The final fixed point

Prop. Let
∥∥(x0, x1)

∥∥
S0×S1

+ |c0|+ |c1| < δ0 sufficiently small
and τ0 sufficiently large. Then the preceding system admits a
unique solution (

x(τ, ξ), c(τ)
)

satisfying the bounds

sup
τ≥τ0

λ(τ)

λ(τ0)
〈log(

λ(τ)

λ(τ0)
)〉1+

κ
2 [
∥∥x(τ, ·)

∥∥
S0

+
∥∥Dτx(τ, ·)

∥∥
S1

]

+ sup
τ≥τ0

λ(τ)

λ(τ0)
〈log(

λ(τ)

λ(τ0)
)〉1+

κ
2 τ−2[|c(τ)|+ τ |c ′(τ)|]

. δ0

In turn
ε(τ,R) = φ(Dε) + c(τ)φ0(R)

gives the desired perturbation of uν .

Blowup dynamics via energy concentration preprint 2019



A basic equation

Stability without equivariance ?

A recent result by Duyckaerts-Jia-Kenig-Merle(’16)
characterises blow up solutions u : R2+1 −→ S2 whose data
are close in energy to the family of ground states (i. e. Q up
to the symmetries) and which blow up at the origin :

~u(t, x) = Rα(t),β(t)h(t) Lv ( ~Qλ(t)) + ε(t, x)

where Rα(t),β(t)h(t) stands for a general rotation in SO(3) and
Lv a suitable Lorentz transform.

No such examples known, there is some debate whether there
may be finite time blow up stable under non-corotational
perturbations. It seems the conjecture is that the
Raphael-Rodnianski blow ups are unstable, due to ’chaotic’
behaviour of the angles α(t) etc.
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A basic equation

Stability without equivariance ?

Does the ’shock’ across the light cone impart enough rigidity
on the KST solutions so that they are stable under generic
perturbations ?

Conjecture(K.-Miao-Schlag, ongoing work) The KST
solutions for ν > 0 sufficiently small are stable under suitable
small perturbations outside of the co-rotational regime. The
perturbed solutions decouple into

~u(t, x) = Rα(t),β(t)h(t) Lv ( ~Qλ̃(t)) + ε(t, x)

where limt→0 α(t) etc exist. Thus the bulk part does not ’spin
out of control’.

Strategy : express perturbation in terms of a suitable frame
for TS2, and express the variables as Fourier series in the
angular variable θ, resulting in a countable family of variables.
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A basic equation

Other examples of similar blow ups I

A number of unexpected further blow up constructions of
similar nature were accomplished by Galina Perelman and
collaborators.

co-rotational critical Schroedinger maps : u : R2+1 −→ S2,
ut = u ×4u, admits solutions of the form

Q(λ(t)x) + ε(t, x), λ(t) = t−
1
2
−ν , ν > 1.

(G. Perelman ’12)

Energy critical focussing NLS (G. Perelman and C. Ortoleva
and G. Perelman, ’12)

Hyperbolic vanishing mean curvature flow(H. Bahouri, A.
Marachli, G. Perelman, ’19)
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A basic equation

Other examples of similar blow ups

This is a quasilinear equation :

∂t
( ut√

1− u2t + |∇u|2
)
−

n∑
j=1

∂xj
( uxj√

1− u2t + |∇u|2
)

Fixing spatial dimension to 2n, one can consider rotationally
symmetric surfaces parametrized by

(x , ω) ∈ Rn × Sn−1 −→
(
x , u(t, x)ω

)
Further assume u radial, i. e. u = u(t, ρ), ρ = |x |. Resulting
equation

(1+u2ρ)utt−(1−u2t )uρρ−2utuρuρt +3(1+u2ρ−u2t )(u−1− uρ
ρ

).

u(t, ρ) = ρ is called the Simons cone.
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A basic equation

Other examples of similar blow ups I

Ny work of Bombieri-De Giust-De Giorgi(’69) it is known that
the complement of the Simons cone can be foliated by a
family of minimal surfaces (aM)a>0, (aM̃)a>0, where M is
given by

(ρ, ω1, ω2) −→ (ρω1,Q(ρ)ω2)

for a suitable function Q(ρ) = ρ+ d
ρα + l .o.t..

Theorem(H. Bahouri, A. Marachli, G. Perelman, ’19) For
each ν > 1

2 irrational, there is a solution of the form

u(t, x) = tν+1Q(
x

tν+1
) + g0(x) + η(t, x)

Here part of the problem is to identify the characteristic cone
where the solution experiences a (higher order) shock,
analogous to the construction for Wave Maps.
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