Improved Shrinkage Prediction under a Spiked Covariance Structure

Gourab Mukherjee

University of Southern California

BIRS, April 9, 2019

Joint work with Trambak Banerjee and Debashis Paul

One sample Gaussian model:

Observed past: $m{X} \sim N_n(m{ heta}, m{\Sigma})$ Future: $m{Y} \sim N_n(m{ heta}, m_0^{-1} m{\Sigma})$

- $\Sigma \succ 0$ is unknown
- The past and the future are independent conditioned on (θ, Σ)

Goal: Based on observing X predict Y by \hat{q} under an aggregative loss function \mathcal{L} that is cumulative across co-ordinates. m_0 : known.

One sample Gaussian model:

Observed past: $\boldsymbol{X} \sim N_n(\boldsymbol{\theta}, \boldsymbol{\Sigma})$ Future: $\boldsymbol{Y} \sim N_n(\boldsymbol{\theta}, m_0^{-1}\boldsymbol{\Sigma})$

- $\Sigma \succ 0$ is unknown
- The past and the future are independent conditioned on (θ, Σ)

Goal: Based on observing X predict Y by \hat{q} under an aggregative loss function \mathcal{L} that is cumulative across co-ordinates. m_0 : known.

Existing Literature. When Σ is known and:

(a) Homoskedastic: Extensive optimality studies on sperically symmetric estimators;

(b) Known Hetroskedasticity, Diagonal Σ: Xie, Kou, Brown' 12,16; Tran' 16,

Weinstein, Ma, Brown, Zhang' 18, Sun et al, '18,;

(c) Known Correlated Structures, AR (1): Kong, Liu, Zhao, Zhou' 17.

One sample Gaussian model:

Observed past: $m{X} \sim N_n(m{ heta}, m{\Sigma})$ Future: $m{Y} \sim N_n(m{ heta}, m_0^{-1} m{\Sigma})$

- $\Sigma \succ 0$ is unknown
- The past and the future are independent conditioned on (θ, Σ)

Goal: Based on observing X predict Y by \hat{q} under an aggregative loss function \mathcal{L} that is cumulative across co-ordinates. m_0 : known.

Existing Literature. When Σ is known and:

(a) Homoskedastic: Extensive optimality studies on sperically symmetric estimators;

(b) Known Hetroskedasticity, Diagonal Σ: Xie, Kou, Brown' 12,16; Tran' 16,

Weinstein, Ma, Brown, Zhang' 18, Sun et al, '18,;

(c) Known Correlated Structures, AR (1): Kong, Liu, Zhao, Zhou' 17.

Side Information: Here, we consider Σ is unknown but we have side information in the form W_i that contain information on Σ but little information about θ . This side information can be essentially reduced:

 $\boldsymbol{W}_i \overset{i.i.d.}{\sim} N_n(0,\Sigma), i = 1, \dots, m \Leftrightarrow S \sim Wishart_n(m,\Sigma)$

Note: $n \dim, m$ side info. size

One sample Gaussian model:

Observed past: $\boldsymbol{X} \sim N_n(\boldsymbol{\theta}, \boldsymbol{\Sigma})$ Future: $\boldsymbol{Y} \sim N_n(\boldsymbol{\theta}, m_0^{-1}\boldsymbol{\Sigma})$

- $\Sigma \succ 0$ is unknown
- The past and the future are independent conditioned on (θ, Σ)

Goal: Based on observing X predict Y by \hat{q} under an aggregative loss function \mathcal{L} that is cumulative across co-ordinates. m_0 : known.

Side Information: We have side information in the form W_i that contain information on Σ but little about θ .

Lagged data. Consider observing *m* vectors from a drift changing model across *m* time points: $W_t = \mu_t + \epsilon_t$ where $\epsilon_t \stackrel{i.i.d.}{\sim} N_n(0, \Sigma)$.

• Predicting W_C at Current time and the lag C - m is huge, then, W_t will not be useful for the current location as it involves extrapolating too far.

• Assuming some regualrity in the drift process across time $\{\mu_t : 1 \le t \le m\}$ we can have $S := S(W_1, \ldots, W_m) \sim \text{Wishart}_n(\Sigma, \text{ df} \approx m,).$

Spiked Covariance Structure

We assume a spiked covariance structure on the unknown Σ :

$$\boldsymbol{\Sigma} = \sum_{j=1}^{K} \ell_j \boldsymbol{p}_j \boldsymbol{p}_j' + \ell_0 (\boldsymbol{I} - \sum_{j=1}^{K} \boldsymbol{p}_j \boldsymbol{p}_j')$$

- p_1, \ldots, p_K orthonormal and $\ell_1 > \ldots > \ell_K > \ell_0 > 0$
- $K \ll n$ fixed but unknown

These kind of dependence structures arise in numerous applications that involve prediction in correlated models:

- Portfolio Selection [Karoui et al, 2013]
- Gene Expression Data-sets, [Fan et al., 2017]
- Health Care Management [Vahn et al, 2018]

*Note: In our framework can accomate the scenario $m, n \to \infty \& m/n \to 0$.

Aggregative Model

Predicting a linear transformation of the unobserved future V = AY

Observed: $\boldsymbol{X} \sim N_n(\boldsymbol{\theta}, \Sigma)$ Future: $\boldsymbol{Y} \sim N_n(\boldsymbol{\theta}, m_0 \Sigma)$

Our target is now linearly aggregated predictants: V = AY

• The prediction problem is to make forecasts $\hat{q} = {\hat{q}_i(X) : 1 \le i \le p}$ based on the past data X such that \hat{q} optimally predicts V.

• $\dim(A) = p \times n$ with $p \leq n$ and AA' is invertible.

When $A = I_n$ we are back to the former disaggregate level model

Motivating Example - Inventory Management problem

Sale of Coffee in the week of Oct 31, 2011

Motivating Example - Inventory Management problem

Background - distributors and retailers

- based on past sales data, need to predict future demands across many stores.
- balance the trade-offs between stocking too much versus stocking too little.
- Incorporating co-dependencies in the demands among different stores is potentially useful.

Goal: predict demand for product \mathcal{P} in week across n outlets.

- must leverage the co-dependencies in demands among the n stores.
- Forecasting future sales translates to a high-dimensional prediction problem.
- Aggregated problem forecast sales aggregated across $p \leq n$ outlets.

The co-dependencies between the demands is usually unknown.

A flexible conjugate Prior on θ (dis-aggregative model)

We impose a class of conjugate priors on the location parameter $\boldsymbol{\theta}$ that is related to the unknown covariance $\boldsymbol{\Sigma}$ by hyper-parameters $\boldsymbol{\beta}$ and τ :

$$\pi(\boldsymbol{\theta}|\boldsymbol{\Sigma},\tau,\beta) \sim N_n\left(\underbrace{\boldsymbol{\eta}}_{location}, \underbrace{\boldsymbol{\tau}\cdot\boldsymbol{\Sigma}^{\beta}}_{scale\times structure}\right)$$

- $\eta \in \mathbb{R}^n$ and $\tau > 0$
- Power / Shape hyper-parameter: $\beta \geq 0$
- Non-exchangeability when $\beta > 0$
- Widely used in finance literature [Kozak et al (2017)]
 - $\beta = 0$: completely exchangeable
 - $\beta = 1$: same structure as the data
 - $\beta > 1$: prior more concentrated in dominant variability directions.

A flexible conjugate Prior on θ (dis-aggregative model)

We impose a class of conjugate priors on the location parameter $\boldsymbol{\theta}$ that is related to the unknown covariance $\boldsymbol{\Sigma}$ by hyper-parameters $\boldsymbol{\beta}$ and τ :

- $\eta \in \mathbb{R}^n$ and $\tau > 0$
- Power / Shape hyper-parameter: $\beta \geq 0$
- Non-exchangeability when $\beta > 0$
- Widely used in finance literature [Kozak et al (2017)]

In dis-aggregative model, the predictive distribution of \boldsymbol{V} is given by:

$$N_n \left(\boldsymbol{\eta} \boldsymbol{A} \boldsymbol{1} + \boldsymbol{G}_{1,-1,\beta} \boldsymbol{A} (\boldsymbol{X} - \boldsymbol{\eta} \boldsymbol{1}), \boldsymbol{G}_{1,0,\beta} + \boldsymbol{m}_0^{-1} \boldsymbol{G}_{0,1,0} \right) \quad \text{where,}$$
$$G_{r,\alpha,\beta} = (\check{\boldsymbol{\Sigma}}_1^{-1} + \tau^{-1} \check{\boldsymbol{\Sigma}}_\beta^{-1})^{-r} \check{\boldsymbol{\Sigma}}_1^{\alpha} \quad \text{and} \quad \check{\boldsymbol{\Sigma}}_\beta = \boldsymbol{A} \boldsymbol{\Sigma}^\beta \boldsymbol{A}^T.$$

• As A does not always commute with Σ , in the aggregative model $\check{\Sigma}_{\beta}^{-1}$ and $\check{\Sigma}_{1}^{-1}$ have different eigen vectors unless $\beta = 1$. This increases the complexity in $G_{r,\alpha,\beta}$ due to aggregation.

Loss Functions

Recall V = AY and let $\Lambda = (\theta, \Sigma)$.

Loss associated with the i^{th} aggregator:

$$\mathcal{L}_i(\Lambda, \widehat{q}_i(\boldsymbol{A}, \boldsymbol{x})) = \boldsymbol{d}_{\boldsymbol{U}}(V_i - \widehat{q}_i)^+ + \boldsymbol{d}_{\boldsymbol{O}}(\widehat{q}_i - V_i)^+$$

 d_U : under estimation loss d_O : over estimation loss

Agglomerative Loss:
$$\mathcal{L}(\Lambda, \widehat{q}) = \frac{1}{p} \sum_{i=1}^{p} \mathcal{L}_i(\Lambda, \widehat{q}_i(\boldsymbol{A}, \boldsymbol{x}))$$

Popular Loss Functions:

- Symmetric Loss: $d_U = d_O$
- Asymmetric Loss:
 - Quantile loss, $d_U/d_O = b \neq 1$
 - Linex loss, d_O is exponential and d_U is linear

Bayes Predictors

- $\check{\Sigma}_{\beta} = A \Sigma^{\beta} A^{T}$.
- $G_{r,\alpha,\beta} := G_{r,\alpha,\beta}(\boldsymbol{\Sigma}, \boldsymbol{A}) = (\check{\boldsymbol{\Sigma}}_1^{-1} + \tau^{-1}\check{\boldsymbol{\Sigma}}_\beta^{-1})^{-r}\check{\boldsymbol{\Sigma}}_1^{\alpha}$

If Σ were known, the Bayes predictor for V = AX is

$$| \boldsymbol{q}^{\text{Bayes}}_i(\boldsymbol{A}\boldsymbol{X}|\boldsymbol{\Sigma},\boldsymbol{\eta},\tau,\beta) = \boldsymbol{\eta} \boldsymbol{e}^T_i \boldsymbol{A} \boldsymbol{1} + \boldsymbol{e}^T_i \boldsymbol{G}_{\boldsymbol{1},-\boldsymbol{1},\boldsymbol{\beta}} \boldsymbol{A}(\boldsymbol{X}-\boldsymbol{\eta}\boldsymbol{1}) + \mathcal{F}^{\text{loss}}_i(\boldsymbol{\Sigma},\boldsymbol{A},\tau,\beta)$$

where, $\mathcal{F}_i^{\mathsf{loss}}(\boldsymbol{\Sigma}, \boldsymbol{A}, \tau, \beta)$ is given by:

 \star for generalized absolute loss where $d_U/d_O=b_i$ for the i th aggregator:

$$\Phi^{-1}(b_i) \left(\boldsymbol{e}_i^T G_{1,0,\beta} \boldsymbol{e}_i + m_0^{-1} \boldsymbol{e}_i^T G_{0,1,0} \boldsymbol{e}_i \right)^{1/2}$$

 \star for linex loss with a_i being the asymmetry of the *i* th aggregator:

$$-\frac{a_i}{2} \Big(\boldsymbol{e}_i^T G_{1,0,\beta} \boldsymbol{e}_i + m_0^{-1} \boldsymbol{e}_i^T G_{0,1,0} \boldsymbol{e}_i \Big)$$

 \star for symmetric quadratic loss: 0.

Bayes Predictors

• $\check{\boldsymbol{\Sigma}}_{\boldsymbol{\beta}} = \boldsymbol{A} \boldsymbol{\Sigma}^{\boldsymbol{\beta}} \boldsymbol{A}^{T}.$

•
$$G_{r,\alpha,\beta} := G_{r,\alpha,\beta}(\boldsymbol{\Sigma}, \boldsymbol{A}) = (\check{\boldsymbol{\Sigma}}_1^{-1} + \tau^{-1}\check{\boldsymbol{\Sigma}}_\beta^{-1})^{-r}\check{\boldsymbol{\Sigma}}_1^{\alpha}$$

If Σ were known, the Bayes predictor for V = AX is

$$\boldsymbol{q}^{\text{Bayes}}_i(\boldsymbol{A}\boldsymbol{X}|\boldsymbol{\Sigma},\boldsymbol{\eta},\tau,\beta) = \boldsymbol{\eta}\boldsymbol{e}^T_i\boldsymbol{A}\boldsymbol{1} + \boldsymbol{e}^T_i\boldsymbol{G}_{\boldsymbol{1},-\boldsymbol{1},\boldsymbol{\beta}}\boldsymbol{A}(\boldsymbol{X}-\boldsymbol{\eta}\boldsymbol{1}) + \mathcal{F}^{\text{loss}}_i(\boldsymbol{\Sigma},\boldsymbol{A},\tau,\beta)$$

Disaggregative vs Aggregative Models.

If A = I: in disaggregative model:

$$G_{r,\alpha,\beta} = H_{r,\alpha,\beta}$$
, where $H_{r,\alpha,\beta}(\Sigma) = (\Sigma^{-1} + \tau^{-1}\Sigma^{-\beta})^{-r}\Sigma^{\alpha}$

Note, that H involves Σ instead of $\check{\Sigma}_{\beta}$ and unlike aggregative models H has the same eigen vectors as Σ .

In aggregative models: $\tau^{-r}G_{r,\alpha,\beta}$ equals

$$\left\{ \boldsymbol{A} H_{0,\beta,0} \boldsymbol{A}^T \left[\boldsymbol{A} \left(\tau H_{0,\beta,0} + H_{0,1,0} \right) \boldsymbol{A}^T \right]^{-1} \boldsymbol{A} H_{0,1,0} \boldsymbol{A}^T
ight\}^r \left(\boldsymbol{A} H_{0,1,0} \boldsymbol{A}^T
ight)^{lpha} .$$

Recall: If Σ were known, the Bayes predictor for V = AY is $q_i^{\text{Bayes}}(AX|\Sigma, \eta, \tau, \beta) = \eta e_i^T A \mathbf{1} + e_i^T G_{\mathbf{1},-\mathbf{1},\beta} A(X-\eta \mathbf{1}) + \mathcal{F}_i^{\text{loss}}(\Sigma, A, \tau, \beta)$

• Thus, we need good estimates based on X and $\{W_i : 1 \le i \le m\}$ only and without knowledge of Σ of quadratic forms $b^T G_{r,\alpha,\beta}b$ involving $G_{r,\alpha,\beta}$.

• In Disaggregative model, estimating these quadratic forms involving G reduces to estimating quadratic forms involving H which is comparatively easier. We concentrate on estimating $b^T H_{r,\alpha,\beta} b$ first where $H_{r,\alpha,\beta}(\Sigma) = (\Sigma^{-1} + \tau^{-1}\Sigma^{-\beta})^{-r}\Sigma^{\alpha}$ and $||b||_2 = 1$.

Estimating $b^T H_{r,\alpha,\beta} b$: $H_{r,\alpha,\beta}(\Sigma) = (\Sigma^{-1} + \tau^{-1} \Sigma^{-\beta})^{-r} \Sigma^{\alpha}, ||b||_2 = 1.$

Under spiked structure, efficient estimates of $\hat{\ell}_j$ of the eigen values and \hat{p}_j of the K principal eigen vectors can be done. Consider:

$$\hat{H}_{r,\alpha,\beta} = \sum_{j=1}^{K} \hat{\zeta}_j^{-2} \big(h_{r,\alpha,\beta}(\hat{\ell}_j) - h_{r,\alpha,\beta}(\hat{\ell}_0) \big) \hat{\boldsymbol{p}}_j \hat{\boldsymbol{p}}_j^T + h_{r,\alpha,\beta}(\hat{\ell}_0) I$$

where, $h_{r,\alpha,\beta}(x) = (x^{-1} + \tau^{-1}x^{-\beta})^{-r}x^{\alpha}$ is the scalar version of H and

$$\zeta(x,\rho) = \left[\frac{1-\rho/(x-1)^2}{1+\rho/(x-1)}\right]^{1/2} \text{ and } \hat{\zeta}_j = \zeta(\hat{\ell}_j/\hat{\ell}_0, n/(m-1))$$

 $b^T \widehat{H}_{r,\alpha,\beta} b$ - bias corrected and consistent estimate of $b^T H_{r,\alpha,\beta} b$

- Asymptotic adjustments to the sample eigenvalues
- Phase transition phenomenon of the sample eigenvectors (Paul (2007))

Estimating $b^T H_{r,\alpha,\beta} b$: $H_{r,\alpha,\beta}(\Sigma) = (\Sigma^{-1} + \tau^{-1} \Sigma^{-\beta})^{-r} \Sigma^{\alpha}, ||b||_2 = 1.$

Under spiked structure, efficient estimates of $\hat{\ell}_j$ of the eigen values and \hat{p}_j of the K principal eigen vectors can be done. Consider:

$$\hat{H}_{r,\alpha,\beta} = \sum_{j=1}^{K} \hat{\zeta}_j^{-2} \big(h_{r,\alpha,\beta}(\hat{\ell}_j) - h_{r,\alpha,\beta}(\hat{\ell}_0) \big) \hat{\boldsymbol{p}}_j \hat{\boldsymbol{p}}_j^T + h_{r,\alpha,\beta}(\hat{\ell}_0) I$$

Asymptotic consistency: Σ spike structure, m/n > 0 as $n \to \infty$

Uniformly over $\tau \in \mathbf{T}_0, \beta \in \mathbf{B}_0$ and $\mathbf{b} \in \mathcal{B}$ such that $|\mathcal{B}| = O(n^c)$ for any fixed c > 0and $||\mathbf{b}||_2 = 1$, we have for all $(r, \alpha) \in \{-1, 0, 1\} \times \mathbb{R}$

$$\sup_{\tau \in \boldsymbol{T}_{0}, \beta \in \boldsymbol{B}_{0}, \boldsymbol{b} \in \boldsymbol{\mathcal{B}}} \left| \boldsymbol{b}^{T} \widehat{H}_{r,\alpha,\beta} \boldsymbol{b} - \boldsymbol{b}^{T} H_{r,\alpha,\beta} \boldsymbol{b} \right| = O_{p} \left(\sqrt{\frac{\log n}{n}} \right)$$

$$\texttt{Consider:} \quad \hat{H}_{r,\alpha,\beta} = \sum_{j=1}^{K} \hat{\zeta}_j^{-2} \big(h_{r,\alpha,\beta}(\hat{\ell}_j) - h_{r,\alpha,\beta}(\hat{\ell}_0) \big) \hat{\boldsymbol{p}}_j \hat{\boldsymbol{p}}_j^T + h_{r,\alpha,\beta}(\hat{\ell}_0) I$$

 $\texttt{Recall:} \quad \boldsymbol{q}^{\mathsf{Bayes}}_i(\boldsymbol{A}\boldsymbol{X}|\boldsymbol{\Sigma},\boldsymbol{\eta},\tau,\beta) = \boldsymbol{\eta}\boldsymbol{e}^T_i\boldsymbol{1} + \boldsymbol{e}^T_i\boldsymbol{H}_{1,-1,\beta}(\boldsymbol{X}-\boldsymbol{\eta}\boldsymbol{1}) + \boldsymbol{\mathcal{F}}^{\mathsf{loss}}_i(\boldsymbol{\Sigma},\tau,\beta)$

Propose $\hat{q}_{(loss)}^{step1}(\eta, \tau, \beta)$: Use \hat{H} in place of H above.

T 7

Asymptotic consistency: Σ spike structure, m/n > 0 as $n \to \infty$

Uniformly over $\tau \in T_0, \beta \in B_0$ and $b \in \mathcal{B}$ such that $|\mathcal{B}| = O(n^c)$ for any fixed c > 0 and $||b||_2 = 1$, we have for all $(r, \alpha) \in \{-1, 0, 1\} \times \mathbb{R}$

$$\sup_{\tau \in \mathbf{T}_{0}, \beta \in \mathbf{B}_{0}, \mathbf{b} \in \mathbf{B}} \left| \mathbf{b}^{T} \widehat{H}_{r,\alpha,\beta} \mathbf{b} - \mathbf{b}^{T} H_{r,\alpha,\beta} \mathbf{b} \right| = O_{p} \left(\sqrt{\frac{\log n}{n}} \right)$$

Consequently, conditionally on \boldsymbol{X} ,

$$\frac{\sup_{\tau \in \mathbf{T}_0, \beta \in \mathbf{B}_0} ||\hat{q}^{\mathsf{step1}}(\boldsymbol{X}|\boldsymbol{S}, \eta, \tau, \beta) - \boldsymbol{q}^{\mathsf{Bayes}}(\boldsymbol{X}|\boldsymbol{\Sigma})||_{\infty}}{||\boldsymbol{X} - \boldsymbol{\eta}||_2 \vee 1} = O_p\left(\sqrt{\frac{\log n}{n}}\right)$$

Proposed Prediction Rule - CASP

Key idea:

- construct efficient estimates of quadratic forms $a^T H_{r,\alpha,\beta} b$
- introduce coordinate-wise shrinkage policy to further reduce variability of $\hat{q}^{\rm step1}$

CASP - Coordinate-wise Adaptive Shrinkage Prediction

$$\hat{q}_i^{\mathsf{cs}}(\boldsymbol{X}|\boldsymbol{S}, f_i^*) = \boldsymbol{e}_i^T \boldsymbol{A} \boldsymbol{\eta}_0 + \boldsymbol{f}_i^* \boldsymbol{e}_i^T \widehat{\boldsymbol{H}}_{1,-1,\beta} \boldsymbol{A}(\boldsymbol{X} - \boldsymbol{\eta}) + \mathcal{F}_i^{\mathsf{loss}}(\boldsymbol{\Sigma}, \tau, \beta)$$

- $b^T \hat{H}_{r,\alpha,\beta} b$ bias corrected and consistent estimate of $b^T H_{r,\alpha,\beta} b$
 - Phase transition phenomenon of the sample eigenvalues and eigenvectors
- f_i^* coordinate wise shrinkage factor
 - Depends only on covariance level information through ${\pmb W}$
 - Corresponds to actual reduction in marginal variability of q_i^{cs}
- This class of predictors includes our step1 predictor when $f_i = 1$ for all i. $\hat{q}_i^{\text{step1}} = \hat{q}_i^{\text{cs}}(\boldsymbol{X}|\boldsymbol{S}, f_i = 1)$

Improving efficiency through co-ordinate wise shrinkage

- $\hat{q}^{\mathsf{cs}}(\boldsymbol{X}|\boldsymbol{S}, f_i=1)$ an asymptotically unbiased estimate of $\boldsymbol{q}^{\mathsf{Bayes}}$
- Average L_2 distance between them is non-trivial, however.

Recall $q_i^{\mathsf{cs}}(\boldsymbol{X}|\boldsymbol{S}, f_i^*) = \boldsymbol{e}_i^T \boldsymbol{\eta}_0 + \boldsymbol{f}_i^* \boldsymbol{e}_i^T \widehat{G}_{1,-1,\beta}(\boldsymbol{X} - \boldsymbol{\eta}) + \widehat{\mathcal{F}}_i^{\mathcal{L}_i}$

Oracle choice:
$$\begin{aligned} \int_{i}^{\mathsf{OR}} &= \operatorname*{arg\,min}_{f_{i} \in \mathbb{R}} \mathbb{E} \Big\{ \Big(q_{i}^{\mathsf{cs}}(\boldsymbol{X} | \boldsymbol{S}, f_{i}) - q_{i}^{\mathsf{Bayes}}(\boldsymbol{X} | \boldsymbol{\Sigma}) \Big)^{2} \Big\} \end{aligned}$$

- In general, $f_i^{\mathsf{OR}} \in [0, 1]$

- Can be much smaller than 1 if the eigenvectors of $\boldsymbol{\Sigma}$ are relatively sparse

- \hat{f}_i^* - a data driven choice such that $\sup_i |\hat{f}_i^* - f_i^{\mathsf{OR}}| \to 0$ as $n \to \infty$

$$\hat{f}_{i}^{*} = \frac{\boldsymbol{e}_{i}^{T} \tau \hat{H}_{1,\beta-1,\beta} \boldsymbol{e}_{i}}{\boldsymbol{e}_{i}^{T} \hat{R} \boldsymbol{e}_{i}} \text{ where, } \boldsymbol{j}(\boldsymbol{x}) \coloneqq \boldsymbol{x} + \tau \boldsymbol{x}^{\beta},$$
$$\hat{R} = \tau \hat{H}_{1,\beta-1,\beta} + \boldsymbol{j}(\hat{\ell}_{0}) \sum_{j=1}^{K} \hat{\zeta}_{j}^{-4} \Big(h_{1,-1,\beta}(\hat{\ell}_{j}) - h_{1,-1,\beta}(\hat{\ell}_{0}) \Big)^{2} \hat{\boldsymbol{p}}_{j} \hat{\boldsymbol{p}}_{j}^{T}$$

Improving efficiency through co-ordinate wise shrinkage

Recall
$$q_i^{\mathsf{cs}}(\boldsymbol{X}|\boldsymbol{S}, f_i^*) = \boldsymbol{e}_i^T \boldsymbol{\eta}_0 + \boldsymbol{f}_i^* \boldsymbol{e}_i^T \widehat{G}_{1,-1,\beta}(\boldsymbol{X} - \boldsymbol{\eta}) + \widehat{\mathcal{F}}_i^{\mathcal{L}_i}$$

$$\text{Oracle choice:} \quad \left| \begin{array}{c} \boldsymbol{f_i^{\mathsf{OR}}} = \mathop{\arg\min}_{f_i \in \mathbb{R}} \mathbb{E} \Big\{ \left(q_i^{\mathsf{cs}}(\boldsymbol{X} | \boldsymbol{S}, f_i) - q_i^{\mathsf{Bayes}}(\boldsymbol{X} | \boldsymbol{\Sigma}) \right)^2 \Big\} \\ \end{array} \right|$$

- In general, $\pmb{f_i^{\mathsf{OR}}} \in [0,1]$
- Can be much smaller than 1 if the eigenvectors of $\boldsymbol{\Sigma}$ are relatively sparse
- $\begin{aligned} \ \hat{f}_i^* &- \text{a data driven choice such that } \sup_i |\hat{f}_i^* \boldsymbol{f}_i^{\mathsf{OR}}| \to 0 \text{ as } n \to \infty \\ \hat{f}_i^* &= \frac{\boldsymbol{e}_i^T \tau \hat{H}_{1,\beta-1,\beta} \boldsymbol{e}_i}{\boldsymbol{e}_i^T \hat{R} \boldsymbol{e}_i} \text{ where, } j(x) \coloneqq x + \tau x^{\beta}, \\ \hat{R} &= \tau \hat{H}_{1,\beta-1,\beta} + j(\hat{\ell}_0) \sum_{j=1}^K \hat{\zeta}_j^{-4} \Big(h_{1,-1,\beta}(\hat{\ell}_j) h_{1,-1,\beta}(\hat{\ell}_0) \Big)^2 \hat{\boldsymbol{p}}_j \hat{\boldsymbol{p}}_j^T \end{aligned}$

Oracle optimality of CASP: Σ spike structure, m/n > 0 as $n \to \infty$ Conditionally on X,

$$\sup_{\tau \in \mathbf{T}_0, \beta \in \mathbf{B}_0} \frac{||\boldsymbol{q}^{\mathsf{cs}}(\boldsymbol{X}|\boldsymbol{S}, \hat{\boldsymbol{f}}^*) - \boldsymbol{q}^{\mathsf{cs}}(\boldsymbol{X}|\boldsymbol{S}, \boldsymbol{f}^{\mathsf{OR}})||_2^2}{||\boldsymbol{q}^{\mathsf{cs}}(\boldsymbol{X}|\boldsymbol{S}, \boldsymbol{f}^{\mathsf{OR}}) - \boldsymbol{\eta}||_2^2} = O_p\left(\frac{\log n}{n}\right)$$

Evaluating Bayes Predictors in Aggregative Models

For a general $\mathbf{A}^{p \times n}$, $\tau^{-r} G_{r,\alpha,\beta}$ equals

$$\Big\{ \boldsymbol{A} H_{0,\beta,0} \boldsymbol{A}^T \Big[\boldsymbol{A} \Big(\tau H_{0,\beta,0} + H_{0,1,0} \Big) \boldsymbol{A}^T \Big]^{-1} \boldsymbol{A} H_{0,1,0} \boldsymbol{A}^T \Big\}^r \Big(\boldsymbol{A} H_{0,1,0} \boldsymbol{A}^T \Big)^{\alpha}$$

- Substitute $\widehat{H}_{r,\alpha,\beta}$ in place of $H_{r,\alpha,\beta}$ in the above expression,

Asymptotic consistency: Σ spike structure, m/n > 0 as $n \to \infty$ Uniformly over $\tau \in \mathbf{T}_0, \beta \in \mathbf{B}_0$ and $\mathbf{b} \in \mathcal{B}$ such that $|\mathcal{B}| = O(n^c)$ for any fixed c < 0and $||\mathbf{b}||_2 = 1$, we have for all $(r, \alpha) \in \{-1, 0, 1\} \times \mathbb{R}$

$$\sup_{\mathbf{t}\in\mathbf{T}_{0},\boldsymbol{\beta}\in\mathbf{B}_{0},\boldsymbol{b}\in\mathcal{B}}\left|\boldsymbol{b}^{T}\widehat{G}_{r,\alpha,\beta}\boldsymbol{b}-\boldsymbol{b}^{T}G_{r,\alpha,\beta}\boldsymbol{b}\right|=O_{p}\left(\max\left(\frac{\boldsymbol{p}}{\boldsymbol{n}},\sqrt{\frac{\log n}{n}}\right)\right)$$

- Consistency bounds deteriorate due to loss of commutativity for general A and the cost of its inversion is paid by the substitution rule for consistency
- Variance minimization via co-ordinate wise shrinkage can be done as before.

Real Data Illustration - Inventory Management

Background - distributors and retailers

- based on past sales data, need to predict future demands across many stores.
- balance the trade-offs between stocking too much versus stocking too little.
- Incorporating co-dependencies in the demands among different stores is potentially useful.

Data:

- Units of product \mathcal{P} sold across $n \sim 1,200$ stores in week of Oct 31, 2011.
- Side information Lagged data available for m = 100 weeks from December 31, 2007 to November 29, 2009.

Real Data - Loss Ratios

Table: Loss ratios across six predictive rules for four products.

Product	Method	к	Loss Ratio we	eek w
Coffee $(p = 31)$	CASP Naïve Bcv POET Fact Unshrunk	26 26 17 26 26 -	0.999 1.044 1.043 1.047 1.009 1.838	Loss ratio for product \mathcal{P} : $\sum_{i=1}^{p} \left\{ b_i(V_i) \right\}$
Mayo (p = 30)	CASP Naïve Bcv POET Fact Unshrunk	26 26 19 26 26 -	0.995 0.996 1.040 0.996 0.999 1.084	$\mathcal{L}_w(\boldsymbol{q^{\text{cs}}}, \widehat{\boldsymbol{q}}) = \frac{\sum_{i=1}^{p} \left\{ b_i(V_i) \right\}}{\sum_{i=1}^{p} \left\{ b_i(V_i) \right\}}$
Frozen Pizza (p = 33)	CASP Naïve Bcv POET Fact Unshrunk	33 33 19 33 33 -	0.998 1.135 1.091 1.040 1.020 6.701	- $b_i = 0.95, h_i = 1 -$ - q^{cs} - CASP with f_i - \hat{q} - any other predict
Carb Beverages (p=33)	CASP Naïve Bcv POET Fact Unshrunk	37 37 20 37 37 -	0.984 1.033 1.142 1.038 1.059 8.885	CASP: proposed method w Naive factor model without bi-cross-validation approact FactMLE algorithm of Kha

$$q^{cs}, \hat{q}) = \frac{\sum_{i=1}^{p} \left\{ b_i (V_i - \hat{q}_i)^+ + h_i (\hat{q}_i - V_i)^+ \right\}}{\sum_{i=1}^{p} \left\{ b_i (V_i - q_i^{cs})^+ + h_i (q_i^{cs} - V_i)^+ \right\}}$$

-
$$b_i = 0.95, h_i = 1 - b_i$$

-
$$q^{cs}$$
 - CASP with $f_i = 1$

- her predictive rule
- method with data driven f_i
- del without bias correction
- on approach of Owen & Wang (2016)
- thm of Khamaru & Mazumder (2018)

State-wise distribution of shrinkage factors

Figure: 1– the shrinkage factors of CASP by each state for the four products.

Closing Remarks

- We consider point prediction in location models with unknown covariance that has a spiked structure.
- A flexible non-exchangeable prior on the location parameter that depends on the unknown covariance is used.
- The prior induces skrinkage through the following hyper-parameters: (a) magnitude that regulates amount of shrinkage (b) shape that regulates the variability directions that are shrunken.
- We provide optimal evaluations of the Bayes predictors for a host of loss functions including symmetric and asymmetric losses. Bayes predictors involve functionals of unknown covariance.
- For such evaluations, we leverage the spiked covariance structure and use a simple substitution rule. Decision theoretic guarantees are provided for dis-aggregative as well as aggregative models.

THANKS!!

Manuscript available at: http://www-bcf.usc.edu/ gourab/spiked.pdf

R codes available at: https://gmukherjee.github.io/Software/2018-08-15-casp/

Supported in parts by: NSF DMS-1811866