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Outline

Statistical modeling and data analysis based on point process
models using nonparametric Bayesian methods have various
applications.

We consider nonparametric Bayesian inference of intensity
functions of inhomogeneous Poisson processes, which are a basic
point process model.

It is shown that Bayesian inference and prediction based on a class
of improper priors is useful.

Several theorems corresponding to those for finite dimensional
models also hold for the inhomogeneous Poisson process model.
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1 Preliminary results: finite dimensional problems

2 Nonparametric Bayesian inference for nonhomogeneous Poisson
processes
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Prediction

• An observation x from a distribution with density p(x | θ) that
belongs to a model {p(x | θ) | θ ∈ Θ}.

• The objective is to predict an unobserved random variable y
from the same (or closely related) distribution is predicted by
using a predictive density p̂(y; x).

4



�� ��Loss function

The Kullback-Leibler divergence from the true density
p(y | θ) = ∏m

i=1 p(xi+1 | θ) to a predictive density p̂(y; x):

D{p(y | θ), p̂(y; x)} =
∫

p(y | θ) log
p(y | θ)
p̂(y; x)

dy.

• If we adopt a plug-in distribution p(y | θ̂(x)) as a predictive
distribution, the loss for the plug-in distribution can be regarded
as a loss for the estimator θ̂.

• Predictive distribution theory is a natural generalization of
estimation theory under the Kullback-Leibler loss.
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�� ��Risk function

E[D(p, q) | θ] :=
∫

p(x | θ)
∫

p(y | θ) log
p(y | θ)
p̂(y; x)

dydx.

�� ��Bayes risk

Eπ[D(p, q)] :=∫
π(θ)

∫
p(x | θ)

∫
p(y | θ) log

p(y | θ)
p̂(y; x)

dydxdθ.

π(θ) is a prior density.
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Examples

• The multivariate Normal model with a known covariance
matrix.

• Simultaneous predictive distributions for independent Poisson
observables.

In these examples, Bayesian predictive distributions based on
shrinkage priors dominate the Bayesian predictive distribution
based on the Jeffreys prior when the dimension is not less than
three.
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The multivariate Normal model with a known
covariance matrix

The d-dimensional Normal model N(µ,Σ).

µ: an unknown mean vector
Σ: a known variance-covariance matrix.

We assume that Σ = I without loss of generality.

It suffices to consider the problem of predicting

y ∼ N(µ, τ2I) using x ∼ N(µ, σ2I).
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The Lebesgue prior (the Jeffreys prior) πI(µ) = 1 is commonly used
as a non-informative prior for µ.

The Bayesian predictive density with πI(µ)

pJ(y | x) =
1

{2π(σ2 + τ2)}d/2 exp
{
− 1

2(σ2 + τ2)
∥y − x∥2

}
.

The Bayesian predictive density pJ(y | x) dominates the plug-in
density

p(y | µ̂) = 1
{2πσ2}d/2 exp

{
− 1

2σ2
∥y − x∥2

}
,

where µ̂ = x.
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Stein (1974) introduced the generalized Bayes estimator
constructed using the prior

πS(µ) = ∥µ∥−(d−2), d ≥ 3.

The generalized Bayes estimator dominates the best invariant
estimator µ̂ = x.

Here, we consider the Bayesian predictive density pS(y | x) based
on Stein’s prior πS(µ).
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Theorem (K2001)
For all µ, the inequality

E[D{p(y | µ), pJ(y | x)}|µ] − E[D{p(y | µ), pS(y | x)}|µ] > 0

holds. □

pπ(y | x) is said to dominate pJ(y | x) if the risk of pπ(y | x) is not
greater than that of pJ(y | x) for all λ and the strict inequality holds
for at least one point λ in the parameter space.

George, E. I., Liang, F. and Xu, X. (2006):
sufficient conditions for general priors other than the Stein prior.
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The multidimensional Poisson model
We assume that x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) are
distributed according to

p(x | λ) =
d∏

i=1

p(xi | λ)

= exp{−(aλ1 + aλ2 + · · ·+ aλd)}
(aλ1)

x1

x1!

(aλ2)
x2

x2!
· · · (aλd)

xd

xd!

and

p(y | λ) =
d∏

i=1

p(yi |λ)

= exp{−(bλ1 + bλ2 + · · ·+ bλd)}
(bλ1)

y1

y1!

(bλ2)
y2

y2!
· · · (bλd)

yd

yd!
,

respectively.
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We consider the problem of predicting

y =(y1, y2, . . . , yd)

using
x = (x1, x2, . . . , xd),

under the Kullback–Leibler loss

D(p(y | λ), p̂(y; x)) =
∑

y

p(y | λ) log
p(y | λ)
p̂(y; x)

.

Here,
λ = (λ1, λ2, . . . , λd): unknown parameters,
a, b: known positive real numbers.
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We consider a class of improper prior densities

πα,γ(λ)dλ1dλ2 · · · dλd ∝
λα1−1

1 λα2−1
2 · · · λαd−1

d

(λ1 + λ2 + · · ·+ λd)γ
dλ1dλ2 · · · dλd

with 0 < −γ + ∑
i αi ≤ 1 and αi > 0 (i = 1, 2, . . . , d).

The Jeffreys prior

πJ(λ)dλ1dλ2 · · · dλd ∝
1

(λ1λ2 · · · λd)
1
2

dλ1dλ2 · · · dλd

is equal to πα=( 1
2 ,...,

1
2 ),γ=0(λ)dλ1dλ2 · · · dλd .
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A limit of Gamma prior Ga(α, γ)

The Jeffreys prior is a limit of Gamma prior Ga(α, γ) because

λα−1 ∝ lim
β→∞
βα

1
Γ(α)

λα−1

βα
exp(−λ/β).

Intuitively speaking, the Jeffreys prior λi
1/2 is Ga(αi = 1/2, β = ∞).
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Theorem (K2004)
The Bayesian predictive distribution based on the prior

πα,γ(λ)dλ1dλ2 · · · dλd ∝
λα1−1

1 λα2−1
2 · · · λαd−1

d

(λ1 + λ2 + · · ·+ λd)γ
dλ1dλ2 · · · dλd

with −γ + ∑
i αi > 0 and αi > 0 (i = 1, 2, . . . , d) is given by

pπα,γ(y | x) =(
a

a + b

)∑ xi−γ+
∑
αi
(

b
a + b

)∑ yi Γ(
∑

xi +
∑

yi − γ +
∑
αi)Γ(

∑
xi +

∑
αi)

Γ(
∑

xi − γ +
∑
αi)Γ(

∑
xi +

∑
yi +

∑
αi)

× Γ(x1 + y1 + α1)Γ(x2 + y2 + α2) · · ·Γ(xd + yd + αd)

Γ(x1 + α1)Γ(x2 + α2) · · ·Γ(xd + αd)y1!y2! · · · yd!
.

□
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Theorem (K2004)
When

−γ +
∑

i

αi > 1 and αi > 0 (i = 1, 2, . . . , d),

the Bayesian predictive distribution

pπα,γ(y | x) based on πα,γ(λ)

is dominated by the Bayesian predictive distribution

pπα̃,γ̃(y | x) based on πα̃,γ̃(λ),

where γ̃ :=
∑

i αi − 1 and α̃ = (α̃1, α̃2, . . . , α̃d) := (α1, α2, . . . , αd). □
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We set

πS(λ) := πα=( 1
2 ,...,

1
2 ), γ=

d
2−1(λ) (a shrinkage prior).

πS gives more weight to parameter values close to the origin than
the Jeffreys prior does.

Corollary (K2004)
When d ≥ 3, the Bayesian predictive distribution pπS(y | x) based on
the shrinkage prior πS(λ) dominates the Bayesian predictive
distribution pπJ(y | x) based on the Jeffreys prior

πJ(λ)dλ1dλ2 · · · dλd ∝
1

(λ1λ2 · · · λd)
1
2

dλ1dλ2 · · · dλd .

□
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1 Preliminary results: finite dimensional problems

2 Nonparametric Bayesian inference for nonhomogeneous Poisson
processes
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Basic properties of nonparametric inference of nonhomogeneous
Poisson processes using Gamma process priors are given by Lo
(1982) and Lo and Weng (1989).

Corresponding results for probability density estimation is given by
Lo (1984).

The results investigated in the following in this talk depends on that
inference is for intensity functions not for probability densities.
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The nonhomogeneous Poisson model
We conseder nonhomogeneous Poisson processes on [0, 1] for
simplicity of explanation.

Nonhomogeneous Poisson processes on more general spaces
such as multidimensional Euclidean spaces can be treated exactly
the same way.

u ∈ [0, 1]: time of the Poisson process.

Po(Y ; tλ), t > 0: an nonhomogeneous Poisson process.
λ: a intensity measure
λ is also used for the intensity function λ(u) by abuse of notation.

Y: a sample from the Poisson point process
with intensity measure tλ.

Ga(λ;α, β): Gamma process prior．
α(u) is a function of u (density)，β is a scalar not depending on u.
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A Simple Setting: Gamma–Poisson Processes

The mixture of nonhomogeneous Poisson processes

Y ∼ Po(tλ)

with respect to the prior

λ ∼ Ga(α, β)

is negative binomial process

Y ∼NeBi(α, tβ/(1 + tβ)).

23



We observe the nonhomogeneous Poisson process X ∼ Po(sλ)
(s > 0) .
We assume a Gamma prior λ ∼ Ga(α, β).

1 The posterior is
λ ∼ Ga(α+

∑
i δxi , 1/(s + 1/β)) = Ga(α+

∑
i δxi , β/(1 + sβ)).

2 The predictive process is
Y ∼NeBi(α+

∑
i δxi , (s + 1/β)−1t/{1 + (s + 1/β)−1t})

= NeBi(α+
∑

i δxi , tβ/{1 + (s + t)β}).

□
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Posterior

λ ∼ Ga(α+
∑

i δxi , 1/(s + 1/β)) = Ga(α+
∑

i δxi , β/(1 + sβ)).

The expectation of λ:

(α+
∑

i

δxi)
β

1 + sβ
.

The variance of λ:

(α+
∑

i

δxi)

(
β

1 + sβ

)2

.
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Bayesian predictive process:

Y ∼NeBi(α+
∑

i

δxi , (s + 1/β)−1t/{1 + (s + 1/β)−1t})

=NeBi(α+
∑

i

δxi , tβ/{1 + (s + t)β}).

The expectation of Y:

(α+
∑

i

δxi)
tβ

1 + (s + t)β

(
1 − tβ

1 + (s + t)β

)−1

= (α+
∑

i

δxi)
tβ

1 + sβ
.

The variance of Y:

(α+
∑

i

δxi)
tβ

1 + (s + t)β

(
1 − tβ

1 + (s + t)β

)−2

= (α+
∑

i

δxi)
tβ{1 + (s + t)β}

(1 + sβ)2
.
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It is difficult to determine the scale parameter β in advance．

One method is to consider the limit β→ ∞. By applying the Bayes
rule to the improper prior λ ∼ Ga(α,∞), we construct the posterior
and the predictive processes.

Formerly, the density of the improper prior is λα−1.

Theorem
If we observe X ∼ Po(sλ) (nonhomogeneous Poisson process)
and assume the improper prior λ ∼ Ga(α,∞), then

1 the posterior is λ ∼ Ga(α+
∑

i δxi , 1/s).
2 the predictive process is Y ∼NeBi(α+

∑
i δxi , t/(s + t)).

□
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We show a theorem corresponds to theorems in K (2004) for finite
dimensional models.

Let

|α| :=
∫

U
dα, |λ| :=

∫
U

dλ.
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Theorem
Assume that λ is absolutely continuous with respect to α.

If |α| > 1, the Bayesian predictive process based on the improper
prior λ ∼ Ga(α,∞) is dominated by the predictive process with
improper prior

λα−1

|λ||α|−1
.

□
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Kernel mixture models

µ ∼ Ga(α, β)

A (known) kernel function:

k (t , v) s.t.
∫

k (t , v)dt = 1

Example.

k (t , v) ∝ exp
{
− 1

2σ2
(t − v)2

}
□

Kernel mixture
λ(x) =

∫
k (x, v)µ(dv)

Nonhomogeneous Poisson process:

{x1, x2, . . . , xN}
∣∣∣ λ ∼ Po(λ)
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Likelihood for kernel mixture models

L(λ | {x1, x2, . . . , xN}) =
{ N∏

i=1

λ(xi)

}
exp

{
−λ(u)du

}
,

L(µ | {x1, x2, . . . , xN}) ={ N∏
i=1

∫
k (xi , v)µ(dv)

}
exp

{
−

∫ ∫
k (u, v)µ(dv)du

}
.

The posterior and Bayesian predictive processes for kernel mixture
models have more complex forms than those for the simple
Gamma–Poisson processes.
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Theorem
Assume that λ is absolutely continuous with respect to the

Lebesgue measure.

1 The Bayesian predictive process based on the If |α| > 1,
improper prior λ ∼ Ga(α,∞) is dominated by the predictive
process with improper prior

λα−1

|λ||α|−1
.

2 The Bayesian predictive process based on the improper prior

λα−1

|λ|γ

is admissible under the Kullback–Leibler loss if |α| − 1 ≤ γ < |α|.
□
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Conclusion

• A class of improper shrinkage priors for the nonhomogeneous
Poisson processes is considered.

• A class of improper priors could be useful as objective priors
for nonhomogeneous Poisson models.
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Thank you for your attention!
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Prague Symposium on Asymptotic Statistics (J. Hájek, ed.) 345–381. Universita Karlova, Prague.

38


	Preliminary results: finite dimensional problems
	Nonparametric Bayesian inference for nonhomogeneous Poisson processes

