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Shrinkage Prediction in Location Models with unknown Covariance

One sample Gaussian model:

Observed past:X ∼ Nn(θ,Σ) Future:Y ∼ Nn(θ,m−1
0 Σ)

• Σ � 0 is unknown
• The past and the future are independent conditioned on (θ,Σ)

Goal: Based on observing X predict Y by q̂ under an aggregative loss function L
that is cumulative across co-ordinates. m0: known.

Existing Literature. When Σ is known and:
(a) Homoskedastic: Extensive optimality studies on sperically symmetric estimators;
(b) Known Hetroskedasticity, Diagonal Σ: Xie, Kou, Brown’ 12,16; Tran’ 16,
Weinstein, Ma, Brown, Zhang’ 18, Sun et al, ’18,;
(c) Known Correlated Structures, AR (1): Kong, Liu, Zhao, Zhou’ 17.

Side Information: Here, we consider Σ is unknown but we have side
information in the form Wi that contain information on Σ but little information
about θ. This side information can be essentially reduced:
Wi

i.i.d.∼ Nn(0,Σ), i = 1, . . . ,m ⇔ S ∼Wishartn(m,Σ)
Note: n dim, m side info. size
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Shrinkage Prediction in Location Models with unknown Covariance

One sample Gaussian model:

Observed past:X ∼ Nn(θ,Σ) Future:Y ∼ Nn(θ,m−1
0 Σ)

• Σ � 0 is unknown
• The past and the future are independent conditioned on (θ,Σ)

Goal: Based on observing X predict Y by q̂ under an aggregative loss function L
that is cumulative across co-ordinates. m0: known.

Side Information: We have side information in the form Wi that contain
information on Σ but little about θ.

Lagged data. Consider observing m vectors from a drift changing model
across m time points: Wt = µt + εt where εt

i.i.d.∼ Nn(0,Σ).
• Predicting WC at Current time and the lag C −m is huge, then, Wt will
not be useful for the current location as it involves extrapolating too far.
• Assuming some regualrity in the drift process across time {µt : 1 ≤ t ≤ m}
we can have S := S(W1, . . . ,Wm) ∼Wishartn(Σ, df ≈ m, ).



Spiked Covariance Structure

We assume a spiked covariance structure on the unknown Σ:

Σ =
K∑
j=1

`jpjp
′
j + `0(I −

K∑
j=1

pjp
′
j)

• p1, . . . ,pK - orthonormal and `1 > . . . > `K > `0 > 0

• K � n fixed but unknown

These kind of dependence structures arise in numerous applications that
involve prediction in correlated models:

• Portfolio Selection [Karoui et al, 2013]

• Gene Expression Data-sets, [Fan et al., 2017]

• Health Care Management [Vahn et al, 2018]

*Note: In our framework can accomate the scenario m,n→∞ & m/n→ 0.



Shrinkage Prediction in Aggregative Models

Aggregative Model
Predicting a linear transformation of the unobserved future V = AY

Observed: X ∼ Nn(θ,Σ) Future: Y ∼ Nn(θ,m0 Σ)

Our target is now linearly aggregated predictants: V = AY

• The prediction problem is to make forecasts q̂ = {q̂i(X) : 1 ≤ i ≤ p} based
on the past data X such that q̂ optimally predicts V .

• dim(A) = p× n with p ≤ n and AA′ is invertible.

When A = In we are back to the former disaggregate level model



Motivating Example - Inventory Management problem

Sale of Coffee in the week of Oct 31, 2011



Motivating Example - Inventory Management problem

Background - distributors and retailers
• based on past sales data, need to predict future demands across many stores.
• balance the trade-offs between stocking too much versus stocking too

little.
• Incorporating co-dependencies in the demands among different stores is

potentially useful.
Goal: predict demand for product P in week across n outlets.

- must leverage the co-dependencies in demands among the n stores.
- Forecasting future sales translates to a high-dimensional prediction problem.
- Aggregated problem - forecast sales aggregated across p ≤ n outlets.

The co-dependencies between the demands is usually unknown.



A flexible conjugate Prior on θ (dis-aggregative model)
We impose a class of conjugate priors on the location parameter θ that is related to
the unknown covariance Σ by hyper-parameters β and τ :

π(θ|Σ, τ, β) ∼ Nn
(

η︸︷︷︸
location

, τ ·Σβ︸ ︷︷ ︸
scale×structure

)
• η ∈ Rn and τ > 0
• Power / Shape hyper-parameter: β ≥ 0
• Non-exchangeability when β > 0
• Widely used in finance literature [Kozak et al (2017)]

- β = 0: completely exchangeable
- β = 1: same structure as the data
- β > 1: prior more concentrated in dominant variability directions.
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We impose a class of conjugate priors on the location parameter θ that is related to
the unknown covariance Σ by hyper-parameters β and τ :

π(θ|Σ, τ, β) ∼ Nn
(

η︸︷︷︸
location

, τ ·Σβ︸ ︷︷ ︸
scale×structure

)

• η ∈ Rn and τ > 0
• Power / Shape hyper-parameter: β ≥ 0
• Non-exchangeability when β > 0
• Widely used in finance literature [Kozak et al (2017)]

In dis-aggregative model, the predictive distribution of V is given by:

Nn
(
ηA1 +G1,−1,βA(X − η1), G1,0,β +m−1

0 G0,1,0
)

where,

Gr,α,β = (Σ̌−1
1 + τ−1Σ̌−1

β )−rΣ̌α
1 and Σ̌β = AΣβAT .

• As A does not always commute with Σ, in the aggregative model Σ̌−1
β and Σ̌−1

1
have different eigen vectors unless β = 1. This increases the complexity in Gr,α,β
due to aggregation.



Loss Functions

Recall V = AY and let Λ = (θ,Σ).

Loss associated with the ith aggregator:

Li(Λ, q̂i(A,x)) = dU (Vi − q̂i)+ + dO(q̂i − Vi)+

dU : under estimation loss dO: over estimation loss

Agglomerative Loss: L(Λ, q̂) = 1
p

p∑
i=1

Li(Λ, q̂i(A,x))

Popular Loss Functions:
• Symmetric Loss: dU = dO

• Asymmetric Loss:

- Quantile loss, dU/dO = b 6= 1
- Linex loss, dO is exponential and dU is linear



Bayes Predictors

• Σ̌β = AΣβAT .

• Gr,α,β := Gr,α,β(Σ,A) = (Σ̌−1
1 + τ−1Σ̌−1

β )−rΣ̌α
1

If Σ were known, the Bayes predictor for V = AX is

qBayes
i (AX|Σ, η, τ, β) = ηeTi A1 + eTi G1,−1,βA(X − η1) + F loss

i (Σ,A, τ, β)

where, F loss
i (Σ,A, τ, β) is given by:

? for generalized absolute loss where dU/dO = bi for the i th aggregator:

Φ−1(bi)
(
eTi G1,0,βei +m−1

0 eTi G0,1,0ei

)1/2

? for linex loss with ai being the asymmetry of the i th aggregator:

−ai2

(
eTi G1,0,βei +m−1

0 eTi G0,1,0ei

)
? for symmetric quadratic loss: 0.



Bayes Predictors

• Σ̌β = AΣβAT .

• Gr,α,β := Gr,α,β(Σ,A) = (Σ̌−1
1 + τ−1Σ̌−1

β )−rΣ̌α
1

If Σ were known, the Bayes predictor for V = AX is
qBayes
i (AX|Σ, η, τ, β) = ηeTi A1 + eTi G1,−1,βA(X − η1) + F loss

i (Σ,A, τ, β)

Disaggregative vs Aggregative Models.

If A = I: in disaggregative model:

Gr,α,β = Hr,α,β , where Hr,α,β(Σ) = (Σ−1 + τ−1Σ−β)−rΣα

Note, that H involves Σ instead of Σ̌β and unlike aggregative models H has
the same eigen vectors as Σ.

In aggregative models: τ−rGr,α,β equals{
AH0,β,0A

T
[
A
(
τH0,β,0 +H0,1,0

)
AT
]−1

AH0,1,0A
T
}r(

AH0,1,0A
T
)α

.



Evaluating Bayes Predictors under dependence

Recall: If Σ were known, the Bayes predictor for V = AY is

qBayes
i (AX|Σ, η, τ, β) = ηeTi A1+eTi G1,−1,βA(X−η1)+F loss

i (Σ,A, τ, β)

• Thus, we need good estimates based on X and {Wi : 1 ≤ i ≤ m}

only and without knowledge of Σ of quadratic forms bTGr,α,βb

involving Gr,α,β.

• In Disaggregative model, estimating these quadratic forms involving

G reduces to estimating quadratic forms involving H which is

comparatively easier. We concentrate on estimating bTHr,α,β b first

where Hr,α,β(Σ) = (Σ−1 + τ−1Σ−β)−rΣα and ||b||2 = 1.



Evaluating Bayes Predictors under dependence

Estimating bTHr,α,β b: Hr,α,β(Σ) = (Σ−1 + τ−1Σ−β)−rΣα, ||b||2 = 1.

Under spiked structure, efficient estimates of ˆ̀
j of the eigen values and

p̂j of the K principal eigen vectors can be done. Consider:

Ĥr,α,β =
K∑
j=1

ζ̂−2
j

(
hr,α,β(ˆ̀

j)− hr,α,β(ˆ̀0)
)
p̂jp̂

T
j + hr,α,β(ˆ̀0)I

where, hr,α,β(x) = (x−1 + τ−1x−β)−rxα is the scalar version of H and

ζ(x, ρ) =
[1− ρ/(x− 1)2

1 + ρ/(x− 1)
]1/2

and ζ̂j = ζ(ˆ̀
j/ˆ̀0, n/(m− 1))

bT Ĥr,α,βb - bias corrected and consistent estimate of bTHr,α,βb

- Asymptotic adjustments to the sample eigenvalues
- Phase transition phenomenon of the sample eigenvectors (Paul (2007))



Evaluating Bayes Predictors under dependence

Estimating bTHr,α,β b: Hr,α,β(Σ) = (Σ−1 + τ−1Σ−β)−rΣα, ||b||2 = 1.

Under spiked structure, efficient estimates of ˆ̀
j of the eigen values and

p̂j of the K principal eigen vectors can be done. Consider:

Ĥr,α,β =
K∑
j=1

ζ̂−2
j

(
hr,α,β(ˆ̀

j)− hr,α,β(ˆ̀0)
)
p̂jp̂

T
j + hr,α,β(ˆ̀0)I

Asymptotic consistency: Σ spike structure, m/n > 0 as n→∞

Uniformly over τ ∈ T0, β ∈ B0 and b ∈ B such that |B| = O(nc) for any fixed c > 0
and ||b||2 = 1, we have for all (r, α) ∈ {−1, 0, 1} × R

sup
τ∈T0,β∈B0,b∈B

∣∣∣bT Ĥr,α,βb− bTHr,α,βb∣∣∣ = Op

(√ logn
n

)



Evaluating Bayes Predictors under dependence

Consider: Ĥr,α,β =
K∑
j=1

ζ̂−2
j

(
hr,α,β(ˆ̀

j)− hr,α,β(ˆ̀0)
)
p̂j p̂

T
j + hr,α,β(ˆ̀0)I

Recall: qBayes
i (AX|Σ, η, τ, β) = ηeTi 1 + eTi H1,−1,β(X − η1) + F loss

i (Σ, τ, β)

Propose q̂step1
(loss)(η, τ, β) : Use Ĥ in place of H above.

Asymptotic consistency: Σ spike structure, m/n > 0 as n→∞
Uniformly over τ ∈ T0, β ∈ B0 and b ∈ B such that |B| = O(nc) for any fixed c > 0 and ||b||2 = 1, we
have for all (r, α) ∈ {−1, 0, 1} × R

sup
τ∈T0,β∈B0,b∈B

∣∣bT Ĥr,α,βb− bTHr,α,βb∣∣ = Op

(√ logn
n

)
Consequently, conditionally on X,

supτ∈T0,β∈B0 ||q̂
step1(X|S, η, τ, β)− qBayes(X|Σ)||∞
||X − η||2 ∨ 1 = Op

(√ logn
n

)



Proposed Prediction Rule - CASP

Key idea:
• construct efficient estimates of quadratic forms aTHr,α,βb

• introduce coordinate-wise shrinkage policy to further reduce
variability of q̂step1

CASP - Coordinate-wise Adaptive Shrinkage Prediction

q̂cs
i (X|S, f∗i ) = eTi Aη0 + f∗

i e
T
i Ĥ1,−1,βA(X − η) + F loss

i (Σ, τ, β)

• bT Ĥr,α,βb - bias corrected and consistent estimate of bTHr,α,βb

- Phase transition phenomenon of the sample eigenvalues and eigenvectors
• f∗

i - coordinate wise shrinkage factor
- Depends only on covariance level information through W
- Corresponds to actual reduction in marginal variability of qcs

i

• This class of predictors includes our step1 predictor when fi = 1 for all i.
q̂step1
i = q̂cs

i (X|S, fi = 1)



Improving efficiency through co-ordinate wise shrinkage

- q̂cs(X|S, fi = 1) - an asymptotically unbiased estimate of qBayes

- Average L2 distance between them is non-trivial, however.

Recall qcs
i (X|S, f∗i ) = eTi η0 + f∗

i e
T
i Ĝ1,−1,β(X − η) + F̂Lii

Oracle choice: fOR
i = arg min

fi∈R
E
{(

qcs
i (X|S, fi)− qBayes

i (X|Σ)
)2}

- In general, fOR
i ∈ [0, 1]

- Can be much smaller than 1 if the eigenvectors of Σ are relatively sparse
- f̂∗i - a data driven choice such that supi |f̂∗i − f

OR
i | → 0 as n→∞

f̂∗i = eTi τĤ1,β−1,βei

eTi R̂ei
where, j(x) := x+ τxβ ,

R̂ = τĤ1,β−1,β + j(ˆ̀0)
K∑
j=1

ζ̂−4
j

(
h1,−1,β(ˆ̀

j)− h1,−1,β(ˆ̀0)
)2
p̂j p̂

T
j
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eTi R̂ei
where, j(x) := x+ τxβ ,

R̂ = τĤ1,β−1,β + j(ˆ̀0)
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j=1

ζ̂−4
j

(
h1,−1,β(ˆ̀

j)− h1,−1,β(ˆ̀0)
)2
p̂j p̂
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j

Oracle optimality of CASP: Σ spike structure, m/n > 0 as n→∞

Conditionally on X,

sup
τ∈T0,β∈B0

||qcs(X|S, f̂∗)− qcs(X|S, fOR)||22
||qcs(X|S, fOR)− η||22

= Op

( logn
n

)



Evaluating Bayes Predictors in Aggregative Models

For a general Ap×n, τ−rGr,α,β equals{
AH0,β,0A

T
[
A
(
τH0,β,0 +H0,1,0

)
AT
]−1

AH0,1,0A
T
}r(

AH0,1,0A
T
)α

- Substitute Ĥr,α,β in place of Hr,α,β in the above expression,

Asymptotic consistency: Σ spike structure, m/n > 0 as n→∞

Uniformly over τ ∈ T0, β ∈ B0 and b ∈ B such that |B| = O(nc) for any fixed c < 0
and ||b||2 = 1, we have for all (r, α) ∈ {−1, 0, 1} × R

sup
τ∈T0,β∈B0,b∈B

∣∣∣bT Ĝr,α,βb− bTGr,α,βb∣∣∣ = Op

(
max

(
p

n
,

√
logn
n

))

- Consistency bounds deteriorate due to loss of commutativity for general A
and the cost of its inversion is paid by the substitution rule for consistency

- Variance minimization via co-ordinate wise shrinkage can be done as before.



Real Data Illustration - Inventory Management

Background - distributors and retailers
• based on past sales data, need to predict future demands across many stores.
• balance the trade-offs between stocking too much versus stocking too

little.
• Incorporating co-dependencies in the demands among different stores is

potentially useful.
Data:
• Units of product P sold across n ∼ 1, 200 stores in week of Oct 31, 2011.
• Side information - Lagged data available for m = 100 weeks from December

31, 2007 to November 29, 2009.



Real Data - Loss Ratios

Table: Loss ratios across six
predictive rules for four products.

Product Method K Loss Ratio week w

Coffee (p = 31)

CASP 26 0.999
Näıve 26 1.044
Bcv 17 1.043
POET 26 1.047
Fact 26 1.009
Unshrunk - 1.838

Mayo (p = 30)

CASP 26 0.995
Näıve 26 0.996
Bcv 19 1.040
POET 26 0.996
Fact 26 0.999
Unshrunk - 1.084

Frozen Pizza (p = 33)

CASP 33 0.998
Näıve 33 1.135
Bcv 19 1.091
POET 33 1.040
Fact 33 1.020
Unshrunk - 6.701

Carb Beverages (p=33)

CASP 37 0.984
Näıve 37 1.033
Bcv 20 1.142
POET 37 1.038
Fact 37 1.059
Unshrunk - 8.885

Loss ratio for product P:

Lw(qcs, q̂) =

∑p

i=1

{
bi(Vi − q̂i)+ + hi(q̂i − Vi)+

}
∑p

i=1

{
bi(Vi − qcs

i )+ + hi(qcs
i − Vi)+

}
- bi = 0.95, hi = 1− bi
- qcs - CASP with fi = 1
- q̂ - any other predictive rule

• CASP: proposed method with data driven fi
• Naive factor model without bias correction
• bi-cross-validation approach of Owen & Wang (2016)
• FactMLE algorithm of Khamaru & Mazumder (2018)



State-wise distribution of shrinkage factors

Figure: 1− the shrinkage factors of CASP by each state for the four products.



Closing Remarks
• We consider point prediction in location models with unknown covariance that

has a spiked structure.
• A flexible non-exchangeable prior on the location parameter that depends on

the unknown covariance is used.
• The prior induces skrinkage through the following hyper-parameters: (a)

magnitude - that regulates amount of shrinkage (b) shape - that regulates the
variability directions that are shrunken.

• We provide optimal evaluations of the Bayes predictors for a host of loss
functions including symmetric and asymmetric losses. Bayes predictors involve
functionals of unknown covariance.

• For such evaluations, we leverage the spiked covariance structure and use a
simple substitution rule. Decision theoretic guarantees are provided for
dis-aggregative as well as aggregative models.
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