Singular value shrinkage priors and empirical Bayes matrix completion

Takeru Matsuda

The University of Tokyo

Apr 11, 2019 @ Banff

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

1/33

Abstract

Efron–Morris estimator (Efron and Morris, 1972)

$$\hat{M}_{\rm EM}(X) = X \left(I_q - (p - q - 1)(X^{\top}X)^{-1} \right)$$

minimax estimator of a normal mean matrix natural extension of the James–Stein estimator

Singular value shrinkage prior (M. and Komaki, 2015)

$$\pi_{\rm SVS}(M) = \det(M^{\top}M)^{-(p-q-1)/2}$$

superharmonic ($\Delta \pi_{SVS} \le 0$), natural generalization of the Stein prior works well for <u>low-rank</u> matrices \rightarrow reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)

estimate unobserved entries of a matrix by exploting low-rankness

Efron–Morris estimator (Efron and Morris, 1972)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

3/33

Note: singular values of matrices

• Singular value decomposition of $p \times q$ matrix $M (p \ge q)$

$$M = U\Lambda V^{\top}$$

$$U: p \times q, \quad V: q \times q, \quad U^{\top}U = V^{\top}V = I_q$$
$$\Lambda = \operatorname{diag}(\sigma_1(M), \dots, \sigma_q(M))$$

σ₁(M) ≥ ··· ≥ σ_q(M) ≥ 0 : singular values of M
 rank(M) = #{i | σ_i(M) > 0}

Estimation of normal mean matrix

$$X_{ij} \sim N(M_{ij}, 1)$$
 $(i = 1, \cdots, p; j = 1, \cdots, q)$

• estimate *M* based on *X* under Frobenius loss $||\hat{M} - M||_{F}^{2}$

• Efron–Morris estimator (= James–Stein estimator when q = 1)

$$\hat{M}_{\rm EM}(X) = X \left(I_q - (p - q - 1)(X^{\top}X)^{-1} \right)$$

Theorem (Efron and Morris, 1972)

When $p \ge q + 2$, \hat{M}_{EM} is minimax and dominates $\hat{M}_{\text{MLE}}(X) = X$.

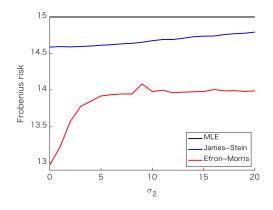
 Stein (1974) noticed that it shrinks the singular values of the observation to zero.

$$\tau_i(\hat{M}_{\rm EM}) = \left(1 - \frac{p - q - 1}{\sigma_i(X)^2}\right) \sigma_i(X)$$

Apr 11, 2019 @ Banff

Numerical results

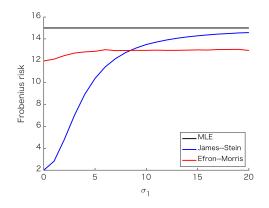
- Risk functions for p = 5, q = 3, $\sigma_1 = 20$, $\sigma_3 = 0$ (rank 2)
- black: \hat{M}_{MLE} , blue: \hat{M}_{JS} , red: \hat{M}_{EM}



- $\hat{M}_{\rm EM}$ works well when σ_2 is small, even if σ_1 is large.
 - \hat{M}_{JS} works well when $||M||_F^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2$ is small.

Numerical results

- Risk functions for p = 5, q = 3, $\sigma_2 = \sigma_3 = 0$ (rank 1)
- black: \hat{M}_{MLE} , blue: \hat{M}_{JS} , red: \hat{M}_{EM}



- $\hat{M}_{\rm EM}$ has constant risk reduction as long as $\sigma_2 = \sigma_3 = 0$, because it shrinks singular values for each.
- Therefore, it works well when *M* has low rank.

Singular value shrinkage prior (Matsuda and Komaki, 2015)

イロト 不得 トイヨト イヨト 三日

Superharmonic prior for estimation

 $X \sim N_p(\mu, I_p)$

- estimate μ based on *X* under the quadratic loss
- superharmonic prior

$$\Delta \pi(\mu) = \sum_{i=1}^{p} \frac{\partial^2}{\partial \mu_i^2} \pi(\mu) \le 0$$

• the Stein prior $(p \ge 3)$ is superharmonic:

$$\pi(\mu) = ||\mu||^{2-p}$$

• Bayes estimator with the Stein prior shrinks to the origin.

Theorem (Stein, 1974)

Bayes estimators with superharmonic priors dominate MLE.

Superharmonic prior for prediction

$$X \sim N_p(\mu, \Sigma), \quad Y \sim N_p(\mu, \Sigma)$$

- We predict Y from the observation X (Σ, Σ̃: known)
- Bayesian predictive density with prior $\pi(\mu)$

$$\hat{p}_{\pi}(y \mid x) = \int p(y \mid \mu) \pi(\mu \mid x) d\mu$$

Kullback-Leibler loss

$$D(p(y \mid \mu), \hat{p}(y \mid x)) = \int p(y \mid \mu) \log \frac{p(y \mid \mu)}{\hat{p}(y \mid x)} dy$$

10 / 33

Bayesian predictive density with the uniform prior is minimax
 Apr 11, 2019 @ Banff

Superharmonic prior for prediction

$$X \sim N_p(\mu, \Sigma), \quad Y \sim N_p(\mu, \overline{\Sigma})$$

Theorem (Komaki, 2001)

When $\Sigma \propto \widetilde{\Sigma}$, the Stein prior dominates the uniform prior.

Theorem (George, Liang and Xu, 2006) When $\Sigma \propto \widetilde{\Sigma}$, superharmonic priors dominate the uniform prior.

Theorem (Kobayashi and Komaki, 2008; George and Xu, 2008)

For general Σ and $\widetilde{\Sigma}$, superharmonic priors dominate the uniform prior.

Motivation

vootor	James-Stein estimator	Stein prior
vector	$\hat{\mu}_{\mathrm{JS}} = \left(1 - \frac{p-2}{ x ^2}\right) x$	$\pi_{\rm S}(\mu) = \mu ^{-(p-2)}$
matrix	Efron–Morris estimator	2
mainx	$\hat{M}_{\rm EM} = X \left(I_q - (p - q - 1)(X^{\top}X)^{-1} \right)$	f

• note: JS and EM are not generalized Bayes.

Singular value shrinkage prior

$$\pi_{\text{SVS}}(M) = \det(M^{\top}M)^{-(p-q-1)/2} = \prod_{i=1}^{q} \sigma_i(M)^{-(p-q-1)}$$

- We assume $p \ge q + 2$.
- π_{SVS} puts more weight on matrices with smaller singular values, so it shrinks singular values for each.
- When q = 1, π_{SVS} coincides with the Stein prior.

Theorem (M. and Komaki, 2015)

 π_{SVS} is superharmonic: $\Delta \pi_{\text{SVS}} \leq 0$.

• Therefore, the Bayes estimator and Bayesian predictive density with respect to π_{SVS} are minimax.

Apr 11, 2019 @ Banff

Comparison to other superharmonic priors

- Previously proposed superharmonic priors mainly shrink to simple subsets (e.g. point, linear subspace).
- In contrast, our priors shrink to the set of low rank matrices, which is nonlinear and nonconvex.

Theorem (M. and Komaki, 2015) $\Delta \pi_{SVS}(M) = 0$ if *M* has full rank.

• Therefore, superharmonicity of π_{SVS} is strongly concentrated in the same way as the Laplacian of the Stein prior becomes a Dirac delta function.

An observation

James-Stein estimator

$$\hat{\mu}_{\rm JS} = \left(1 - \frac{p-2}{||x||^2}\right) x$$

• the Stein prior

$$\pi_{\rm S}(\mu) = ||\mu||^{-(p-2)}$$

• Efron–Morris estimator

$$\hat{\sigma}_i = \left(1 - \frac{p - q - 1}{\sigma_i^2}\right) \sigma_i$$

Singular value shrinkage prior

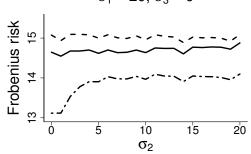
$$\pi_{\rm SVS}(M) = \prod_{i=1}^q \sigma_i(M)^{-(p-q-1)}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Numerical results

Risk functions of Bayes estimators

dashed: uniform prior, solid: Stein's prior, dash-dot: our prior

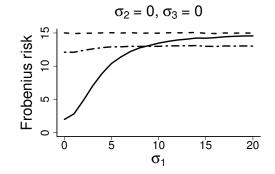


 $\sigma_1 = 20, \sigma_3 = 0$

- π_{SVS} works well when σ_2 is small, even if σ_1 is large.
 - Stein's prior works well when $||M||_F^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2$ is small.

Numerical results

- Risk functions of Bayes estimators
 - ▶ *p* = 5, *q* = 3
 - dashed: uniform prior, solid: Stein's prior, dash-dot: our prior



- π_{SVS} has constant risk reduction as long as $\sigma_2 = \sigma_3 = 0$, because it shrinks singular values for each.
- Therefore, it works well when *M* has low rank.

Apr 11, 2019 @ Banff

Additional shrinkage

• Efron and Morris (1976) proposed an estimator that further dominates $\hat{M}_{\rm EM}$ by additional shrinkage to the origin

$$\hat{M}_{\text{MEM}} = X \left\{ I_q - (p - q - 1)(X^{\top}X)^{-1} - \frac{q^2 + q - 2}{\operatorname{tr}(X^{\top}X)} I_q \right\}$$

Motivated from this estimator, we propose another shrinkage prior

$$\pi_{\text{MSVS}}(M) = \pi_{\text{SVS}}(M) ||M||_{\text{F}}^{-(q^2+q-2)}$$

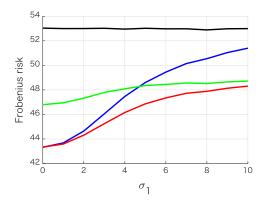
Theorem (M. and Komaki, 2017)

The prior π_{MSVS} asymptotically dominates π_{SVS} in both estimation and prediction.

Numerical results

• $p = 10, q = 3, \sigma_2 = \sigma_3 = 0$ (rank 1)

• black: π_{I} , blue: π_{S} , green: π_{SVS} , red: π_{MSVS}



• Additional shrinkage improves risk when $||M||_{F}$ is small.

Admissibility results

Theorem (M. and Strawderman)

The Bayes estimator with respect to π_{SVS} is inadmissible. The Bayes estimator with respect to π_{MSVS} is admissible.

20 / 33

• Proof: use Brown's condition

Addition of column-wise shrinkage

$$\pi_{\text{MSVS}}(M) = \pi_{\text{SVS}}(M) \prod_{j=1}^{q} ||M_{j}||^{-q+1}$$

• $M_{.j}$: *j*-th column vector of M

Theorem (M. and Komaki, 2017)

The prior $\pi_{\rm MSVS}$ asymptotically dominates $\pi_{\rm SVS}$ in both estimation and prediction.

• This prior can be used for sparse reduced rank regression.

$$Y = XB + E, \quad E \sim \mathcal{N}_{n,q}(0, I_n \otimes \Sigma)$$

$$\rightarrow \hat{B} = (X^{\top}X)^{-1}X^{\top}Y \sim \mathcal{N}_{p,q}(B, (X^{\top}X)^{-1} \otimes \Sigma)$$

Empirical Bayes matrix completion (Matsuda and Komaki, 2019)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Empirical Bayes viewpoint

 Efron–Morris estimator was derived as an empirical Bayes estimator.

$$M \sim \mathcal{N}_{p,q}(0, I_p \otimes \Sigma) \quad \Leftrightarrow \quad M_{i \cdot} \sim \mathcal{N}_q(0, \Sigma)$$
$$Y \mid M \sim \mathcal{N}_{p,q}(M, I_p \otimes I_q) \quad \Leftrightarrow \quad Y_{ij} \sim \mathcal{N}(M_{ij}, 1)$$

• Bayes estimator (posterior mean)

$$\hat{M}^{\pi}(Y) = Y \left(I_q - \left(I_q + \Sigma \right)^{-1} \right)$$

• Since $Y^{\top}Y \sim W_q(I_q + \Sigma, p)$ marginally,

$$E[(Y^{\top}Y)^{-1}] = \frac{1}{p-q-1}(I_q + \Sigma)^{-1}$$

→ Replace $(I_q + \Sigma)^{-1}$ in $\hat{M}^{\pi}(Y)$ by $(p - q - 1)(Y^{\top}Y)^{-1}$ → Efron–Morris estimator

Apr 11, 2019 @ Banff

Matrix completion

- Netflix problem
 - matrix of movie ratings by users

	movie 1	movie 2	movie 3	movie 4
user 1	4	7	?	2
user 2	6	?	3	8
user 3	?	1	9	?
user 4	4	5	?	3

- We want to estimate unobserved entries for recommendation.
 → matrix completion
- Many studies investigated its theory and algorithm.

Matrix completion

- Low-rankness of the underlying matrix is crucial in matrix completion.
- Existing algorithms employ low rank property.
 - SVT, SOFT-IMPUTE, OPTSPACE, Manopt, ...
- e.g. SVT algorithm
 - ► ||A||_{*}: nuclear norm (sum of singular values)

$$\begin{array}{ll} \underset{\hat{M}}{\text{minimize}} & \|\hat{M}\|_{*} \\ \text{subject to} & |Y_{ij} - \hat{M}_{ij}| \leq E_{ij}, \quad (i, j) \in \Omega \end{array}$$

\rightarrow sparse singular values (low rank)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

EB algorithm

- We develop an empirical Bayes (EB) algorithm for matrix completion.
- EB is based on the following hierarchical model
 - Same with the derivation of the Efron–Morris estimator
 - C: scalar or diagonal matrix (unknown)

$$M \sim N_{p,q}(0, I_p \otimes \Sigma)$$
$$Y \mid M \sim N_{p,q}(M, I_p \otimes C)$$

• Goal: estimate *M* from observed entries of *Y*

- ▶ If *Y* is fully observed, it reduces to the previous problem.
- \rightarrow EM algorithm !!

EB algorithm

EB algorithm

- E step: estimate (Σ, C) from \hat{M} and Y
- M step: estimate *M* from *Y* and $(\hat{\Sigma}, \hat{C})$
- Iterate until convergence

- Both steps can be solved analytically.
 - Sherman-Morrison-Woodbery formula
- We obtain two algorithms corresponding to *C* is scalar or diagonal.
- EB does not require heuristic parameter tuning other than tolerance.

Simulation setting

- We compare EB to existing algorithms (SVT, SOFT-IMPUTE, OPTSPACE, Manopt)
- data generation

$$U \sim N_{p,r}(0, I_p \otimes I_r), \quad V \sim N_{r,q}(0, I_r \otimes I_q)$$

$$M = UV, \quad Y = M + E, \quad E \sim \mathcal{N}_{p,q}(0, I_p \otimes R)$$

- Observed entries $\Omega \subset \{1, \dots, p\} \times \{1, \dots, q\}$: uniformly random
- We evaluate the accuracy by the normalized error for the unobserved entries.

error :=
$$\frac{(\sum_{(i,j)\notin\Omega} (\hat{M}_{ij} - M_{ij})^2)^{1/2}}{(\sum_{(i,j)\notin\Omega} M_{ij}^2)^{1/2}}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Numerical results

- Results on simulated data
 - 1000 rows, 100 columns, rank = 30, 50 % entries observed
 - observation noise: homogeneous $(R = I_q)$

	error	time
EB (scalar)	0.26	4.33
EB (diagonal)	0.26	4.26
SVT	0.48	1.44
SOFT-IMPUTE	0.50	3.58
OPTSPACE	0.89	67.74
Manopt	0.89	0.17

• EB has the best accuracy.

Numerical results: heterogeneity

- Results on simulated data with heterogeneity
 - 1000 rows, 100 columns, rank = 30, 50 % entries observed
 - observation noise: heterogeneous ($R = \text{diag}(0.05, 0.1, \dots, 5)$)

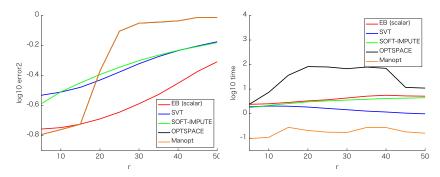
	error	time
EB (scalar)	0.27	3.94
EB (diagonal)	0.24	3.12
SVT	0.43	1.59
SOFT-IMPUTE	0.37	2.10
OPTSPACE	0.28	7.46
Manopt	0.28	0.12

- EB (diagonal) has the best accuracy.
 - accounts for heterogeneity

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Numerical results: rank

- Performance with respect to rank
 - 1000 rows, 100 columns, 50 % entries observed
 - observation noise: unit variance



• EB has the best accuracy when $r \ge 20$.

Application to real data

- Mice Protein Expression dataset
 - expression levels of 77 proteins measured in the cerebral cortex of 1080 mice
 - from UCI Machine Learning Repository

	error	time
EB (scalar)	0.12	2.90
EB (diagonal)	0.11	3.35
SVT	0.84	0.17
SOFT-IMPUTE	0.29	2.14
OPTSPACE	0.33	12.39
Manopt	0.64	0.19

• EB attains the best accuracy.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Summary

Efron–Morris estimator (Efron and Morris, 1972)

$$\hat{M}_{\rm EM}(X) = X \left(I_q - (p - q - 1)(X^{\top}X)^{-1} \right)$$

minimax estimator of a normal mean matrix natural extension of the James–Stein estimator

Singular value shrinkage prior (M. and Komaki, 2015)

$$\pi_{\rm SVS}(M) = \det(M^{\top}M)^{-(p-q-1)/2}$$

superharmonic ($\Delta \pi_{SVS} \le 0$), natural generalization of the Stein prior works well for <u>low-rank</u> matrices \rightarrow reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)

estimate unobserved entries of a matrix by exploting low-rankness