Arctic Curves for Bounded Lecture Hall Tableaux

David Keating

Joint work with S. Corteel and M. Nicoletti

University of California, Berkeley

BIRS Asymptotic Algebraic Combinatorics

March 15, 2019

Outline

- Bounded Lecture Hall Tableaux
- 2 Tangent Method
- 3 Examples
- 4 Further Questions

Bounded LHT

Fix positive integers n, t. Given $\lambda = (\lambda_1, ..., \lambda_n)$ (some λ_i possibly zero). Consider tableaux T of shape λ satisfying

$$\frac{T_{ij}}{n-i+j} \ge \frac{T_{ij+1}}{n-i+(j+1)}$$
$$\frac{T_{ij}}{n-i+j} > \frac{T_{i+1j}}{n-(i+1)+j}$$
$$\frac{T_{ij}}{n-i+j} < t.$$

Call Z_{λ}^{t} the number of such tableaux.

Bounded LHT

$$\lambda = (5, 4, 3, 2, 1), n = t = 5$$

24	23	25	24	25
16	18	17	18	
11	11	2		
6	2			
0				

$$T_{ij}$$

<u>24</u> 5	<u>23</u> 6	<u>25</u> 7	<u>24</u> 8	<u>25</u> 9
<u>16</u> 4	18 5	<u>17</u>	18 7	
<u>11</u> 3	<u>11</u>	2 5		
<u>6</u>	<u>2</u> 3			
<u>0</u>				

$$\frac{T_{ij}}{n-i+j}$$

LHT as Nonintersecting Paths

Consider the graph below (t = 5)

LHT as Nonintersecting Paths

(Here
$$n = 5, t = 5$$
)

Starting points: $v_i = (n - i, t - \frac{1}{n - i + 1})$.

Ending points: $u_j = (n + \lambda_j - j, 0)$.

Row *i* of $T \leftrightarrow \text{path from } v_i \text{ to } u_i$.

24	23	25	24	25
16	18	17	18	
11	11	2		
6	2			
0				

Proposition (Corteel, Kim, Savage 18)

Fix n, t, λ . The number of LHT with $\frac{T_{ij}}{n-i+j} < t$ is given by

$$Z_{\lambda}^{t} = t^{|\lambda|} s_{\lambda}(\underbrace{1, \dots, 1}_{n \text{ times}}) = t^{|\lambda|} \prod_{1 \leq i < j \leq n} \frac{\lambda_{i} - \lambda_{j} + j - i}{j - i}.$$

Proposition (Corteel, Kim, Savage 18)

Fix n, t, λ . The number of LHT with $\frac{T_{ij}}{n-i+j} < t$ is given by

$$Z_{\lambda}^{t} = t^{|\lambda|} s_{\lambda}(\underbrace{1, \dots, 1}_{n \text{ times}}) = t^{|\lambda|} \prod_{1 \leq i < j \leq n} \frac{\lambda_{i} - \lambda_{j} + j - i}{j - i}.$$

Proof.

Easy determinant evaluation.

$$\lambda = (n, n-1, \ldots, 1)$$

$$n = t = 5$$

n = t = 10

n = t = 15

$$n = t = 60$$

Tangent Method

Developed by Colomo and Sportiello (2016). Idea:

- In the thermodynamic limit, the outermost path follows the arctic curve.
- Extend outermost path by z, s as shown.

- Assumption: The path will follow the arctic curve until it can move in a straight line to its endpoint. The line is tangent to the arctic curve.
- Compute most probable r. The points $(n + \lambda_1 1 + r, 0)$ and $(n + \lambda_1 1 + z, -s)$ define the tangent line.
- Varying z gives a family of lines tangent to the arctic curve.

An Easy Example

$$\lambda=(n,n-1,\ldots,1)$$

$$n = 10$$
, $t = 10$

$$\lambda = (n, n-1, ..., 1)$$

$$Z_{\lambda}^t = t^{|\lambda|} s_{\lambda}(1,\ldots,1) = (2t)^{\binom{n+1}{2}}$$

$$n = 10, t = 10$$

$$\lambda = (n, n-1, ..., 1)$$

$$\frac{Z_{\lambda,r}^t}{Z_{\lambda}^t} = t^r \prod_{j=2}^n \frac{\lambda_1 + r - \lambda_j + j - 1}{\lambda_1 - \lambda_j + j - 1} = t^r \binom{n+k-1}{k}$$

(for
$$r=2k$$
)

$$n = 10$$
, $t = 10$, $r = 4$

$$\lambda = (n, n-1, ..., 1)$$

$$\frac{Z_{\lambda,z,s}^t}{Z_{\lambda}^t} = \sum_{r=0}^{z} \frac{Z_{\lambda,r}^t}{Z_{\lambda}^t} s^{z-r} {2n+z-1 \choose z-r}$$

$$n = 10$$
, $t = 10$, $z = 8$, $s = 3$

$$\lambda = (n, n-1, ..., 1)$$

We take the limit $r=n\rho$, $z=n\zeta$, $t=n\tau$, $s=n\sigma$, and $n\to\infty$.

$$\frac{Z_{\lambda,z,s}^t}{Z_{\lambda}^t} \approx \frac{1}{2\pi} e^{\zeta \, n \, ln(n)} \int_0^{\zeta} \sqrt{\frac{1+\zeta}{\rho(\zeta-\rho)}} e^{n \, S(\rho)} d\rho$$

$$S(\rho) = \rho \ln(\tau) + (\zeta - \rho) \ln(\sigma) - \frac{1}{2} (2 + \rho) \ln(2 + \rho) - \frac{1}{2} \rho \ln(\rho) - (\zeta - \rho) \ln(\zeta - \rho)$$

$$\lambda = (n, n-1, ..., 1)$$

We take the limit $r=n\rho$, $z=n\zeta$, $t=n\tau$, $s=n\sigma$, and $n\to\infty$.

$$\frac{Z_{\lambda,z,s}^t}{Z_{\lambda}^t} \approx \frac{1}{2\pi} e^{\zeta \, n \, ln(n)} \int_0^{\zeta} \sqrt{\frac{1+\zeta}{\rho(\zeta-\rho)}} e^{n \, S(\rho)} d\rho$$

$$S(\rho) = \rho \ln(\tau) + (\zeta - \rho) \ln(\sigma) - \frac{1}{2} (2 + \rho) \ln(2 + \rho) - \frac{1}{2} \rho \ln(\rho) - (\zeta - \rho) \ln(\zeta - \rho)$$

Most probable $ho o ext{maximum of } \mathcal{S}(
ho)$

$$\lambda = (n, n-1, ..., 1)$$

$$S'(\rho) = 0 \implies \zeta - \rho = \frac{\sigma}{\tau} (2 + \rho) \sqrt{\frac{\rho}{2 + \rho}}$$

$$\lambda = (n, n-1, ..., 1)$$

$$S'(\rho) = 0 \implies \zeta - \rho = \frac{\sigma}{\tau} (2 + \rho) \sqrt{\frac{\rho}{2 + \rho}}$$

Pair of points: $(2 + \rho, 0)$ and $(2 + \zeta, -\sigma)$.

$$\lambda = (n, n-1, ..., 1)$$

$$S'(\rho) = 0 \implies \zeta - \rho = \frac{\sigma}{\tau} (2 + \rho) \sqrt{\frac{\rho}{2 + \rho}}$$

Pair of points: $(2 + \rho, 0)$ and $(2 + \zeta, -\sigma)$.

Family of tangent lines

$$Y = -\frac{\tau}{x} \sqrt{\frac{x}{x-2}} (X-x)$$

parametrized by $x = 2 + \rho$, $x \in [2, \infty)$.

$$\lambda = (n, n-1, ..., 1)$$

Family of tangent lines:

$$Y = -\frac{\tau}{x} \sqrt{\frac{x}{x-2}} (X - x)$$

parametrized by $x = 2 + \rho$, $x \in [2, \infty)$.

Parametrization:

$$X(x) = \frac{x}{x-1}$$

$$Y(x) = \tau \frac{x}{x-1} \sqrt{\frac{x-2}{x}}$$

$$\lambda = (n, n-1, ..., 1)$$

Family of tangent lines:

$$Y = -\frac{\tau}{x} \sqrt{\frac{x}{x-2}} (X - x)$$

parametrized by $x = 2 + \rho$, $x \in [2, \infty)$.

Parametrization:

$$X(x) = \frac{x}{x-1}$$

$$Y(x) = \tau \frac{x}{x-1} \sqrt{\frac{x-2}{x}}$$

Curve:
$$Y = \tau \sqrt{2X - X^2}$$

$$\lambda = (n, n-1, ..., 1)$$

Dual paths: Read tableaux by column rather than by row.

$$n = t = 60$$

$$\lambda = (n, n-1, ..., 1)$$

Extend
$$\lambda = (n, n - 1, ..., 1, 0, ..., 0).$$

$$\lambda = (n, n-1, ..., 1)$$

Extend
$$\lambda = (n, n - 1, ..., 1, 0, ..., 0).$$

$$\lambda = (n, n-1, ..., 1)$$

Fix *z*, *s*.

Shifting dual path by r corresponds to

$$\lambda = (\lambda_1, ..., \lambda_n, 1, ..., 1, 0, ..., 0).$$

$$\lambda = (n, n-1, ..., 1)$$

Parametrization:

$$X(x) = \frac{x}{x-1}$$

$$Y(x) = \tau \frac{x}{x-1} \sqrt{\frac{x-2}{x}}$$

for
$$x \in (-\infty, 0]$$
.

Same parametrization as before!

$$\lambda = (n, n-1, ..., 1)$$

Cusps

Occurs when λ has a macroscopic jump. For example

$$\lambda = (2n, \ldots, 2n, n, n-1, \ldots, 1), t = n$$

Cusps

Occurs when λ has a macroscopic flat section. For example

$$\lambda = (2n, 2n - 1, \dots, n + 1, n, \dots, n), t = n$$

In general

For $\lambda = (\lambda_1, \dots \lambda_n)$ such that $n + \lambda_i - i = n\alpha(\frac{i}{n})$ for some piecewise differentiable α , we have

In general

For $\lambda = (\lambda_1, \dots \lambda_n)$ such that $n + \lambda_i - i = n\alpha(\frac{i}{n})$ for some piecewise differentiable α , we have

"Theorem"

The arctic curve can be parametrized by

$$X(x) = \frac{x^2 I'(x)}{I(x) + xI'(x)}$$
$$Y(x) = \tau \frac{1}{I(x) + xI'(x)}$$

for an appropriate range of x, where $I(x) = e^{-\int_0^1 \frac{1}{x-\alpha(u)} du}$ and $\alpha(u)$ is the limiting profile.

Some Examples

$$\lambda = (n, \ldots, n)$$

Parametrization:

$$X(x) = \frac{x^2}{x^2 - 2x + 2}$$
$$Y(x) = \frac{\tau(x - 1)^2}{x^2 - 2x + 2}$$

$$\lambda = (2n, \ldots, 2n, n, n-1, \ldots, 1)$$

Parametrization:

$$X(x) = \frac{x(2x^2 - 9x + 12)}{x^3 - 7x^2 + 17x - 12}$$
$$Y(x) = \frac{\tau(x - 3)^2 \sqrt{x(x - 2)}}{x^3 - 7x^2 + 17x - 12}$$

$$\lambda = (2n, \ldots, n+1, n, \ldots, n)$$

Parametrization:

$$X(x) = \frac{x^2(2x-5)}{x^3 - 5x^2 + 9x - 8}$$
$$Y(x) = \frac{\tau(x-1)^2 \sqrt{(x-4)(x-2)}}{x^3 - 5x^2 + 9x - 8}$$

$$\lambda = (6n, \dots, 5n + 1, 4n, \dots, 3n + 1, 2n, \dots, 2n, 2n, \dots, n + 1, n, \dots, n, n, \dots, 1)$$

Further Questions

- Rigorous proof (A. Aggarwal)
- Skew-tableaux
- q-weighted LHT
- Full limit shape

End!

Thank You!