Transverse stability of the line soliton with critical frequency for the Nonlinear Schrödinger equations. BIRS

Yakine Bahri

University of Victoria

July, 3rd 2019

Joint work with S. Ibrahim and H. Kikuchi

Pacific Institute for the Mathematical Sciences

Outlines

1 Introduction

- The Schrödinger equations.
- Line soliton.
- Stability.
- Transverse Stability.

Introduction

The Schrödinger equations:

We consider the following Nonlinear Schrödinger equations:

$$i\partial_t \psi + \partial_{xx} \psi + \partial_{yy} \psi + |\psi|^{p-1} \psi = 0, \quad \text{in } \mathbb{R}_t \times \mathbb{R}_x \times \mathbb{T}_y, \quad (\mathsf{NLS})$$

where p > 1 and $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$.

Energy (Hamiltonian)

$$\mathcal{H}(\psi) := \frac{1}{2} \int_{\mathbb{R}\times\mathbb{T}} \left(|\nabla\psi(x,y)|^2 - \frac{2}{p+1} |\psi(x,y)|^{p+1} \right) dxdy$$

Line soliton

Let R_{ω} be the unique positive solution to

$$-\partial_{xx}R_{\omega} + \omega R_{\omega} - |R_{\omega}|^{p-1}R_{\omega} = 0 \quad \text{in } \mathbb{R},$$

that is,

$$R_{\omega}(x) = \left(\frac{(p+1)\omega}{2}\right)^{\frac{1}{p-1}} \operatorname{sech}^{\frac{2}{p-1}} \left(\frac{(p-1)\omega}{2}x\right).$$

We note that $e^{i\omega t}R_{\omega}(x)$ becomes the standing waves of the following Schrödinger equations:

$$i\partial_t \psi + \partial_{xx} \psi + |\psi|^{p-1} \psi = 0$$
 in $\mathbb{R} \times \mathbb{R}$.

Definition

$$\|\psi_0 - R_\omega\|_{H^1} < \delta \Rightarrow \sup_{t>0} \inf_{\theta \in \mathbb{R}, b \in \mathbb{R}} \|\psi(t, \cdot) - e^{i\theta} R_\omega(\cdot - b)\|_{H^1} < \varepsilon.$$

Stability's results of the line soliton under the 1D NLS flow:

- **•** stable for 1 (Cazenave and Lions / Grillakis, Shatah and Strauss).
- unstable for p > 5 (Berestycki and Cazenave / Grillakis, Shatah and Strauss).
 unstable for p = 5 (Weinstein).

Remark

The line soliton R_{ω} is a steady state solution to (NLS) in the energy space.

Transverse Stability : Stability of the line solitary wave under the 2D perturbation.

Definition (Transverse Stability)

$$\|\psi_0 - R_\omega\|_{H^1} < \delta \Rightarrow \sup_{t>0} \inf_{\theta \in \mathbb{R}, b \in \mathbb{R} \times \mathbb{T}} \|\psi(t, \cdot) - e^{i\theta} R_\omega(\cdot - b)\|_{H^1} < \varepsilon$$

Literature

- Milewski and Wang : Describe Traveling waves which are localized in the propagation direction and periodic in the transverse direction (Gravity-Capillary).
- Haragus : Transverse stability of those traveling waves for the Euler equation.
- Rousset and Tzvetkov : Linear and nonlinear instability of the line solitary water waves with respect to transverse perturbations.

Literature

 Rousset and Tzvetkov : Nonlinear long time instability of the KdV solitary wave under a KP-I flow.

$$u_t + uu_x + u_{xxx} = 0, \tag{KdV}$$

$$u_t + uu_x + u_{xxx} - \partial_x^{-1} u_{yy} = 0, \quad \mathbb{R}_x \times \mathbb{T}_y$$
 (KP-I)

- Rousset and Tzvetkov : Transverse nonlinear instability of solitary waves for the cubic nonlinear Schrödinger equation.
- Pelinovsky : Instability band of a deep-water soliton of the hyperbolic non-linear Schrödinger equation.
- Yamazaki : Tranverse stability of the line standing waves under the flow of the 2D nonlinear Schrödinger equation.

Outlines

- 2 Classification of the transverse stability with respect to the frequency:
 - Sub-critical case.
 - Super-critical case.
 - The Critical case .

Sub-critical case

Theorem (Yamazaki 2014)

Let $1 and <math>\omega_p = \frac{4}{(p-1)(p+3)}$.

(i) for $0 < \omega < \omega_p$, the standing wave $e^{i\omega t}R_{\omega}$ is stable under the flow of (NLS).

Sub-critical case

From Grillakis, Shatah and Strauss theory, it is sufficient to show

 $\langle \mathcal{S}''_{\omega}(R_{\omega})u, u \rangle \ge \delta ||u||_X^2,$

with

$$S_{\omega}(u) := \frac{1}{2} \|\nabla u\|_{L^{2}}^{2} + \frac{\omega}{2} \|u\|_{L^{2}}^{2} - \frac{1}{p+1} \|u\|_{L^{p+1}}^{p+1}.$$
$$\langle S_{\omega}''(R_{\omega})u, u \rangle = \sum_{n \in \mathbb{Z}} \left(\langle L_{\omega, +, n} u_{n}^{R}, u_{n}^{R} \rangle + \langle L_{\omega, -, n} u_{n}^{I}, u_{n}^{I} \rangle \right),$$

where

$$L_{\omega,+,n} = -\partial_{xx} + \omega + n^2 - pR_{\omega}^{p-1}, \qquad L_{\omega,-,n} = -\partial_{xx} + \omega + n^2 - R_{\omega}^{p-1},$$

and
$$u_n^R := \Re u_n, \qquad u_n^I := \Im u_n.$$

Sub-critical case

Spectral properties

- The negative eigenvalue of $L_{\omega,+,0}$ is $-\frac{\omega}{\omega_p}$ and the corresponding eigenfunction is given by $R_{\omega}^{\frac{p+1}{2}}$.
- We have

$$\langle L_{\omega,+,n}u_n^R, u_n^R \rangle \ge (n^2 - \frac{\omega}{\omega_p}) \|u_n^R\|_{L^2_x}^2.$$

• When $\omega < \omega_p$, we obtain

 $\langle L_{\omega,+,n}u_n^R, u_n^R \rangle \ge \delta \|u_n^R\|_{L^2_x}^2.$

Super-critical case

Theorem (Yamazaki 2014)

Let $1 and <math>\omega_p = \frac{4}{(p-1)(p+3)}$.

(ii) for $\omega > \omega_p$, the standing wave $e^{i\omega t}R_{\omega}$ is unstable under the flow of (NLS).

Super-critical case

Let $u(t) := e^{i\omega t} (R_{\omega} + v(t))$, so that $v := (\Re v, \Im v)$ is a solution of

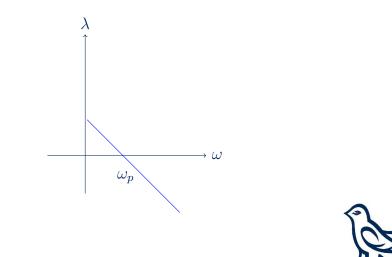
 $v_t = -J(\mathcal{S}''_{\omega}(R_{\omega})v + NL(v, R_{\omega})),$

$$J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

For $\omega > \omega_p$, $-JS''_{\omega}(R_{\omega})$ has at least one positive eigenvalue.

 \Rightarrow linear instability \Rightarrow nonlinear instability.

Spectral properties



Spectral properties

The kernel of the linearized operator

$$L_{\omega_p,+} := -\partial_{xx} - \partial_{yy} + \omega_p - pR_{\omega}^{p-1},$$

is given by

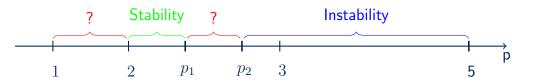
$$\operatorname{Ker} L_{\omega_p,+} = \operatorname{Span} \left\{ R'_{\omega_p}, R^{\frac{p+1}{2}}_{\omega_p} \cos y, R^{\frac{p+1}{2}}_{\omega_p} \sin y \right\}.$$

The critical frequency case $\omega = \omega_p$

Theorem (Yamazaki 2015)

There exists $2 < p_1 < p_2 < 3$ satisfying the following two properties:

- (i) If $2 \le p \le p_1$, then the standing wave $e^{i\omega_p t} R_{\omega_p}$ is stable under the flow of (NLS).
- (ii) If $p_2 \le p < 5$, then the standing wave $e^{i\omega_p t} R_{\omega_p}$ is unstable under the flow of (NLS).



The critical frequency case $\omega = \omega_p$

Theorem (B., Ibrahim and Kikuchi 2019)

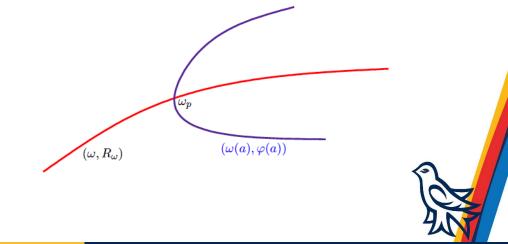
There exists $2 < p_0 < 3$ satisfying the following two properties:

(i) If $1 , then the standing wave <math>e^{i\omega_p t} R_{\omega_p}$ is stable under the flow of (NLS).

(ii) If $p > p_0$, then the standing wave $e^{i\omega_p t}R_{\omega_p}$ is unstable under the flow of (NLS).

Bifurcation

We construct a steady state to (NLS) which bifurcate from the line solitary wave with the critical frequency ω_p (pitchfork)



Bifurcation

Proposition (Pelinovsky et al. 2011)

Let $p \ge 2$. There exist I a neighborhood of 0 and $a \mapsto \varphi(a) \in C^2(I, H^2)$ such that $\varphi(a) > 0$,

$$-\partial_{xx}\varphi(a) - \partial_{yy}\varphi(a) + \omega(a)\varphi(a) - |\varphi(a)|^{p-1}\varphi(a) = 0$$

and

$$\varphi(a) = R_{\omega_p} + a R_{\omega_p}^{\frac{p+1}{2}} \cos y + h(a),$$

where $a \mapsto h(a) \in C^2(I, H^2)$, $\|h(a)\|_{H^2} = O(a^2)$, and

$$\omega(a) = \omega_p + \frac{\omega''(0)}{2}a^2 + o(a^2).$$

Lemma (Pelinovsky et al. 2011)

There exists a neighborhood $W \subset H^2_{\text{sym}} \times \mathbb{R}$ of (R_{ω_p}, ω_p) , a neighborhood $U \subset \mathbb{R}^2$ of $(0, \omega_p)$ and a unique C^1 map $h : U \mapsto L^2 \cap \{\psi_*\}^{\perp}$ such that the function:

$$\phi = R_{\omega_p} + a\psi_* + h(a,\omega) \qquad (a,\omega) \in U,$$

solves

$$P_{\perp}F(R_{\omega_p} + a\psi_* + h(a,\omega),\omega) = 0,$$

where

$$\psi_* := R_{\omega_p}^{\frac{p+1}{2}} \cos y,$$
$$F(\phi, \omega) := -\partial_{xx}\phi - \partial_{yy}\phi + \omega\phi - |\phi|^{p-1}\phi,$$

and

$$P_{\perp}u = u - \frac{\langle u, \psi_* \rangle}{\|\psi_*\|_{L^2}^2} \psi_*.$$

Y. Bahri (UVic)

Transverse stability

23 / 38

Lemma (B., Ibrahim and Kikuchi 2019)

Let $\varepsilon > 0$. There exists $a_0 = a_0(\varepsilon) > 0$ such that for any $a \in (-a_0, a_0)$ and for any ω such that $(0, \omega) \in U$, the solution ϕ satisfies

$$\frac{1}{C}e^{-(\sqrt{\omega}+\varepsilon)|x|} \le \phi(a,\omega) \le Ce^{-(\sqrt{\omega}-\varepsilon)|x|} \quad \text{for } (x,y) \in \mathbb{R} \times \mathbb{T}$$

where $\varepsilon > 0$ and $C = C(\omega) > 1$.

Corollary

 $\phi: U \mapsto H^2$ is C^2 for p > 1.

$$\mathcal{F}_{\parallel}(a,\omega) := \langle \psi_*, F(\phi,\omega) \rangle.$$

Crandall-Rabinowitz transversality argument

$$g(a,\omega) = \begin{cases} \frac{\mathcal{F}_{\parallel}(a,\omega) - \mathcal{F}_{\parallel}(0,\omega)}{a} & \text{if } a \neq 0, \\ \frac{\partial \mathcal{F}_{\parallel}}{\partial a}(0,\omega) & \text{if } a = 0. \end{cases}$$

 $g(a, \omega(a)) = 0$ for any $a \in I$.

Proposition

Let p > 1. There exist I a neighborhood of 0 and $a \mapsto \varphi(a) \in C^2(I, H^2)$ such that $\varphi(a) > 0$, $-\partial_{xx}\varphi(a) - \partial_{yy}\varphi(a) + \omega(a)\varphi(a) - |\varphi(a)|^{p-1}\varphi(a) = 0$ and $\varphi(a) = \phi(a, \varphi(a))$

$$\varphi(a) = \phi(a, \omega(a)).$$

Using a modulation theory, we decompose the solution

$$e^{i\theta(u)}u(\cdot - b(u), \cdot) = \Phi(a(u)) + w(u) + \alpha(u)\varphi(a(u))$$

with

$$\Phi(a(u)) := \varphi(a(u)) + \rho(a(u))\partial_{\omega}R_{\omega_p},$$

where

 $\rho(a(u)) = O(a(u)^2) \text{ and } \|\Phi(a(u))\|_{L^2} = \|R_{\omega_p}\|_{L^2}.$

We consider the curve $\Phi(a(u))$ in order to capture the degeneracy of the linearized operator.

This means that we have

 $\langle \mathcal{S}''_{\omega}(\Phi(a(u)))w(u), w(u) \rangle \ge \delta \|w(u)\|_X^2,$

under the orthogonality conditions

 $\langle w(u), i\varphi(a(u)) \rangle = \langle w(u), \partial_x \varphi(a(u)) \rangle = \langle w(u) + \alpha(u)\varphi(a(u)), \psi_0 \cos y \rangle$ $= \langle w(u), \varphi(a(u)) \rangle = \langle w(u) + \alpha(u)\varphi(a(u)), \psi_0 \sin y \rangle = 0.$

From Taylor expansion, we obtain

$$S_{\omega_p}(u) - S_{\omega_p}(R_{\omega_p}) = G(p)a(u)^4 + \langle S''_{\omega}(\Phi(a(u)))w(u), w(u) \rangle + o(a(u)^4) + o(||w(u)||^2_{H^1}).$$

Proposition (Yamazaki 2015)

(i) If G(p) > 0, then the standing wave e^{iω_pt}R_{ω_p} is stable under the flow of (NLS).
(ii) If G(p) < 0, then the standing wave e^{iω_pt}R_{ω_p} is unstable under the flow of (NLS).

Remark

Note that G(p) has the same sign as $\partial_a^2 \|\varphi(a)\|_{L^2}^2 \Big|_{a=0}$.

$$G(p) = 2\lambda'(\omega_p) \|\psi_*\|_{L^2}^2 + \omega''(0) \frac{\partial \|R_\omega\|_{L^2}^2}{\partial \omega} \bigg|_{\omega = \omega_p}$$

$$G(p) = \frac{4(p+1)(p^{6}+18p^{5}-11p^{4}-130p^{3}+13p^{2}+16p-3)}{(5p-1)(3p+1)(p+3)^{2}(p-1)(5-p)} + \frac{p^{2}(p-1)^{2}\langle R^{2p-1}_{\omega_{p}}, A^{-1}_{2}(R^{2p-1}_{\omega_{p}})\rangle_{L^{2}_{x}}}{4\int_{\mathbb{R}}R^{p+1}_{\omega_{p}}dx}.$$

Lemma (Yamazaki 2015)

There exist two real numbers $2 < p_1 < p_2 < 3$ such that

- (i) If $2 \le p \le p_1$, then G(p) > 0.
- (ii) If $p \ge p_2$, then G(p) < 0.

Lemma

There exists a real number $2 < p_0 < 3$ such that

- (i) If 1 , then <math>G(p) > 0.
- (ii) If $p > p_0$, then G(p) < 0.

 $A_2^{-1}(R_{\omega_p}^{2p-1})$ is not explicit on p. We compute $\frac{d}{dp}G(p)$ and we show that G is strictly decreasing.

For the double critical case i.e. when $p = p_0$. In this case

G(p) = 0.

- We need to expand to the next order in a!
- We expand $\|\varphi(a)\|_{L^2}^2$ and $\omega(a)$ to the next order.
- We need more regularity of φ in a.

$$\phi = R_{\omega_p} + a\psi_* + h(a,\omega) \qquad (a,\omega) \in U,$$

Lemma

(i) $h \text{ is } C^5 \text{ on } U.$ (ii) $\mathcal{F}_{\parallel}(a,\omega) := \langle \psi_*, F(\phi,\omega) \rangle$ is $C^5 \text{ on } U.$ (iii) $g \text{ is } C^4 \text{ on } U.$ (iv) $a \mapsto \omega(a) \text{ is } C^4 \text{ on } I.$ (v) $a \mapsto \varphi(a) \text{ is } C^4 \text{ on } I.$

Claim

Let $\varepsilon > 0$ and $l, k \in \{0, \dots, 5\}$, such that $l + k \le 5$. For any $(a, \omega) \in U$, we have

$$\left|\frac{\partial^{l+k}h}{\partial^{l}a\partial^{k}\omega}(a,\omega)\right| \lesssim e^{-(\sqrt{\omega}-\varepsilon)|x|} \quad \text{in} \quad \mathbb{R} \times \mathbb{T},\tag{4}$$

when $l \neq 0$ and

$$\left|\frac{\partial^k h}{\partial^k \omega}(a,\omega)\right| \lesssim e^{-(\sqrt{\omega} - (k+1)\varepsilon)|x|} \quad \text{in} \quad \mathbb{R} \times \mathbb{T}.$$

(5)

We have

$$w'''(0) = \partial_a^3 \|\varphi(a)\|_{L^2}^2 \Big|_{a=0} = 0.$$

• We continue to the next order.

- We continue to the next order and we compute $\omega^{(4)}(0) \neq 0$ and $\partial_a^4 \|\varphi(a)\|_{L^2}^2 > 0.$
- The sign of the main term is given by the sign of $\partial_a^4 \|\varphi(a)\|_{L^2}^2$.

Thank you for your attention.

