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Introduction
The Schrödinger equations:

We consider the following Nonlinear Schrödinger equations:

i∂tψ + ∂xxψ + ∂yyψ + |ψ|p−1ψ = 0, in Rt × Rx × Ty, (NLS)

where p > 1 and T = R/2πZ.

Energy (Hamiltonian)

H(ψ) :=
1

2

∫
R×T

(
|∇ψ(x, y)|2 − 2

p+ 1
|ψ(x, y)|p+1

)
dxdy
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Line soliton

Let Rω be the unique positive solution to

−∂xxRω + ωRω − |Rω|p−1Rω = 0 in R,

that is,

Rω(x) =

(
(p+ 1)ω

2

) 1
p−1

sech
2

p−1

(
(p− 1)ω

2
x

)
.

We note that eiωtRω(x) becomes the standing waves of the following Schrödinger
equations:

i∂tψ + ∂xxψ + |ψ|p−1ψ = 0 in R× R.
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Stability

Definition

‖ψ0 −Rω‖H1 < δ ⇒ sup
t>0

inf
θ∈R,b∈R

‖ψ(t, ·)− eiθRω(· − b)‖H1 < ε.

Stability’s results of the line soliton under the 1D NLS flow:

stable for 1 < p < 5 (Cazenave and Lions / Grillakis, Shatah and Strauss).

unstable for p > 5 (Berestycki and Cazenave / Grillakis, Shatah and Strauss).

unstable for p = 5 (Weinstein).
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Transverse Stability

Remark

The line soliton Rω is a steady state solution to (NLS) in the energy space.

Transverse Stability : Stability of the line solitary wave under the 2D perturbation.

Definition (Transverse Stability)

‖ψ0 −Rω‖H1 < δ ⇒ sup
t>0

inf
θ∈R,b∈R×T

‖ψ(t, ·)− eiθRω(· − b)‖H1 < ε.
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Transverse Stability
Literature

Milewski and Wang : Describe Traveling waves which are localized in the
propagation direction and periodic in the transverse direction (Gravity-Capillary).

Haragus : Transverse stability of those traveling waves for the Euler
equation.

Rousset and Tzvetkov : Linear and nonlinear instability of the line
solitary water waves with respect to transverse perturbations.
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Transverse Stability
Literature

Rousset and Tzvetkov : Nonlinear long time instability of the KdV solitary wave
under a KP-I flow.

ut + uux + uxxx = 0, (KdV)

ut + uux + uxxx − ∂−1x uyy = 0, Rx × Ty (KP-I)

Rousset and Tzvetkov : Transverse nonlinear instability of solitary waves for the
cubic nonlinear Schrödinger equation.

Pelinovsky : Instability band of a deep-water soliton of the hyperbolic non-linear
Schrödinger equation.

Yamazaki : Tranverse stability of the line standing waves under the
flow of the 2D nonlinear Schrödinger equation.

Y. Bahri (UVic) Transverse stability 8 / 38



Outlines

2 Classification of the transverse stability with respect to the frequency:
Sub-critical case.
Super-critical case.
The Critical case .
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Sub-critical case

Theorem (Yamazaki 2014)

Let 1 < p < 5 and ωp = 4
(p−1)(p+3) .

for 0 < ω < ωp, the standing wave eiωtRω is stable under the flow of (NLS).(i)
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Sub-critical case
From Grillakis, Shatah and Strauss theory, it is sufficient to show

〈S ′′ω(Rω)u, u〉 ≥ δ‖u‖2X ,

with

Sω(u) :=
1

2
‖∇u‖2L2 +

ω

2
‖u‖2L2 −

1

p+ 1
‖u‖p+1

Lp+1.

〈S ′′ω(Rω)u, u〉 =
∑
n∈Z

(
〈Lω,+,nuRn , uRn 〉+ 〈Lω,−,nuIn, uIn〉

)
,

where

Lω,+,n = −∂xx + ω + n2 − pRp−1ω , Lω,−,n = −∂xx + ω + n2 −Rp−1ω ,

and
uRn := <un, uIn := =un.
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Sub-critical case
Spectral properties

The negative eigenvalue of Lω,+,0 is − ω
ωp

and the corresponding eigenfunction is

given by R
p+1
2

ω .

We have
〈Lω,+,nuRn , uRn 〉 ≥ (n2 − ω

ωp
)‖uRn ‖2L2

x
.

When ω < ωp, we obtain

〈Lω,+,nuRn , uRn 〉 ≥ δ‖uRn ‖2L2
x
.
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Super-critical case

Theorem (Yamazaki 2014)

Let 1 < p < 5 and ωp = 4
(p−1)(p+3) .

for ω > ωp, the standing wave eiωtRω is unstable under the flow of (NLS).(ii)
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Super-critical case

Let u(t) := eiωt (Rω + v(t)), so that v := (<v,=v) is a solution of

vt = −J(S ′′ω(Rω)v +NL(v,Rω)),

J :=

(
0 −1
1 0

)
.

For ω > ωp, −JS ′′ω(Rω) has at least one positive eigenvalue.

⇒ linear instability ⇒ nonlinear instability.
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Spectral properties

ω

λ

ωp
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Spectral properties

The kernel of the linearized operator

Lωp,+ := −∂xx − ∂yy + ωp − pRp−1ω ,

is given by

KerLωp,+ = Span

{
R′ωp

, R
p+1
2

ωp cos y,R
p+1
2

ωp sin y

}
.
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The critical frequency case ω = ωp

Theorem (Yamazaki 2015)

There exists 2 < p1 < p2 < 3 satisfying the following two properties:

If 2 ≤ p ≤ p1, then the standing wave eiωptRωp is stable under the flow of
(NLS).

(i)

If p2 ≤ p < 5, then the standing wave eiωptRωp is unstable under the flow of
(NLS).

(ii)
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p
1 2 p1 p2 3 5

Stability? ? Instability
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The critical frequency case ω = ωp

Theorem (B., Ibrahim and Kikuchi 2019)

There exists 2 < p0 < 3 satisfying the following two properties:

If 1 < p ≤ p0, then the standing wave eiωptRωp is stable under the flow of
(NLS).

(i)

If p > p0, then the standing wave eiωptRωp is unstable under the flow of (NLS).(ii)

Y. Bahri (UVic) Transverse stability 19 / 38



p
1 2 p0 3 5

Stability Instability

Y. Bahri (UVic) Transverse stability 20 / 38



Bifurcation

We construct a steady state to (NLS) which bifurcate from the line solitary wave
with the critical frequency ωp (pitchfork)
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Bifurcation

Proposition (Pelinovsky et al. 2011)

Let p ≥ 2. There exist I a neighborhood of 0 and a 7→ ϕ(a) ∈ C2(I,H2) such that
ϕ(a) > 0,

−∂xxϕ(a)− ∂yyϕ(a) + ω(a)ϕ(a)− |ϕ(a)|p−1ϕ(a) = 0

and

ϕ(a) = Rωp + aR
p+1
2

ωp cos y + h(a),

where a 7→ h(a) ∈ C2(I,H2), ‖h(a)‖H2 = O(a2), and

ω(a) = ωp +
ω′′(0)

2
a2 + o(a2).
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Lyapounov-Schmidt decomposition
Lemma (Pelinovsky et al. 2011)

There exists a neighborhood W ⊂ H2
sym × R of (Rωp, ωp), a neighborhood U ⊂ R2

of (0, ωp) and a unique C1 map h : U 7→ L2 ∩ {ψ∗}⊥ such that the function:

φ = Rωp + aψ∗ + h(a, ω) (a, ω) ∈ U,

solves
P⊥F (Rωp + aψ∗ + h(a, ω), ω) = 0,

where

ψ∗ := R
p+1
2

ωp cos y,

F (φ, ω) := −∂xxφ− ∂yyφ+ ωφ− |φ|p−1φ,

and

P⊥u = u− 〈u, ψ∗〉
‖ψ∗‖2L2

ψ∗.
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Lyapounov-Schmidt decomposition

Lemma (B., Ibrahim and Kikuchi 2019)

Let ε > 0. There exists a0 = a0(ε) > 0 such that for any a ∈ (−a0, a0) and for any
ω such that (0, ω) ∈ U, the solution φ satisfies

1

C
e−(
√
ω+ε)|x| ≤ φ(a, ω) ≤ Ce−(

√
ω−ε)|x| for (x, y) ∈ R× T,

where ε > 0 and C = C(ω) > 1.

Corollary

φ : U 7→ H2 is C2 for p > 1.
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Lyapounov-Schmidt decomposition

F‖(a, ω) := 〈ψ∗, F (φ, ω)〉 .

Crandall-Rabinowitz transversality argument

g(a, ω) =

{F‖(a,ω)−F‖(0,ω)
a if a 6= 0,

∂F‖
∂a (0, ω) if a = 0.

g(a, ω(a)) = 0 for any a ∈ I.
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Lyapounov-Schmidt decomposition

Proposition

Let p > 1. There exist I a neighborhood of 0 and a 7→ ϕ(a) ∈ C2(I,H2) such that
ϕ(a) > 0,

−∂xxϕ(a)− ∂yyϕ(a) + ω(a)ϕ(a)− |ϕ(a)|p−1ϕ(a) = 0

and
ϕ(a) = φ(a, ω(a)).
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Transverse Stability

Using a modulation theory, we decompose the solution

eiθ(u)u(· − b(u), ·) = Φ(a(u)) + w(u) + α(u)ϕ(a(u))

with
Φ(a(u)) := ϕ(a(u)) + ρ(a(u))∂ωRωp,

where
ρ(a(u)) = O(a(u)2) and ‖Φ(a(u))‖L2 = ‖Rωp‖L2.

We consider the curve Φ(a(u)) in order to capture the degeneracy of the linearized
operator.
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Transverse Stability

This means that we have

〈S ′′ω(Φ(a(u)))w(u), w(u)〉 ≥ δ‖w(u)‖2X ,

under the orthogonality conditions

〈w(u), iϕ(a(u))〉 = 〈w(u), ∂xϕ(a(u))〉 = 〈w(u) + α(u)ϕ(a(u)), ψ0 cos y〉

= 〈w(u), ϕ(a(u))〉 = 〈w(u) + α(u)ϕ(a(u)), ψ0 sin y〉 = 0.

From Taylor expansion, we obtain

Sωp(u)− Sωp(Rωp) =G(p)a(u)4 + 〈S ′′ω(Φ(a(u)))w(u), w(u)〉
+ o(a(u)4) + o(‖w(u)‖2H1).
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Transverse Stability

Proposition (Yamazaki 2015)

If G(p) > 0, then the standing wave eiωptRωp is stable under the flow of (NLS).(i)

If G(p) < 0, then the standing wave eiωptRωp is unstable under the flow of
(NLS).

(ii)
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Transverse Stability in the double critical case

Remark

Note that G(p) has the same sign as ∂2a‖ϕ(a)‖2L2

∣∣∣∣
a=0

.

G(p) = 2λ′(ωp)‖ψ∗‖2L2 + ω′′(0)
∂‖Rω‖2L2

∂ω

∣∣∣∣
ω=ωp

G(p) =
4(p+ 1)(p6 + 18p5 − 11p4 − 130p3 + 13p2 + 16p− 3)

(5p− 1)(3p+ 1)(p+ 3)2(p− 1)(5− p)

+
p2(p− 1)2〈R2p−1

ωp
, A−12 (R2p−1

ωp
)〉L2

x

4
∫
RR

p+1
ωp dx

.

Y. Bahri (UVic) Transverse stability 30 / 38



Transverse Stability in the double critical case

Lemma (Yamazaki 2015)

There exist two real numbers 2 < p1 < p2 < 3 such that

If 2 ≤ p ≤ p1, then G(p) > 0.(i)

If p ≥ p2, then G(p) < 0.(ii)
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Transverse Stability in the double critical case

Lemma

There exists a real number 2 < p0 < 3 such that

If 1 < p < p0, then G(p) > 0.(i)

If p > p0, then G(p) < 0.(ii)

A−12 (R2p−1
ωp

) is not explicit on p. We compute d
dpG(p) and we show that G is strictly

decreasing.
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Transverse Stability in the double critical case

For the double critical case i.e. when p = p0. In this case

G(p) = 0.

We need to expand to the next order in a!

We expand ‖ϕ(a)‖2L2 and ω(a) to the next order.

We need more regularity of ϕ in a.
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Transverse Stability in the double critical case

φ = Rωp + aψ∗ + h(a, ω) (a, ω) ∈ U,

Lemma

(i) h is C5 on U .

(ii) F‖(a, ω) := 〈ψ∗, F (φ, ω)〉 is C5 on U .

(iii) g is C4 on U .

(iv) a 7→ ω(a) is C4 on I.

(v) a 7→ ϕ(a) is C4 on I.
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Transverse Stability in the double critical case

Claim

Let ε > 0 and l, k ∈ {0, . . . , 5}, such that l + k ≤ 5. For any (a, ω) ∈ U, we have∣∣∣∣ ∂l+kh∂la∂kω
(a, ω)

∣∣∣∣ . e−(
√
ω−ε)|x| in R× T, (4)

when l 6= 0 and ∣∣∣∣∂kh∂kω
(a, ω)

∣∣∣∣ . e−(
√
ω−(k+1)ε)|x| in R× T. (5)
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Transverse Stability in the double critical case

We have

w′′′(0) = ∂3a‖ϕ(a)‖2L2

∣∣∣∣
a=0

= 0.

We continue to the next order.
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Transverse Stability in the double critical case

We continue to the next order and we compute ω(4)(0) 6= 0 and

∂4a‖ϕ(a)‖2L2

∣∣∣∣
a=0

> 0.

The sign of the main term is given by the sign of ∂4a‖ϕ(a)‖2L2

∣∣∣∣
a=0

.
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Thank you for your attention.
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