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Initial motivation

Analysis of a certain class of non-linear PDEs (e.g.
equation)

ay(x, 1) ay(x, 1)
ot ox
+ boundary conditions,

+y(x 1) =0, (xH)e

e One may apply the moment-SOS approach, i.e., one solves
an appropriate of
increasing size.

%" Previous talk by D. Henrion
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At an optimal solution z of the “step-d"
one obtains an approximation of the moments

Zijk = /Y'Xj tdu(y, x,t) = /thky(x, t)’ dx dt J
Q2 Q

up to order 2d of the measure ;. supported on the graph
{(y(x,8),x,t): (x,t) € Q} of the solution y(x, t) of the PDE.

12" Problem: How to retrieve:

the function (x, t) — y(x,t), (x,t) € Q, from the sole
knowledge of z; ; «, for all (i,/, k) suchthat / +j+ k < 2d.

Jean B. Lasserre semi-algebraic approximation



Generic univariate problem for scalar PDE

Let (x, t) — f(x,t), (x,t) € [0,1] x [0,1],

be an UNKNOWN bounded measurable function on
Q = [0, M] x [0, 1], and suppose that one knows

Zijk = /x’ Ui(x,)dxdt, i+j+k<2d.
Q

" Approximate f as closely as desired when d increases and
if possible with no Gibbs’ phenomenon.

v

Jean B. Lasserre semi-algebraic approximation




The motivation came from retrieving solutions of non-linear
PDE’s via the Moment-SOS hierarchy, BUT

we are concerned with the following generic situation:

Let f : S — R be a bounded measurable function. Our sole
knowledge on f is from the scalars

Mok = / X f(x)*dx, o eN" keN.
s
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The motivation came from retrieving solutions of non-linear
PDE’s via the Moment-SOS hierarchy, BUT

we are concerned with the following generic situation:

Let f : S — R be a bounded measurable function. Our sole
knowledge on f is from the scalars

Mok = / X f(x)*dx, o eN" keN.
s

and we address the generic inverse problem:
o Given m,, x, o, k € Np

g~ COMPUTE an of f, with
as d increases.

BB~ ... and if possible ... with no GIBBS’ phenomenon

A\
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The Gibbs phenomenon

I¥" Typical when one approximates a discontinuous function
(in blue) by a polynomial (in red).
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A little detour: The Christoffel function

Given a measure ;. on a compact Q ¢ R”, and d € N, one may
construct a sum-of-squares (SOS) polynomial Qg € R[X]2¢4
such that the levels sets

Sy =A{x: Qu(x) < 7}, vERy

capture the shape of the support 2 of . better and better as d 1.
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= , low degree d is often enough to get a pretty
good idea of the shape of Q (at least in dimension n = 2, 3)
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The Christoffel function C4 : R" — R is the reciprocal of the
SOS polynomial Q4 and has a rich history in

and
Theorem

Let the support Q of . be compact with nonempty interior and
let (P,)a.cnn be a family of orthonormal polynomials w.r.t. ..
Then for every £ € R":

Qi) = D Pa(9)?

lo]<d

= min 2 : =
@ = Ca©) = min | /Q P2y P(E) =1}
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Theorem

Let the support Q of . be compact with nonempty interior.
Then:

@ Forallx € int(Q): Qqg(x) = O(d").
@ Forallx € int(R"\ Q): Qu(x) = Q(exp(rd)) for some m > 0.

In particular as d — oo, d" Cy(x) — 0 very fast whenever
X ¢ Q
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The Christoffel function can be used in several important
applications of Machine Learning (e.g. outlier detection, density
estimation). In this case the measure . is the empirical
probability measure associated with a CcR"
(the data of interest).
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The Christoffel function can be used in several important
applications of Machine Learning (e.g. outlier detection, density
estimation). In this case the measure . is the empirical
probability measure associated with a CcR"
(the data of interest).

For instance one may decide that points ¢ € C such that
Qu(¢) > ("°) can be classified as outliers. Such a strategy
(even with relatively low degree d) is as efficient as more
elaborated techniques, and
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The Christoffel function can be used in several important
applications of Machine Learning (e.g. outlier detection, density
estimation). In this case the measure . is the empirical
probability measure associated with a CcR"
(the data of interest).

For instance one may decide that points ¢ € C such that
Qu(¢) > ("°) can be classified as outliers. Such a strategy
(even with relatively low degree d) is as efficient as more
elaborated techniques, and

" Lass & Pauwels Sorting out typicality via the inverse
moment matrix SOS polynomial,

Lass & Pauwels The empirical Christoffel functlon with
applications in data analysis,

Pauwels, Putinar & Lass Data analysis from empirical moments
and the Christoffel function,
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Back to our recovery problem

Take home message

In our problem, the support Q of - on R™1 IS the
{(x,f(x)) : x € S C R"} of an unknown function f : S — R.

" Hence the Christoffel function is an appropriate tool for
getting information on f from moments of L.
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An illustrative example: Let f : [0,1] — [0, 1] be the step

function: 0 0.1/2
te o,
f#) ::{ 1 te(1/2,1]

and let ;» be a measure on [0, 1]? supported on the graph
Q={(t,f(t)): te[0,1]} of .

Jean B. Lasserre semi-algebraic approximation



An illustrative example: Let f : [0,1] — [0, 1] be the step
function: 0.1/2
[0 telo,1/2
f#) '_{ 1 te(1/2,1]

and let ;» be a measure on [0, 1]? supported on the graph
Q={(t,f(t)): te[0,1]} of .

IZ" The support Q C R? of 1, has an empty interior as dy(x, t)
is singular w.r.t. Lebesgue measure on R?.

Therefore we instead use . + e\ where X is the Lebesgue
measure on [0, 1]? and € > 0 is very small. J
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Suppose that we only know the moments (z; ;); j<2q4, Up to order
24, of p.
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Suppose that we only know the moments (z; ;); j<2q4, Up to order
24, of p.

From the moments:

- Z = (Zi})i+j<2d, Up to order 2d, and

- X = (\jj)itj<2q up to order 2d of the Lebesgue measure on
[0, 1], and for ¢ > 0 small (and fixed),

’¥" form the moment matrix Mg(z + £ A).
I¥"  Compute the Christoffel polynomial Qy(x, t).

For arbitrary t € [0, 1], let:

(f) == x* =arg m(i)n Qq(x, t).

)
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Suppose that we only know the moments (z; ;); j<2q4, Up to order
24, of p.

From the moments:

- Z = (Zi})i+j<2d, Up to order 2d, and
- X = (\jj)itj<2q up to order 2d of the Lebesgue measure on
[0, 1], and for ¢ > 0 small (and fixed),

’¥" form the moment matrix Mg(z + £ A).
I¥"  Compute the Christoffel polynomial Qy(x, t).

For arbitrary t € [0, 1], let:

(t) := x* =arg min_ Qu(x,1).
x€[o0,
I As x — Qq(x, t) is a UNIVARIATE polynomial, x* can be
obtained efficiently.
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In black (left) the approximation with moments of order 2 and in
black (right) the approximation with moments of order 4.

" QObserve the absence of any Gibbs phenomenon ...
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For the Burgers equation

Let 1. be our unknown measure supported on the graph
Q= {(f(x,1),x,t): (x,t) € S} of the entropy solution of the
Burgers equation. Suppose that we only know the moments
(Zij.k)ijk<2d> Up to order 2d, of su.
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For the Burgers equation

Let 1. be our unknown measure supported on the graph
Q= {(f(x,1),x,t): (x,t) € S} of the entropy solution of the
Burgers equation. Suppose that we only know the moments
(Zij.k)ijk<2d> Up to order 2d, of su.

" Recall that in practice, (z; x) is an optimal solution of the
associated with the Burgers

equation.
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For the Burgers equation

Let 1. be our unknown measure supported on the graph
Q= {(f(x,1),x,t): (x,t) € S} of the entropy solution of the
Burgers equation. Suppose that we only know the moments
(Zijk)ijk<2d, Up to order 2d, of L.

" Recall that in practice, (z; x) is an optimal solution of the
associated with the Burgers

equation.

1= ) ¢ R® has an empty interior as dyu(y, x, t) is singular w.r.t.

Lebesgue measure on R3.

Therefore we instead use ;. + ¢\ where ) is the Lebesgue
measure on [0, A] x [0, M] x [0, 1] and ¢ > 0 is very small. (For
————

S
the Burgers equation, R and M are determined from bounds on
the boundary condition y,(x,0).)
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Recovery strategy

From the moments:

-Z= (Zi,j,k)i+j+k§2ds up to order 2d, and
- XA = (Mijk)itj+k<2d Up to order 2d of the Lebesgue measure
on [0, R] x [0, M] x [0, 1],

and for ¢ > 0 small (and fixed),

I¥" form the moment matrix My(z + ¢ A).
" Compute the Christoffel polynomial Qy4(y, x, t).

For arbitrary (x,t) € [0, M] x [0, 1], let:

X, t) = y* = in Qq(y, X, t).
(x,t) ==y 203, Sl 4(y, X, t)
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Recovery strategy

From the moments:

-Z= (Zi,j,k)i+j+k§2ds up to order 2d, and
- XA = (Mijk)itj+k<2d Up to order 2d of the Lebesgue measure
on [0, R] x [0, M] x [0, 1],

and for ¢ > 0 small (and fixed),

I¥" form the moment matrix My(z + ¢ A).
" Compute the Christoffel polynomial Qy4(y, x, t).

For arbitrary (x,t) € [0, M] x [0, 1], let:

X, t) = y* = in Qq(y, X, t).
(x,t) ==y 203, Sl 4(y, X, t)

" As y — Qqu(y, x, t) is a UNIVARIATE polynomial, y* is
obtained exactly by solving a single SDP.
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Convergence guarantees

Under some relatively weak conditions on (x, t) — f(x, t):
=3 — fin Ly([0, M] x [0, 1]).
B fy(x,t) — f(x,t) for almost all (x, t) € [0, M] x [0, 1].
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=3 — fin Ly([0, M] x [0, 1]).
B fy(x,t) — f(x,t) for almost all (x, t) € [0, M] x [0, 1].

Importantly:

" the belongs to the class of
semi-algebraic functions, as opposed to standard
approximation schemes where 7, is a polynomial.
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Convergence guarantees

Under some relatively weak conditions on (x, t) — f(x, t):
=3 — fin Ly([0, M] x [0, 1]).

K" h,(x,t) — f(x,t) for almost all (x, t) € [0, M] x [0, 1].

Importantly:

" the belongs to the class of
semi-algebraic functions, as opposed to standard
approximation schemes where 7, is a polynomial.

" provides a RATIONALE why the GIBBS’ phenomenon
disappears in our numerical experiments.
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Ex: The Burgers equation

We consider two initial conditions: One yields a solution f(x, t)
with a discontinuity (shock) and the other yields a continuous
solution (rarefaction).
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Ex: The Burgers equation

We consider two initial conditions: One yields a solution f(x, t)
with a discontinuity (shock) and the other yields a continuous
solution (rarefaction).

=" With moments up to order 2d = 12, the moments z match
those of the measure ;. supported on the graph of f (with at
least 4 digits of precision). Then after discretizing [0, M] x [0, 1]
and computing /4(x, t) on this grid, one obtains the two
approximations (with almost no Gibbs phenomenon):
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Examples from Eckhoff
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Examples from Eckhoff continued
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More details in :

S. Marx, T. Weisser, D. Henrion and J.B. Lass (2018). A
moment approach for entropy solutions to nonlinear hyperbolic
PDEs.

S. Marx, E. Pauwels, T. Weisser, D. Henrion and J.B. Lass
(2018). Tractable semi-algebraic approximation using
Christoffel-Darboux kernel. arxiv:1807.02306

THANK YOU !

Jean B. Lasserre semi-algebraic approximation



