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Outline for the talk

• An overview on prediction problems in spatial statistics

• Discuss computational challenges

• New algorithm for matrix-free for predictions on regular lattices

• Extension to spatial-temporal predictions

• Predictions on irregular lattices

• Applications in environmental sciences
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Groundwater arsenic contamination in Bangladesh

●

●
●●

●

●

●

●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●
●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●
●●

●

●

●●
●

●
●

●
●●●

●
●

●

●

● ●

●
●

●
●

●

●
●
●

●
●●

● ●●
●

●

●

●
●

●

●
●
●

●

●
● ●●

●●

●

●
●●

●

●●

● ●

●

●

● ●

●●

●
●

●●

●

●

●

●

●
●●

●●

●●●●
●●
●●

●●●
●●

●

●●●●●
●

●●●
●

●●

●

●

●
●

●●

●

●●●
●
●
●

●
● ●

●
● ●●

●●

●
●

●

●●
●

●

●
●

●
●

●
●

●

● ●●

●●
●

●

●●
●●

●●

●●
●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●●
●●

● ●

●

● ●
●

●
●

●●

●

●
●

●●●●

●
●

●

●
●●

●

●

●

●
●

●

●●

●

●

●
●●

●●●

●
●●

●

●●

●

●●
●

●●

●●

●●

●
●●

●

●

●

● ●
●

●
● ●

●●
●

●

●
●

●●●●●
●●

●●●●

●●

●

●●●●● ●

●●
●

●●

●
●

●

●

● ●

●●

●
●

●

●●●
●●●

●●

●●
●●

●

●● ●
● ●●

●
●

●
●

●●

●
●

●●

●

●●●●
●

●

●●

●●
●

●

●●●

●
●●●

●

●●

●

● ●
●

●

●

●

●●●
●●●

●
●

●●
●
●

●●●●●●●●

●

●
●●

●●
●●
●

●●
●●●●

●
●

●
●●●

●●
●

●

●
●
●

●
●

●

●
●●

●●● ●

●

●
●

●
●

● ●

●
●

●
●

● ●●
●

●

●
●

●

●
●

●
●●

●
●●
●●

●●●

●
●●●●●

●
●

● ●●●●●●●●●●●

●

●
●
●●

●
●

●
● ●

● ●

●

●●

● ●●
●

●

●●●
●●

●●
●

●

●

●
●

●

● ●

●

●●●
●●

●
●

●
●
●

●

●●
●

●
●

●●
●

●

●●●

●●
●
●●

●

●●
●●

●
●
●

●

●

●

●

●
●●
●●

●

●●
●

●●
●

● ●●
●●●

●●
●

●
●

●
●

●

●●●
●

●
●●

●
●
●
●

●●●●

●●●●
●●●

●
●
●●

●●
●●

●
●

●●
●
●

●
●●

●
●
●

●

●

●●●●
●●●

●

●●

●
●
●

●
●●

●●

●
●

●●

●
●●
●●
●●

●●
●

●
●●
●

●
●

●
●●
●

●
●

●

●●●
●

●
●●

●
●

●

●
●
●●●
●●

●
●
●

●●
● ●●●

●●●

●

●●
●

● ●●
●

●
●●●

●●●●

●
●

●●

●●
●●●●
●

●●

●
●

●

●●
●
●

●

●

●
●
● ●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●●
●

●

●●●●

● ●●
●●

●●
● ●●● ●●●●

●●●●●

●●
●

● ●

●

●
●

●
●●

●●

●
●●

● ●
●● ●

●

●
●

●
●● ●

●

●
●

●●●●

●

●
●

●
●●

●●

●
●
●

●●

●
●

●

●●
●

●●
●

●

●
●●●

●

●

●

●
●●

●
●

●●

●

●●

●

●
●

●

●

●●
●

●
●

●
●
●●

●●● ●●

●●

●

●●

●

●

●
●

●

●
●●

●
●

●●

●

●●●●
●

●
●

●
●

●
●

●●
●

●●●
●
●

●
●●

●

●
●●

●
●

●●

●
●

●
●

●
●●

●

●

●
●

●
●

●●●
●

●
●

● ●

●
●

●●●

●

●
●●
●

● ●
●

●
●●●

●
●●

●●
●

●
●

● ●

●

●
●

●

●
●

●

●●

●
●
●●●

●

●

●
●

●

●
●

● ●
●

●

●●
●

● ●
●●

●●

●

●●●

● ●●

●

●

●●
●

●

●

●●

●
●

●

●
●

●

●●

●●

●●
●

●●●
●

●
●

●

●
●●

●

●

●●●
●●

●
●

●

● ●

●●
●
●

● ●
●

●●

●

●

●

●
●●

●
●●

●
●

●

●●
●

●

●●
●

●●

●●
●

●

●

●

●
● ● ●

●
●

●
●

●

● ●

●

●
●

●

●
●

●
●●

●

●

●
●
●●

●

●●

●

●●●

●● ●
●

●

●
● ●

●●

●
●

●●

●
●
●

●●
●●

●
●●
●

●●● ●

●
●

●

●

●
●
●●

●
●

●
●●●
● ●

●●●

●●
●

●

●

●

●

●
●
● ● ●

●
●

●

●
●
●●

●●
● ●

●●
●
●

●●●
●
●●

●

●●●●●
●●

●
●●

●
●
●

●●

●●
●

●●●●

●
●

●●
●

● ●

●

●
●

●●

●●●
●

●
● ●●●●

●● ●
●

●

0
2

4
6

lo
g−

ar
se

ni
c

     

1027

●

1020

606
463

●

418

●

●

Arsenic conc. (in ppb)

0 − 0.5
0.5 − 10
10 − 50
50 − 150
150 − 1660

Data at 3000 locations from a British Geological Survey
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Groundwater arsenic contamination in Bangladesh

Arsenic contamination of the groundwater in Bangladesh is a serious problem.

Arsenic in 42 districts above WHO maximum permissible limit of 50 mg/L.

Many millions people are affected.
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BLUPs for log arsenic contamination in Bangladesh

−2 0 2 4

For prediction, we embedded the data on a 500× 300 grid. Images corresponds to 3

different models. BLUPS are starting points, we also care about uncertainties.
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Climate downscaling Kaufman and Sain (2010)
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120 x 98 array
longitude

la
tit
ud
e

5

10

15

20

25

30

35

Temperature from a regional climate model. Goal is to predict on a finer resolution.
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EPA/EMAP study region II and sampling locations in 1994

Goal is to study the extent of environmental damage.
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Prediction with spatial linear mixed models

y = Tτ + Fx + ϵ

That is, we assume Gaussian response and identity link function.

y = n× 1 vector of response

T = n×m covariate information matrix

τ = m× 1 vector covariate effects

x = latent spatial effects on a very fine r × c grid

F = n× rc sparse matrix (identity or incidence matrix, averaging matrix,...)

ϵ = n× 1 vector of Gaussian residual effects (might be omitted in some contexts)

No replication; data values not exchangeable; near values more related than distant ones

For prediction, we need stochastic modeling of x.
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Nearest-neighbor (conditional autoregression) model for x

Xu, v

xu, v+1

xu, v 1

xu+1, vxu 1, v

E (Xu,v | . . .) = γ10 (xu−1,v + xu+1,v) + γ01 (xu,v−1 + xu,v+1), var (Xu,v | . . .) = κ.

Typically γ01, γ10 ≥ 0 & γ01 + γ10 ≤ 1
2
. Focus on the intrinsic case γ01 + γ10 = 1

2
.

9
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Geostatistical limits of stationary and intrinsic autoregressions

γ01 + γ10 → 1
2

Stationary autoregression —————————> intrinsic autoregression

γ01 + γ10 → 1
2

∨ ∨
Generalized Ornstein-Uhlenbeck —————————> De Wijs process/

process Gaussian free field

• A suitable large value of s allows us to approximate functionals of de Wijs

process by functionals of Gaussian intrinsic autoregressions

10
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A realization of x on a 256× 256 array
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Further specifications of the linear mixed model

• Assume

ϵ ∼ N
(
0, λ−1

1 In

)
, τ ∼ N

(
0, λ−1

2 Im

)
(1)

• Distribution of x has an alternative form

|W | 12 exp
{
− 1

2
xTWx

}
with two precision parameters λ10 and λ01 and

xTWx = λ10
∑∑

(xi,j − xi−1,j)
2 + λ01

∑∑
(xi,j − xi,j−1)

2. (2)

• Precision matrix W is sparse and has spectral decomposition is

W =MDMT =M
(
λ01D01 + λ10D10

)
MT .

M corresponds to the two dimensional discrete cosine transformation.

• Prior for dispersion parameters

λ ∼ π(λ)

Can consider shrinkage or other priors here

12
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Conditional simulations

Interested in sampling from

π(τ, x | y, λ) ≡ N
(
A−1b, A−1

)
where

A =

 λ1T
TT + λ2Im λ1T

TF

λ1F
TT λ1F

TF +W

 , b =

 λ1T
Ty

λ1F
Ty


Current state-of-the-art algorithm

1.

z ∼ N(0, Im+rc)

2. Compute sparse Cholesky decomposition

A = LLT

3. Obtain by solving

(LT )−1L−1b+ (LT )−1z

Computational costs: Memory = O((rc)
1
2 ); #FLOPs = O((rc)

1
2 ). Not scalable!

13
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A new algorithm

Consider a “rectangular square root”

A = SST , S =

 λ
1
2
1 T

T λ
1
2
2 Im 0

λ
1
2
1 F

T 0 MD
1
2


1. Generate

z1 ∼ N(0, In), z2 ∼ N(0, Im), z1 ∼ N(0, Irc)

2. Sample with A as covariance matrix, i.e. compute

u = Sz

3. Sample from π(τ, x | y, λ) by solving sparse equation

Aβ = b+ u

Fast matrix-vector multiplication with A or S due to DCT

A−1b gives BLUE τ̂ and BLUP x̂. Same computational costs as that of BLUP!

14
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Lanczos algorithm + preconditioning with incomplete Cholesky

• To solve Aβ = b, A non negative definitive, use Lanczos algorithm

- sequentially compute orthonormal v1, v2, v3, . . . from span of b, Ab,A2b, . . . so that

AV ≈ V∆

where ∆ is tridiagonal, and obtain solution from a tridiagonal system of equation

- Matrix-free, depends only on matrix-vector multiplications

• Effective order of computations is O(rc log(rc)).

• Preconditioning makes Lanczos algorithm even faster

- instead of solving Aβ = b directly, solve:

CACTβ′ = Cb, CTβ′ = β

- One choice of C is block diagonal diag{λ1(T TT )−
1
2 , (λ1F

TF +W )−
1
2 }

- Replace (λ1F
TF +W )−

1
2 by inverse incomplete Cholesky of (λ1F

TF +W ).

15
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Further developments

• For predictions we also need

π(λ | y) ≈ N
(
λ; λ̂, Î(λ̂)−1

)
Here λ̂ ≡ MLE of λ, observed Fisher information ≡ Î(λ̂),

See Dutta and Mondal (2015, 2016) for matrix-free computations of λ̂ and Î(λ̂)

• Conditional simulations for higher order intrinsic autoregressions

– E.g. thin plate splines: replace W by P (W ), P a positive polynomial.

Distribution of x has the form

|P (W )| 12 exp
{
− 1

2
xTP (W )x

}
A = SST =

 λ1T
TT + λ2Im λ1T

TF

λ1F
TT λ1F

TF + P (W )

 , S =

 λ
1
2
1 T

T λ
1
2
2 Im 0

λ
1
2
1 F

T 0 MP (D)
1
2
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Conditional simulations for intrinsic Matérn models

Typically, Matérn models defined via covariances involving Bessel functions ...

Focus here on a discretized version for which the distribution takes the form

|W 1
2 exp

{
− 1

2
xTWαx

}
.

For this model

π(τ, x | y, λ) ≡ N
(
A−1b, A−1

)
where

A = SST =

 λ1T
TT + λ2Im λ1T

TF

λ1F
TT λ1F

TF +Wα

 , S =

 λ
1
2
1 T

T λ
1
2
2 Im 0

λ
1
2
1 F

T 0 MDα/2


Wα is not sparse, but discrete cosine transformation helps in computation

π(α, λ) =???

See Dutta and Mondal (2016) for MLE calculations ...
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Lattice systems and approximation to advection-diffusions

Consider

∂x(t, z)/∂t = −(1/2){A xt}+ δ(t, z),

δ(t, z) Gaussian, temporally uncorrelated, and

A x(t, z) = 2µT∂x(t, z)/∂z − tr{∂2x(t, z)/(∂z∂zT )}Σ+ 2τx(t, z),

RHS: 1st term for transportation, 2nd term for diffusion, 3rd term for dumping

For brevity, take µ = 0, Σ = γ1I, τ = −γ2. Then

∂x(t, z)/∂t = γ1{∂2x(t, z)/∂z21 + ∂2x(t, z)/∂z22}/2− γ2x(t, z) + δ(t, z),

Discretization with xi,z = x(i∆, z∆0) gives

∆
−1(xi+1,z − xi,z)

= γ1∆
−2
0 (xi,z1+1,z2 + xi,z1−1,z2 + xi,z1,z2+1 + xi,z1,z2−1 − 4xi,z)/2− γ2xi,z + δi,z.

So

xi+1 = Kxi + δi, K = (1− γ2∆)In − γ1∆∆0
−2(Ic ⊗ S1 + S2 ⊗ Ir)/2 = f(W ).

18
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Inference and predictions for state-space models

yi = Fixi + ϵi, xi = Kxi−1 + δi, i = 1, . . . , t

ϵi ∼ N(0, γ−1
4 I), δi ∼ N(0, γ−1

3 I), K = f(W ),

Typically done via Kalman filtering. However for large data requires either

• dimension reduction, or

• ensembles of stochastic simulations

• data sketching

Are scalable, matrix-free, statistically efficient predictions possible???

19
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Spectral property of the inverse-covariance matrix

xT = (xT

1 , . . . , x
T

t ), Γ−1 = var (x)

Let M and MT correspond to two-dimensional DCT and inverse DCT. Then

f(W ) =Mf(D)MT ,

where D is diagonal, known and

Γ = RΩRT ,

where

R =


M

. . .

M

 , Ω =



γ3I −γ3f(D) 0 0 · · ·
−γ3f(D) γ3[1 + f(D)2] −γ3f(D) 0 · · ·

0 −γ3f(D) γ3[1 + f(D)2] −γ3f(D) · · ·
· · · 0 −γ3f(D) γ3[1 + f(D)2] −γ3f(D)

· · · 0 0 −γ3f(D) γ3I


Can compute Rθ or Γθ in O(rct log(rct)) steps with storing matrices!!

20



'

&

$

%

Conditional simulations of state vectors

Use vectorize forms

yT = (yT

1 , . . . , y
T

t ), ϵT = (ϵT1 , . . . , ϵ
T

t ), ζT = (ζT

1 , . . . , ζ
T

t ), F = Diag(F1, . . . , Fs)

Then π(x | y, γ) ≡ N
(
A−1b, A−1

)
, A = γ4F

TF + Γ, b = γ4F
Ty

A = SST , S = ( γ
1
2
4 F

T RB ), Ω = BBT , B lower lower block bidiagonal

B = γ
1
2
3



I 0 0 0 · · ·
−f(D) I 0 0 · · ·

0 −f(D) I 0 · · ·
· · · 0 −f(D) I 0

· · · 0 0 −f(D) I


Again computational cost is O(rct log(rct)) without storing matrices!!

See Mondal and Wang (2019) for MLE computation for γ.
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Conditional simulations for spatial models on irregular lattices

G = (V, E) a dependence graph; i ∼ j ⇔ i neighbor of j; ∂i⇔ all neighbors of i.

ωi,j proximity measure between i and j; ωi,j > 0 if i ∼ j; ωi,j = 0 if j /∈ ∂i.

Consider spatial model x such that

E (xi |−i, λ0) =
∑
j∈∂i

ωi,j

ωi+ j

, var (xi |−i, λ0) =
1

λ0ωi+

Then

Wi,i = λ0ωi,+, Wi,j = −λ0ωi,j , π(x | λ0) ∝ λ
n/2
0 |W | 12 exp{− 1

2
λxTWx}

and

xTWx =
∑
i∼j

λ0ωi,j(xi − xj)
2 = xT

(∑
i∼j

λ0ωi,j(ei − ej)(ei − ej)
T

)
x = xTBBTx

It follows that

π(τ, x | y, λ) ≡ N
(
A−1b, A−1

)
, and A = SST , S =

 λ
1
2
1 T

T λ
1
2
2 Im 0

λ
1
2
1 F

T 0 B
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Back to log arsenic contamination in Bangladesh

−2 0 2 4

About 3000 observations. BLUPs on a 500× 300 grid.

Left: for α = 1, Center: for α̂ = 0.858 (no nugget), Right: for REML est. α̂ = 1.240
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Pr(aggregated arsenic concentration exceeding 50ppb | data)

Geometric mean (left), median (right)
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Pr(aggregated arsenic concentration exceeding 50ppb | data)

Maximum (left), inclusion probabilities in the maximal exceedance region (right)
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Visualization with contour lines etc.

Purple line: 0.5ppb; blue line: 10ppb, green line: 50ppb and yellow line: 150ppb
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Standardized atmospheric concentrations of total nitrate

longitude
-95 -77 -59

la
tti
tu
de

18

38

58

-1.5

-1

-0.5

0

0.5

1

1.5

Models-3 output from EPA on gas-phase nitric acid plus particle-phase nitrate

Right panel gives average total Nitrogen concentration over 12 months in 2001.
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Standardized atmospheric concentrations of total nitrate
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longitude
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58

-1.5 -1 -0.5 0 0.5 1 1.5

longitude
-95 -77 -59

longitude
-95 -77 -59

longitude
-95 -77 -59

Standardized Models-3 output for 8 lunar cycles

Spatial array size 62× 112. Spatial resolution of each array cell 36× 36 km2.
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REML estimates of precision parameters with standard errors

Parameters λ0 λ1 λ3

Scenario 1
7.536 7.894 14.571

(0.062) (0.088) (0.062)

Scenario 2
28.726 2.285 13.931

(0.118) (0.028) (0.119)

Based on fitting stochastic advection-diffusion equation

µ = 0, ∆ = 0.01, ∆0 = 1, γ1 = λ0λ1/2, γ3 = 1/(λ0∆), γ4 = λ3, γ̂2 = 0.

• Standard errors in parenthesis. Scenario 2 splits each pixel into 2× 2 sub-pixels
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Prediction of total nitrate at 18× 18 km2 spatial resolutions
la

tt
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e

18

38

58
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Top panel shows y9, . . . , y12. Bottom panel displays ψ̂9, . . . , ψ̂12.

Model explains about 96% of the total variations in the data.
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