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The The Calderón Inverse Conductivity Problem
Let Ω be a simply connected domain in R2 ' C ∇ · (σ∇u) = 0 in Ω

u
∣∣∣
∂Ω

= g .
(1)

The Dirichlet-to-Neumann map is defined as

Λσf := σ
∂u

∂ν

∣∣∣
∂Ω
.

A.P. Calderón (1980) posed the problem: does Λσ uniquely determine σ?

N. (1996) - Unique reconstruction for σ ∈W 2,p(Ω) for some p > 1

R. Brown. G. Uhlman (1997) - σ ∈W 1,p(Ω), for some p > 2.

K. Astala, L. Päivärinta (2006) - σ ∈ L∞

K. Astala, M. Lassas, L. Päivärinta (2016) - Larger class of
conductivities which includes some unbounded ones.

C.Carstea J.-N. Wang log σ ∈ L2(Ω) with small norm (2018)
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Reconstruction via Inversion of the Scattering Transform

Assume ∇logσ ∈ L2(Ω) and (for simplicity) σ = 1 on ∂Ω.

Let v = σ
1
2∂u then for u real valued, v is pseudoanalytic i.e. ∂̄v = qv with

q = −1
2∂ log σ ∈ L2.

We’ll use a nonlinear transform of q, the Scattering Transform Sq, which
can be calculated from Λσ.

The main result of Part 1 is a Plancherel and Inversion Theorem for the
Scattering Transform.
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The Scattering Transform

Given q(z), we solve for m±(z , k) satisfying the pseudo-analytic equations{
∂
∂zm± = ±e−kqm±
m± → 1 as |z | → ∞

where

z = x1 + ix2; k = k1 + ik2; ∂̄ =
1

2

( ∂

∂x1
+ i

∂

∂x2

)
; ek(z) = e i(zk+zk).

The Scattering Transform - first introduced by Ablowitz and Fokas (1982)
to solve a nonlinear PDE - is defined as

s(k) = Sq(k) =
1

2πi

∫
R2

ek(z)q(z)
(
m+(z , k) + m−(z , k)

)
dz ,

where dz = dx1dx2. When q = 0, then m± = 1 and s(k) = q̂(k).
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Nonlinear Plancherel Identity

Beals and Coifman (1998) proved that for q in Schwartz class s is in
Schwartz class and : ∫

R2

|s(k)|2dk =

∫
R2

|q(z)|2dz .

Open Problem: true for all q in L2 ?

R. Brown (2001) - q in L2 with small norm

P. Perry (2014) - q in weighted Sobolev space H1,1

K. Astala, D. Faraco and K. Rogers (2015) - q in weighted Sobolev
space Hε,ε, ε > 0

R. Brown, K. Ott and P. Perry (2016) - q ∈ Hα,β iff s ∈ Hβ,α,
α, β > 0
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Plancherel Theorem

Theorem (N-Regev-Tataru)

The nonlinear scattering transform S : q 7→ s is a C 1 diffeomorphism
S : L2 → L2, satisfying:

1 The Plancherel Identity: ‖Sq‖L2 = ‖q‖L2

2 The pointwise bound: |Sq(k)| ≤ C (‖q‖L2)Mq̂(k) for a.e. k

3 Locally uniform bi-Lipschitz continuity:

1

C
‖Sq1 − Sq2‖L2 ≤ ‖q1 − q2‖L2 ≤ C‖Sq1 − Sq2‖L2

where

C = C (‖q1‖L2)C (‖q2‖L2).

4 Inversion Theorem: S−1 = S.
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Using the Scattering Transform to solve DSII
The (integrable, defocusing) DSII (Davey Stewartson) equations

i∂tq + 2(∂̄2 + ∂2)q + q(g + g) = 0

∂̄g + ∂(|q|2) = 0

q(0, z) = q0(z)

(2)

arise in the study of water waves, ferromagnetism, plasma physics, and
nonlinear optics. Analogous to Fourier transform for linear PDEs:

s0(k) = Sq0(k)

s(t, k) = e2i(k2+k
2
)ts0(k)

q(t, z) = I
(
s(t, k)

)
(z).

(3)

q0(z)
nonlin //

S
��

q(t, z)

s0(k)
linear // s(t, k).

I

OO
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A bit about the Proof

We need to solve {
∂
∂zm± = ±e−kqm±
m± → 1 as |z | → ∞.

In integral form,

m± − 1 = (∂̄ ∓ e−kq·)−1∂̄−1(e−kq).

1 For q ∈ L2, we need new bounds on ∂̄−1(e−kq) which allow us to
capture the large k decay without assuming any smoothness on q.

2 We need bounds on (∂̄ ∓ e−kq·)−1 which depend only on the L2 norm
of q.
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New Estimate on Fractional Integrals

Lemma

For q ∈ L2(C),

‖∂̄−1(e−kq)‖L4 . ‖q‖
1
2

L2

(
Mq̂(k)

) 1
2
.

M is the Hardy-Littlewood Maximal function

Mf (x) = sup
r>0

1

|B(x , r)|

∫
B(x ,r)

|f (y)|dy .

which yields a bounded operator on Lp for 1 < p ≤ ∞.

Theorem

For 0 < α < n, f ∈ Lp(Rn), 1 < p ≤ 2

∣∣(−∆)−
α
2 f (x)

∣∣ ≤ cn,α
(
Mf̂ (0)

)α
n
(
Mf (x)

)1−α
n
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Sketch of Proof - Fractional Integrals

Proof.

Using Littlewood-Paley decomposition,

(−∆)−
α
2 f (x) =

1

(2π)n

j0∑
j=−∞

∫
Rn

ψj(ξ)
e ix ·ξ

|ξ|α
f̂ (ξ)dξ +

∞∑
j0+1

...

with ψj(ξ) = ψ(ξ/2j) supported in 2j−1 < |ξ| < 2j+1. For j ≤ j0 use∫
|ξ|<r
|f̂ (ξ)|dξ ≤ cnr

nMf̂ (0)

... ∣∣(−∆)−
α
2 f (x)

∣∣ . 2j0(n−α)Mf̂ (0) + 2−j0αMf (x)

optimize over j0.
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Key Theorem - bounds in terms of ‖q‖L2

Theorem

Let q ∈ L2. Then for each f ∈ Ḣ−
1
2 there exists a unique solution u ∈ Ḣ

1
2

of

Lqu := ∂̄u + qu = f (4)

with
‖u‖

Ḣ
1
2
≤ C (‖q‖L2)‖f ‖

Ḣ− 1
2
. (5)

In particular, for f ∈ L
4
3 the same holds, with ‖u‖L4 ≤ C (‖q‖L2)‖f ‖

L
4
3

.

Idea of the proof: use Kenig and Merle method of Induction on Energy
and Gerard Profile Decompositions to study the static problem.
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Construction of the Jost Solutions for q ∈ L2

As a result of the new estimates on fractional integrals and the Key
Theorem, we can now establish

Theorem (Jost Solutions)

Suppose q ∈ L2, then for almost every k there exist unique Jost solutions
m±(z , k) with m±(·, k)− 1 ∈ L4 and moreover

‖m(·, k)± − 1‖L4 ≤ C (‖q‖L2)
(
Mq̂(k)

) 1
2

‖m± − 1‖L4
zL

4
k
≤ C (‖q‖L2).

‖∂̄m1(·, k)‖
L

4
3
≤ C (‖q‖L2)

(
Mq̂(k)

) 1
2 .
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Scattering Transform as a ΨDO

Recall

s(k) = q̂(k)− i

π

∫
R2

ek(z)q(z)a(k , z)dz ,

where a(k, z) =
(
m+(z , k) + m−(z , k)

)
. Replace q by the Fourier

transform of some function in L2. Then the above becomes a
pseudo-differential operator with symbol a(k , z). We’d like to prove it is a
bounded operator on L2.
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Theorem

Let 0 ≤ α < n. Suppose a(x , ξ) satisfies∫
Rn

∫
Rn

∣∣a(x , ξ)
∣∣ 2n
n−α dxdξ <∞ and ‖(−∆ξ)

α
2 a(x , ξ)‖

L
2n

n+α
ξ

∈ L
2n

n−α
x .

Then the pseudo-differential operator

a(x ,D)f (x) :=
1

(2π)n

∫
Rn

e ix ·ξa(x , ξ)f̂ (ξ)dξ (6)

is bounded on L2. Moreover, we have the pointwise bound

|a(x ,D)f (x)| ≤ cα,n(Mf (x))α/n‖(−∆ξ)
α
2 a(x , ·)‖

L
2n

n+α
‖f ‖1−α

n

L2 (7)

for a.e. x.

This completes the sketch of the proof of the Plancherel Theorem.
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GWP for Defocusing DSII on L2

Theorem

Given q0 ∈ L2, there exists a unique solution to the Cauchy Problem for
defocusing DSII such that:

1 Regularity:
q(t, z) ∈ C (R, L2

z(C)) ∩ L4
t,z(R× C).

2 Uniform bounds: ‖q(t, ·)‖L2 = ‖q0‖L2 for all t ∈ R and∫
R

∫
R2

|q(t, z)|4dzdt ≤ C (‖q0‖L2).

3 Stability: if q1(t, ·) and q2(t, ·) are two solutions corresponding to
initial data q1(0, ·) and q2(0, ·) with ‖qj(0, ·)‖L2 ≤ R then

‖q1(t, ·)− q2(t, ·)‖L2 ≤ C (R)‖q1(0, ·)− q2(0, ·)‖L2 for all t ∈ R.
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Back to The Calderón Inverse Conductivity Problem

Theorem

Suppose σ > 0 is such that ∇ log σ ∈ L2(Ω) and σ = 1 on ∂Ω, then we
can reconstruct σ from knowledge of Λσ.

Start of first step: from Λσ to s(k) = Sq(k)

Let v = σ
1
2∂u then for u real valued, ∂̄v = qv where q = −1

2∂ log σ ∈ L2.

s(k) =
1

2πi

∫
R2

ek(z)q(z)
(
m+(·, k) + m−(·, k)

)
=

1

2πi

∫
Ω
∂
(
m+(·, k)−m−(·, k)

)
=

1

4πi

∫
∂Ω
ν
(
m+(·, k)−m−(·, k)

)
Proof consists in showing that Λσ determines the traces of m±(·, k) on ∂Ω.
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Thank You!
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