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Self-consistent Approximation

Dynamics of a system of n identical bosons or fermions is given by

the many-body Schrddinger equation (SE)
i0¢) = Hnt.
Restricting the SE to the Hartree or Hartree-Fock states
R1 and AT Vi,
we obtain the celebrated Hartree or Hartree-Fock equation,
i0¢y = [hy, 7],

where v = nP,, for bosons and v = > Py, for fermions and
h, is a (self-consistent) one-particle Schrodinger operator
depending on ~.

Trade-off: large dimensions for the nonlinearity.



Hartree, Hartree-Fock and DFT Equations
We summarize the resulting self-consistent equation,
Iat’)/ = [h777]7
where h, is self-consistent one-particle Schrédinger operator,

hy = —-A+ vipy,  +  ex(7)
~— ——

direct self-interact  exch self-interact

Here v is a pair potential,

p~(x, t) :==7v(x; x, t) is the charge density,

0 for the Hartree model
ex(y) := ¢ —viy  for the Hartree-Fock case

xc(py) for the density functional theory (DFT).

Example of xc(p) is the Dirac term —cp'/3.

(2)



Time-dependent density functional equations

The time-dependent density functional theory (DFT) is based on
the time-dependent Kohn-Sham equation for an operator ~:

Oy = i[hy, 7] (KSE)
where hy = —A+ g(py), with g : L} (R?) — R and
p~(x, t) == v(x, x, t), the one-particle density.

Here v > 0, called the density operator. For fermions, v < 1 (the
Pauli exclusion principle).
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Time-dependent density functional equations

The time-dependent density functional theory (DFT) is based on
the time-dependent Kohn-Sham equation for an operator ~:

Oy = ilhy, 1] (KSE)

where hy :=—A+ g(py), with g : L} (R?) — R and
p(x, t) == 7v(x, x, t), the one-particle density.

Here v > 0, called the density operator. For fermions, v < 1 (the
Pauli exclusion principle).

We assume g(p) is a tansl/rot covariant functional:

Urg(p)Uy! = g(Uap) (4)
(here g(p) is considered as a multiplication operator). A typical g:
g(p) = v * p+ xc(p), (5)

with v a pair potential and xc(p) an exch-correl energy term, e.g.
v(x) = A/|x| (the Coulomb or Newton potential in 3D) and
v(x) = A(x) (the local potential) and xc(p) = —cp'/? (Dirac).



Key problems

» Existence theory

» Asymptotic behaviour as t — oo (scattering theory, return to
equilibrium)

» Static, self-similar and travelling wave solutions and their
stability (related to the previous item)

The existence theory: Chadam-Glassey (75), Bove-Da Prato-Fano
(76), Zagatti (92) (H and HF egs, Tryy < o0)

Lewin-Sabin (15) (regular potentials), Th. Chen-Hong-Pavlovi¢
(17) (delta potential) (H eq, Trvy = o0)

Scattering: Ginibre-Velo (80), Hayashi-Tsutsumi (87),
Hayashi-Naumkin (97), Kato-Pusateri (12) (H eq, scalar case)

Asympt. stab. of transl. invar. solns: Lewin-Sabin (15), Th.
Chen-Hong-Pavlovi¢ (17)



Results

Assume o > 0 are trace class with the weight < x >¢9.

Theorem (Local decay)
Let g(p) satisfy, for d < 4, the conditions

glp) =v=p+ A, (6)

withv € L}, 1 <r<oo, >1/2and |v| + |\ < 1.

Then KSE is GWP and has the scattering property:
Y initial condition vy € 1Y, 3 an operator Yoo € 11 st ast— oo,
the solution, ~y(t), satisfies

[7(t) — €™ yoce™ 2|, — 0. (7)

Conjecture: The result holds for 5 > 1/d (short-range or
subcritical nonlinearity).



Properties of the Kohn-Sham equation (KSE)

Galilean invariance

v

v

Conservation of energy and number of particles

v

Preservation of positivity

v

Hamiltonian structure



Scattering criticality

Recall the time-dependent Kohn-Sham equation (KSE):
Oy = i[hy, 7], hy = =D+ g(ps)-
Let Uy : 9(x) — A99(Ax). Consider g(p) satisfying
Urg(p) Uy = A""g(Usp), (Scal)

(g(p) is a multiplication operator and p, a function). We say g(p)

is scattering subcritical /critical /supercritical iff
a>1l/a=1/a<1.

E.g g(p) =Ix|"**pand g(p) = p°, 8 = §, satisfy (Scal).

(pd is a ‘semi-classical limit’ of |x|~®  p.)



Scattering criticality
Recall the time-dependent Kohn-Sham equation (KSE):

at7 = i[h777]7 h’y =-A + g(p'y)
Let Uy : ¥(x) — A99(Ax). Consider g(p) satisfying
Urg(p)Uyt = A~ (Uap), (Scal)

(g(p) is a multiplication operator and p, a function). We say g(p)
is scattering subcritical /critical /supercritical iff
a>1l/a=1/a<1l.

E.g g(p) = Ix|™*pand g(p) = p°, 8 = §, satisfy (Scal).
More generally, g(p) is short-range (scatt. subcritical) iff Vf nice,

X
t

/1 T le(R)lodt < o0, fi(x) = 97(%)

and long-range (scattering critical or supercritical) otherwise.



Passing to a Hilbert space (mini-GNS)

To work on a Hilbert space pass from v to /7, or more generally
to K, s.t. k*k = . Then the KSE becomes

Otk = ilhg, K| (VKSE)
where h,, :== —A + g(k), with g(x) having the gauge symmetry
eXg(r)e™ X = g(eXre™™), Vx (8)

Proposition

» VKSE < KSE, with K*k =,

» Well Pos(k) = Well Pos(vy);
» Scat Th(k) = Scat Th(v).



Local decay
If v is trace-class, then k = /7 is a Hilbert-Schmidt operator.
Let k(y,x) = &(r,c), where r ;== y — x, c := 3(y + x).

Define the norm

16l oe = IRl gz = Il 2l g (9)

Theorem [Local decay| Let g(p) satisfy the conditions

ldg(p)llp < €llq, (10)

where 1+ 1/p—1/q > 1/d, etc, and g be small. Then
I5lles St P1xkollws (b= d(5 — <))
Corollary: The GWP and scattering => the same for KSE.

The theorem follows from the next two basic statements.



A priori bounds

Define the Galilean ‘boost generator’
Jik = [jt, k], with ji:=x—2pt, p:=—iV.

and the non-abelian Sobolev spaces based on the space of Hilbert -
Schmidt operators with the smoothness grading provided by J:

We={rel®: Y [l < oo} (11)

|of<s
Proposition (A priori bounds)
Any solution to \/ KSE satisfies the estimate (for b > d/2)

[5(8)lwp < 2lmollwp- (12)

The main idea: use almost conservation law:
DyJik = JeDyk + [dg(py)p ey K]

where Dyk := i0tk — [hy, K].
The gauge invariance, more precisely the invariance under Galilean



Non-abelian Gagliardo-Nirenberg-Kleinerman-type inegs

Proposition (Non-abelian GNK-type inequality)
Letab=d(3 —1)and0<a <1 (dodd). Then

—ab —_
[kl St°° IIKH%;HHHMQ-
where, recall,

We={rel®: Y |Jllp < oo},

la|<s

Jik = [jt, k], with ji:=x—2pt, p:=—iV.

The main idea: (a) extend the GNI to non-abelian spaces

(b) pass from the non-abelian GNI to the non-abelian GNKI by
using

—iD = %e"’XQ/“Jte"Xz/‘“, where Dk := [0, K].



Completing the proof

The non-abelian Gagliardo-Nirenberg-Kleinerman-type inequality

—b
Illizes S ¢l e

with the a priori bound
I we < llmollwg
give the local decay estimate
() lzee S t°llmollwe
= GWP and scattering for VKSE

=—> GWP and scattering for KSE.



Summary

We discussed

» main features of the time-dependent equations of the density
functional theory;

» introduced some new useful tools: (a) the Hilbert-space
representation, (b) the almost conserved Galilean generator,
(c) modified Sobolev spaces and (d) mixed norms;

» gave a thumbnail sketch of the local decay result, which

implies GWP and scattering theory.

Future extensions:

» Scattering critical and supercritical nonlinearities

» Asymptotic stability of static solutions (return to equilibrium)



Thank-you for your attention



