Matrix-free conditional simulations of

Gaussian lattice random fields

> DEBASHIS MONDAL

Department of Statistics, Oregon State University,

Corvallis

In collaborations with Somak Dutta and Chunixao Wang

NSF CAREER Award number: 1519890
BIRS Workshop 19w5188

Outline for the talk

- An overview on prediction problems in spatial statistics
- Discuss computational challenges
- New algorithm for matrix-free for predictions on regular lattices
- Extension to spatial-temporal predictions
- Predictions on irregular lattices
- Applications in environmental sciences

Groundwater arsenic contamination in Bangladesh

$$
\text { - } 150-1660
$$

Data at 3000 locations from a British Geological Survey

Groundwater arsenic contamination in Bangladesh

Arsenic contamination of the groundwater in Bangladesh is a serious problem. Arsenic in $\mathbf{4 2}$ districts above WHO maximum permissible limit of $50 \mathrm{mg} / \mathrm{L}$. Many millions people are affected.

BLUPs for log arsenic contamination in Bangladesh

2

4

For prediction, we embedded the data on a 500×300 grid. Images corresponds to 3 different models. BLUPS are starting points, we also care about uncertainties.

Climate downscaling Kaufman and Sain (2010)

longitude
120×98 array
Temperature from a regional climate model. Goal is to predict on a finer resolution.

EPA/EMAP study region II and sampling locations in 1994

Goal is to study the extent of environmental damage.

Prediction with spatial linear mixed models

$$
y=T \tau+F x+\epsilon
$$

That is, we assume Gaussian response and identity link function.
$y=n \times 1$ vector of response
$T=n \times m$ covariate information matrix
$\tau=m \times 1$ vector covariate effects
$x=$ latent spatial effects on a very fine $r \times c$ grid
$F=n \times r c$ sparse matrix (identity or incidence matrix, averaging matrix,...)
$\epsilon=n \times 1$ vector of Gaussian residual effects (might be omitted in some contexts)

No replication; data values not exchangeable; near values more related than distant ones

For prediction, we need stochastic modeling of x.

Nearest-neighbor (conditional autoregression) model for x

$\mathrm{E}\left(X_{u, v} \mid \ldots\right)=\gamma_{10}\left(x_{u-1, v}+x_{u+1, v}\right)+\gamma_{01}\left(x_{u, v-1}+x_{u, v+1}\right), \quad \operatorname{var}\left(X_{u, v} \mid \ldots\right)=\kappa$.

Typically $\gamma_{01}, \gamma_{10} \geq 0 \& \gamma_{01}+\gamma_{10} \leq \frac{1}{2}$. Focus on the intrinsic case $\gamma_{01}+\gamma_{10}=\frac{1}{2}$.

Geostatistical limits of stationary and intrinsic autoregressions

$$
\gamma_{01}+\gamma_{10} \rightarrow \frac{1}{2}
$$

Stationary autoregression
Generalized Ornstein-Uhlenbeck process
intrinsic autoregression

De Wijs process/
Gaussian free field

- A suitable large value of s allows us to approximate functionals of de Wijs process by functionals of Gaussian intrinsic autoregressions

A realization of x on a 256×256 array

Further specifications of the linear mixed model

- Assume

$$
\begin{equation*}
\epsilon \sim \mathrm{N}\left(0, \lambda_{1}^{-1} I_{n}\right), \quad \tau \sim \mathrm{N}\left(0, \lambda_{2}^{-1} I_{m}\right) \tag{1}
\end{equation*}
$$

- Distribution of x has an alternative form

$$
|W|^{\frac{1}{2}} \exp \left\{-\frac{1}{2} x^{T} W x\right\}
$$

with two precision parameters λ_{10} and λ_{01} and

$$
\begin{equation*}
x^{T} W x=\lambda_{10} \sum \sum\left(x_{i, j}-x_{i-1, j}\right)^{2}+\lambda_{01} \sum \sum\left(x_{i, j}-x_{i, j-1}\right)^{2} . \tag{2}
\end{equation*}
$$

- Precision matrix W is sparse and has spectral decomposition is

$$
W=M D M^{T}=M\left(\lambda_{01} D_{01}+\lambda_{10} D_{10}\right) M^{T}
$$

M corresponds to the two dimensional discrete cosine transformation.

- Prior for dispersion parameters

$$
\lambda \sim \pi(\lambda)
$$

Can consider shrinkage or other priors here

Conditional simulations

Interested in sampling from

$$
\pi(\tau, x \mid y, \lambda) \equiv N\left(A^{-1} b, A^{-1}\right)
$$

where

$$
A=\left(\begin{array}{cc}
\lambda_{1} T^{T} T+\lambda_{2} I_{m} & \lambda_{1} T^{T} F \\
\lambda_{1} F^{T} T & \lambda_{1} F^{T} F+W
\end{array}\right), \quad b=\binom{\lambda_{1} T^{T} y}{\lambda_{1} F^{T} y}
$$

Current state-of-the-art algorithm
1.

$$
z \sim N\left(0, I_{m+r c}\right)
$$

2. Compute sparse Cholesky decomposition

$$
A=L L^{T}
$$

3. Obtain by solving

$$
\left(L^{T}\right)^{-1} L^{-1} b+\left(L^{T}\right)^{-1} z
$$

Computational costs: Memory $=O\left((r c)^{\frac{1}{2}}\right) ;$ FLOPs $=O\left((r c)^{\frac{1}{2}}\right)$. Not scalable!

A new algorithm

Consider a "rectangular square root"

$$
A=S S^{T}, \quad S=\left(\begin{array}{ccc}
\lambda_{1}^{\frac{1}{2}} T^{T} & \lambda_{2}^{\frac{1}{2}} I_{m} & 0 \\
\lambda_{1}^{\frac{1}{2}} F^{T} & 0 & M D^{\frac{1}{2}}
\end{array}\right)
$$

1. Generate

$$
z_{1} \sim N\left(0, I_{n}\right), \quad z_{2} \sim N\left(0, I_{m}\right), \quad z_{1} \sim N\left(0, I_{r c}\right)
$$

2. Sample with A as covariance matrix, i.e. compute

$$
u=S z
$$

3. Sample from $\pi(\tau, x \mid y, \lambda)$ by solving sparse equation

$$
A \beta=b+u
$$

Fast matrix-vector multiplication with A or S due to DCT
$A^{-1} b$ gives BLUE $\hat{\tau}$ and BLUP \hat{x}. Same computational costs as that of BLUP!

Lanczos algorithm + preconditioning with incomplete Cholesky

- To solve $A \beta=b, A$ non negative definitive, use Lanczos algorithm
- sequentially compute orthonormal $v_{1}, v_{2}, v_{3}, \ldots$ from span of $b, A b, A^{2} b, \ldots$ so that

$$
A V \approx V \Delta
$$

where Δ is tridiagonal, and obtain solution from a tridiagonal system of equation

- Matrix-free, depends only on matrix-vector multiplications
- Effective order of computations is $O(r c \log (r c))$.
- Preconditioning makes Lanczos algorithm even faster
- instead of solving $A \beta=b$ directly, solve:

$$
C A C^{T} \beta^{\prime}=C b, \quad C^{T} \beta^{\prime}=\beta
$$

- One choice of C is block diagonal $\operatorname{diag}\left\{\lambda_{1}\left(T^{T} T\right)^{-\frac{1}{2}},\left(\lambda_{1} F^{T} F+W\right)^{-\frac{1}{2}}\right\}$
- Replace $\left(\lambda_{1} F^{T} F+W\right)^{-\frac{1}{2}}$ by inverse incomplete Cholesky of $\left(\lambda_{1} F^{T} F+W\right)$.

Further developments

- For predictions we also need

$$
\pi(\lambda \mid y) \approx N\left(\lambda ; \hat{\lambda}, \hat{I}(\hat{\lambda})^{-1}\right)
$$

Here $\hat{\lambda} \equiv$ MLE of λ, observed Fisher information $\equiv \hat{I}(\hat{\lambda})$,

See Dutta and Mondal $(2015,2016)$ for matrix-free computations of $\hat{\lambda}$ and $\hat{I}(\hat{\lambda})$

- Conditional simulations for higher order intrinsic autoregressions
- E.g. thin plate splines: replace W by $P(W), P$ a positive polynomial.

Distribution of x has the form

$$
\begin{gathered}
|P(W)|^{\frac{1}{2}} \exp \left\{-\frac{1}{2} x^{T} P(W) x\right\} \\
A=S S^{T}=\left(\begin{array}{cc}
\lambda_{1} T^{T} T+\lambda_{2} I_{m} & \lambda_{1} T^{T} F \\
\lambda_{1} F^{T} T & \lambda_{1} F^{T} F+P(W)
\end{array}\right), \quad S=\left(\begin{array}{ccc}
\lambda_{1}^{\frac{1}{2}} T^{T} & \lambda_{2}^{\frac{1}{2}} I_{m} & 0 \\
\lambda_{1}^{\frac{1}{2}} F^{T} & 0 & M P(D)^{\frac{1}{2}}
\end{array}\right)
\end{gathered}
$$

Conditional simulations for intrinsic Matérn models

Typically, Matérn models defined via covariances involving Bessel functions .

Focus here on a discretized version for which the distribution takes the form

$$
\left\lvert\, W^{\frac{1}{2}} \exp \left\{-\frac{1}{2} x^{T} W^{\alpha} x\right\} .\right.
$$

For this model

$$
\pi(\tau, x \mid y, \lambda) \equiv N\left(A^{-1} b, A^{-1}\right)
$$

where

$$
A=S S^{T}=\left(\begin{array}{cc}
\lambda_{1} T^{T} T+\lambda_{2} I_{m} & \lambda_{1} T^{T} F \\
\lambda_{1} F^{T} T & \lambda_{1} F^{T} F+W^{\alpha}
\end{array}\right), \quad S=\left(\begin{array}{ccc}
\lambda_{1}^{\frac{1}{2}} T^{T} & \lambda_{2}^{\frac{1}{2}} I_{m} & 0 \\
\lambda_{1}^{\frac{1}{2}} F^{T} & 0 & M D^{\alpha / 2}
\end{array}\right)
$$

W^{α} is not sparse, but discrete cosine transformation helps in computation

$$
\pi(\alpha, \lambda)=? ? ?
$$

See Dutta and Mondal (2016) for MLE calculations \qquad

Lattice systems and approximation to advection-diffusions

Consider

$$
\partial x(t, z) / \partial t=-(1 / 2)\left\{\mathscr{A} x_{t}\right\}+\delta(t, z)
$$

$\delta(t, z)$ Gaussian, temporally uncorrelated, and

$$
\mathscr{A} x(t, z)=2 \mu^{T} \partial x(t, z) / \partial z-\operatorname{tr}\left\{\partial^{2} x(t, z) /\left(\partial z \partial z^{T}\right)\right\} \Sigma+2 \tau x(t, z),
$$

RHS: 1st term for transportation, 2nd term for diffusion, 3rd term for dumping
For brevity, take $\mu=0, \Sigma=\gamma_{1} I, \tau=-\gamma_{2}$. Then

$$
\partial x(t, z) / \partial t=\gamma_{1}\left\{\partial^{2} x(t, z) / \partial z_{1}^{2}+\partial^{2} x(t, z) / \partial z_{2}^{2}\right\} / 2-\gamma_{2} x(t, z)+\delta(t, z)
$$

Discretization with $x_{i, z}=x\left(i \Delta, z \Delta_{0}\right)$ gives

$$
\begin{aligned}
& \Delta^{-1}\left(x_{i+1, z}-x_{i, z}\right) \\
= & \gamma_{1} \Delta_{0}^{-2}\left(x_{i, z_{1}+1, z_{2}}+x_{i, z_{1}-1, z_{2}}+x_{i, z_{1}, z_{2}+1}+x_{i, z_{1}, z_{2}-1}-4 x_{i, z}\right) / 2-\gamma_{2} x_{i, z}+\delta_{i, z} .
\end{aligned}
$$

So

$$
x_{i+1}=K x_{i}+\delta_{i}, \quad K=\left(1-\gamma_{2} \Delta\right) I_{n}-\gamma_{1} \Delta \Delta_{0}^{-2}\left(I_{c} \otimes S_{1}+S_{2} \otimes I_{r}\right) / 2=f(W)
$$

Inference and predictions for state-space models

$$
\begin{aligned}
y_{i}=F_{i} x_{i}+\epsilon_{i}, \quad x_{i}=K x_{i-1}+\delta_{i}, & i=1, \ldots, t \\
\epsilon_{i} & \sim N\left(0, \gamma_{4}^{-1} I\right), \quad \delta_{i} \sim N\left(0, \gamma_{3}^{-1} I\right), \quad K=f(W),
\end{aligned}
$$

Typically done via Kalman filtering. However for large data requires either

- dimension reduction, or
- ensembles of stochastic simulations
- data sketching

Are scalable, matrix-free, statistically efficient predictions possible???

Spectral property of the inverse-covariance matrix

$$
x^{T}=\left(x_{1}^{T}, \ldots, x_{t}^{T}\right), \quad \Gamma^{-1}=\operatorname{var}(x)
$$

Let M and M^{T} correspond to two-dimensional DCT and inverse DCT. Then

$$
f(W)=M f(D) M^{T},
$$

where D is diagonal, known and

$$
\Gamma=R \Omega R^{T}
$$

where
$R=\left(\begin{array}{ccc}M & & \\ & \ddots & \\ & & M\end{array}\right), \Omega=\left(\begin{array}{ccccc}\gamma_{3} I & -\gamma_{3} f(D) & 0 & 0 & \cdots \\ -\gamma_{3} f(D) & \gamma_{3}\left[1+f(D)^{2}\right] & -\gamma_{3} f(D) & 0 & \cdots \\ 0 & -\gamma_{3} f(D) & \gamma_{3}\left[1+f(D)^{2}\right] & -\gamma_{3} f(D) & \cdots \\ \cdots & 0 & -\gamma_{3} f(D) & \gamma_{3}\left[1+f(D)^{2}\right] & -\gamma_{3} f(D) \\ \cdots & 0 & 0 & -\gamma_{3} f(D) & \gamma_{3} I\end{array}\right)$
Can compute $R \theta$ or $\Gamma \theta$ in $O(r c t \log (r c t))$ steps with storing matrices!!

Conditional simulations of state vectors

Use vectorize forms

$$
\begin{gathered}
y^{T}=\left(y_{1}^{T}, \ldots, y_{t}^{T}\right), \quad \epsilon^{T}=\left(\epsilon_{1}^{T}, \ldots, \epsilon_{t}^{T}\right), \quad \zeta^{T}=\left(\zeta_{1}^{T}, \ldots, \zeta_{t}^{T}\right), \quad F=\operatorname{Diag}\left(F_{1}, \ldots, F_{s}\right) \\
\text { Then } \pi(x \mid y, \gamma) \equiv N\left(A^{-1} b, A^{-1}\right), \quad A=\gamma_{4} F^{T} F+\Gamma, \quad b=\gamma_{4} F^{T} y \\
A=S S^{T}, \quad S=\left(\gamma_{4}^{\frac{1}{2}} F^{T} R B\right), \quad \Omega=B B^{T}, \quad B \text { lower lower block bidiagonal } \\
B=\gamma_{3}^{\frac{1}{2}}\left(\begin{array}{ccccc}
I & 0 & 0 & 0 & \cdots \\
-f(D) & I & 0 & 0 & \cdots \\
0 & -f(D) & I & 0 & \cdots \\
\cdots & 0 & -f(D) & I & 0 \\
\cdots & 0 & 0 & -f(D) & I
\end{array}\right)
\end{gathered}
$$

Again computational cost is $O(r c t \log (r c t))$ without storing matrices!!

See Mondal and Wang (2019) for MLE computation for γ.

Conditional simulations for spatial models on irregular lattices

$\mathcal{G}=(\mathcal{V}, \mathcal{E})$ a dependence graph; $i \sim j \Leftrightarrow i$ neighbor of $j ; \partial i \Leftrightarrow$ all neighbors of i.
$\omega_{i, j}$ proximity measure between i and $j ; \omega_{i, j}>0$ if $i \sim j ; \omega_{i, j}=0$ if $j \notin \partial i$.
Consider spatial model x such that

$$
\mathrm{E}\left(\left.x_{i}\right|_{-i}, \lambda_{0}\right)=\sum_{j \in \partial i} \frac{\omega_{i, j}}{\omega_{i+j}}, \quad \operatorname{var}\left(\left.x_{i}\right|_{-i}, \lambda_{0}\right)=\frac{1}{\lambda_{0} \omega_{i+}}
$$

Then

$$
W_{i, i}=\lambda_{0} \omega_{i,+}, \quad W_{i, j}=-\lambda_{0} \omega_{i, j}, \quad \pi\left(x \mid \lambda_{0}\right) \propto \lambda_{0}^{n / 2}|W|^{\frac{1}{2}} \exp \left\{-\frac{1}{2} \lambda x^{T} W x\right\}
$$

and

$$
x^{T} W x=\sum_{i \sim j} \lambda_{0} \omega_{i, j}\left(x_{i}-x_{j}\right)^{2}=x^{T}\left(\sum_{i \sim j} \lambda_{0} \omega_{i, j}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{T}\right) x=x^{T} B B^{T} x
$$

It follows that

$$
\pi(\tau, x \mid y, \lambda) \equiv N\left(A^{-1} b, A^{-1}\right), \quad \text { and } A=S S^{T}, \quad S=\left(\begin{array}{ccc}
\lambda_{1}^{\frac{1}{2}} T^{T} & \lambda_{2}^{\frac{1}{2}} I_{m} & 0 \\
\lambda_{1}^{\frac{1}{2}} F^{T} & 0 & B
\end{array}\right)
$$

Back to log arsenic contamination in Bangladesh

About 3000 observations. BLUPs on a 500×300 grid.
Left: for $\alpha=1$, Center: for $\widehat{\alpha}=0.858$ (no nugget), Right: for REML est. $\widehat{\alpha}=1.240$

$\operatorname{Pr}($ aggregated arsenic concentration exceeding 50ppb|data)

Geometric mean (left), median (right)
Pr (aggregated arsenic concentration exceeding 50ppb|data)

Maximum (left), inclusion probabilities in the maximal exceedance region (right)

Visualization with contour lines etc.

Purple line: 0.5 ppb ; blue line: 10 ppb , green line: 50 ppb and yellow line: 150 ppb

Standardized atmospheric concentrations of total nitrate

Models-3 output from EPA on gas-phase nitric acid plus particle-phase nitrate Right panel gives average total Nitrogen concentration over 12 months in 2001.

Standardized atmospheric concentrations of total nitrate

Standardized Models-3 output for 8 lunar cycles

Spatial array size 62×112. Spatial resolution of each array cell $36 \times 36 \mathrm{~km}^{2}$.

REML estimates of precision parameters with standard errors

Parameters	λ_{0}	λ_{1}	λ_{3}
Scenario 1	7.536	7.894	14.571
	(0.062)	(0.088)	(0.062)
Scenario 2	28.726	2.285	13.931
	(0.118)	(0.028)	(0.119)

Based on fitting stochastic advection-diffusion equation

$$
\mu=0, \quad \Delta=0.01, \quad \Delta_{0}=1, \quad \gamma_{1}=\lambda_{0} \lambda_{1} / 2, \quad \gamma_{3}=1 /\left(\lambda_{0} \Delta\right), \quad \gamma_{4}=\lambda_{3}, \quad \hat{\gamma}_{2}=0 .
$$

- Standard errors in parenthesis. Scenario 2 splits each pixel into 2×2 sub-pixels

Prediction of total nitrate at $18 \times 18 \mathrm{~km}^{2}$ spatial resolutions

Top panel shows y_{9}, \ldots, y_{12}. Bottom panel displays $\hat{\psi}_{9}, \ldots, \hat{\psi}_{12}$.

Model explains about 96% of the total variations in the data.

REFERENCES

Anitescu, M. Chen, J. and Wang, L. (2012). A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem. To appear in SIAM Journal of Scientific Computing.

Besag, J. E. and Mondal, D. (2005). First-order intrinsic autoregressions and the de Wijs process. Biometrika, 92, 909-920.

Besag, J. E. and Higdon, D. M. (1999). Bayesian analysis of agricultural field experiments (with discussion).
J. R. Statist. Soc. B, 61, 691-746.

Besag, J. and Green, P. J. (1993). Spatial Statistics and Bayesian Computation (with discussions). Journal of the Royal Statistical Society, B. 55, 25-37.

Borici, A. (2000). A Lanczos Approach to the Inverse Square Root of a Large and Sparse Matrix. Journal of Computational Physics, 162, 123-131.

Dutta, S. and Mondal, D. (2016). REML estimation with intrinsic Matérn dependence in the spatial linear mixed model. Electronic Journal of Statistics, 10, 2856-2893.

Dutta, S. and Mondal, D. (2015). An h-likelihood method for spatial mixed linear models based on intrinsic autoregressions. Journal of Royal Statistical Society: Series B, 77, 699-726

Harville, D. A. (1977). Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems. Journal of the American Statistical Association. 72, 320-338.

Henderson, C. R. (1950). Estimation of genetic parameters. Ann. Mlath. Stat. 21, 309-310.

Lee, Y. and Nelder, J. A. (2001). Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika, 88, 987-1006.

McCullagh, P. and Clifford, D. (2006) Evidence for conformal invariance of crop yields. Proc Roy Soc A. 2119-2143

Mondal, D. and Wang, C. (2017). Matrix-free computations of space-time Gaussian autoregressions and related processes. To appear in Statistica Sinica
Mondal, D. (2017). Generalized Gaussian Markov random fields and modeling disease risk. Under revision.

Paige, C. C., and Saunders, M.A. (1975). Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 12, 617-629.

Rue, H. and Held, L. (2005). Gaussian Markov random fields. Theory and applications. Chapman and Hall.

