Excitation Spectrum of Trapped Bose-Einstein Condensates

Benjamin Schlein, University of Zurich

From Many Body Problems to Random Matrices

$$
\text { Banff, August 5, } 2019
$$

Joint works with Boccato, Brennecke, Cenatiempo, Schraven

Introduction

Bose-Einstein condensates: in the last two decades, BEC have become accessible to experiments.

Goal: understand low-energy properties of trapped condensates, starting from microscopic description.

Gross-Pitaevskii regime: N bosons in $\Lambda=[0 ; 1]^{3}$, interacting through potential with effective range of order N^{-1}, as $N \rightarrow \infty$.

Range of interaction much shorter than typical distance among particles: collisions rare, dilute gas.

Hamilton operator: has form

$$
H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\sum_{i<j}^{N} N^{2} V\left(N\left(x_{i}-x_{j}\right)\right), \quad \text { on } L_{s}^{2}\left(\wedge^{N}\right)
$$

$V \geq 0$ with compact support.

Scattering length: defined by zero-energy scattering equation

$$
\begin{gathered}
{\left[-\Delta+\frac{1}{2} V(x)\right] f(x)=0, \quad \text { with } \quad f(x) \rightarrow 1 \quad \text { as }|x| \rightarrow \infty} \\
\Rightarrow \quad f(x)=1-\frac{\mathfrak{a}_{0}}{|x|}, \quad \text { for large }|x|
\end{gathered}
$$

Equivalently,

$$
8 \pi \mathfrak{a}_{0}=\int V(x) f(x) d x
$$

By scaling,

$$
\left[-\Delta+\frac{1}{2} N^{2} V(N x)\right] f(N x)=0
$$

Rescaled potential has scattering length \mathfrak{a}_{0} / N.

Ground state energy: [Lieb-Yngvason '98] proved that

$$
E_{N}=4 \pi \mathfrak{a}_{0} N+o(N)
$$

BEC: [Lieb-Seiringer '02, '06] showed that $\psi_{N} \in L_{s}^{2}\left(\wedge^{N}\right)$ with

$$
\left\langle\psi_{N}, H_{N} \psi_{N}\right\rangle \leq 4 \pi \mathfrak{a}_{0} N+o(N)
$$

exhibits BEC, i.e. reduced density matrix

$$
\gamma_{N}(x ; y)=\int d x_{2} \ldots d x_{N} \psi_{N}\left(x, x_{2}, \ldots, x_{N}\right) \bar{\psi}_{N}\left(y, x_{2}, \ldots, x_{N}\right)
$$

is such that

$$
\lim _{N \rightarrow \infty}\left\langle\varphi_{0}, \gamma_{N} \varphi_{0}\right\rangle=1
$$

with $\varphi_{0}(x)=1$ for all $x \in \wedge$.
Warning: this does not mean that $\psi_{N} \simeq \varphi_{0}^{\otimes N}$. In fact

$$
\left\langle\varphi_{0}^{\otimes N}, H_{N} \varphi_{0}^{\otimes N}\right\rangle=\frac{(N-1)}{2} \widehat{V}(0) \gg 4 \pi \mathfrak{a}_{0} N
$$

Correlations are important!!

Main results

Theorem [Boccato, Brennecke, Cenatiempo, S., '17]: There exists $C>0$ such that

$$
\left|E_{N}-4 \pi \mathfrak{a}_{0} N\right| \leq C
$$

uniformly in N.
Furthermore, if $\psi_{N} \in L_{s}^{2}\left(\wedge^{N}\right)$ such that

$$
\left\langle\psi_{N}, H_{N} \psi_{N}\right\rangle \leq 4 \pi \mathfrak{a}_{0} N+\zeta
$$

we have

$$
1-\left\langle\varphi_{0}, \gamma_{N} \varphi_{0}\right\rangle \leq \frac{C(\zeta+1)}{N}
$$

Interpretation: in low-energy states, condensation holds with optimal rate, with bounded number of excitations.

Question: Is it possible to resolve order one contributions to the ground state energy?

Theorem [Boccato, Brennecke, Cenatiempo, S., '18]:
Let $\Lambda_{+}^{*}=2 \pi \mathbb{Z}^{3} \backslash\{0\}$. Then

$$
\begin{aligned}
E_{N}= & 4 \pi \mathfrak{a}_{0}(N-1)+e_{\wedge} \mathfrak{a}_{0}^{2} \\
& -\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+8 \pi \mathfrak{a}_{0}-\sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}}-\frac{\left(8 \pi \mathfrak{a}_{0}\right)^{2}}{2 p^{2}}\right]+\mathcal{O}\left(N^{-1 / 4}\right)
\end{aligned}
$$

where

$$
e_{\Lambda}=2-\lim _{M \rightarrow \infty} \sum_{\substack{p \in \mathbb{Z}^{3} \backslash\{0\}: \\\left|p_{1}\right|,\left|p_{2}\right|,\left|p_{3}\right| \leq M}} \frac{\cos (|p|)}{p^{2}}
$$

Moreover, for the ground state, we have the BEC depletion
$1-\left\langle\varphi_{0}, \gamma_{N} \varphi_{0}\right\rangle=\frac{1}{N} \sum_{p \in \Lambda_{+}^{*}}\left[\frac{p^{2}+8 \pi \mathfrak{a}_{0}-\sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}}}{2 \sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}}}\right]+\mathcal{O}\left(N^{-9 / 8}\right)$

Theorem [Boccato, Brennecke, Cenatiempo, S., '18]: The spectrum of $H_{N}-E_{N}$ below a threshold $\zeta>0$ consists of eigenvalues

$$
\sum_{p \in \Lambda_{+}^{*}} n_{p} \sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}}+\mathcal{O}\left(N^{-1 / 4}\left(1+\zeta^{3}\right)\right)
$$

where $n_{p} \in \mathbb{N}$ for all $p \in \Lambda_{+}^{*}$.
Interpretation: every excitation with momentum $p \in \Lambda_{+}^{*}$ "costs" energy $\varepsilon(p)=\sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}}$.

Remark: excitation spectrum is crucial to understand the lowenergy properties of Bose gas.

The linear dependence of $\varepsilon(p)$ on $|p|$ for small p can be used to explain the emergence of superfluidity.

Previous works

Mathematically simpler models described by

$$
H_{N}^{\beta}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N} \sum_{i<j}^{N} N^{3 \beta} V\left(N^{\beta}\left(x_{i}-x_{j}\right)\right)
$$

for $\beta \in[0 ; 1)$.
In mean field regime, $\beta=0$, excitation spectrum determined in [Seiringer, '11], [Grech-Seiringner, '13], [Lewin-Nam-SerfatySolovej, '14], [Derezinski-Napiorkowski, '14], [Pizzo, '16].

Dispersion of excitations given by $\varepsilon_{\mathrm{mf}}(p)=\sqrt{|p|^{4}+2 \hat{V}(p) p^{2}}$.
For intermediate regimes, $\beta \in(0 ; 1)$ (and V small enough) excitations spectrum determined in [BBCS, '17].

Dispersion of excitations given by $\varepsilon_{\beta}(p)=\sqrt{|p|^{4}+2 \widehat{V}(0) p^{2}}$.
For Gross-Pitaevskii regime, $\beta=1$, and V small, excitations spectrum determined in [BBCS, '18].

Extension to BEC in external potentials

Consider N bosons in \mathbb{R}^{3}, with Hamilton operator

$$
H_{N}\left(V_{\mathrm{ext}}\right)=\sum_{j=1}^{N}\left[-\Delta_{x_{j}}+V_{\mathrm{ext}}\left(x_{j}\right)\right]+\sum_{i<j}^{N} N^{2} V\left(N\left(x_{i}-x_{j}\right)\right)
$$

with $V_{\text {ext }}$ a trapping potential.
[Lieb-Seiringer-Yngvason, '00] proved that

$$
\lim _{N \rightarrow \infty} \frac{E_{N}}{N}=\min _{\varphi \in L^{2}\left(\mathbb{R}^{3}\right):\|\varphi\|=1} \mathcal{E}_{\mathrm{GP}}(\varphi)
$$

with the Gross-Pitaevskii energy functional

$$
\mathcal{E}_{\mathrm{GP}}(\varphi)=\int_{\mathbb{R}^{3}}\left[|\nabla \varphi|^{2}+V_{\mathrm{ext}}|\varphi|^{2}+4 \pi \mathfrak{a}_{0}|\varphi|^{4}\right] d x
$$

[Lieb-Seiringer, '02]: ground state exhibits BEC into minimizer φ_{GP} of Gross-Pitaevskii functional, ie.

$$
\lim _{N \rightarrow \infty}\left\langle\varphi_{\mathrm{GP}}, \gamma_{N} \varphi_{\mathrm{GP}}\right\rangle=1
$$

Theorem [Brennecke-S.-Schraven, in progress]:
Optimal BEC: if $\psi_{N} \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right)$ with

$$
\left\langle\psi_{N}, H_{N}\left(V_{\mathrm{ext}}\right) \psi_{N}\right\rangle \leq E_{N}\left(V_{\mathrm{ext}}\right)+\zeta
$$

then

$$
1-\left\langle\varphi_{\mathrm{GP}}, \gamma_{N} \varphi_{\mathrm{GP}}\right\rangle \leq \frac{C(\zeta+1)}{N}
$$

Excitation spectrum: let

$$
h_{\mathrm{GP}}=-\Delta+V_{\mathrm{ext}}+8 \pi \mathfrak{a}_{0}\left|\varphi_{\mathrm{GP}}\right|^{2}
$$

and $\varepsilon_{0}=\inf \sigma\left(h_{\mathrm{GP}}\right)$. Let $D=h_{\mathrm{GP}}-\varepsilon_{0}$ and

$$
E=\left[D^{1 / 2}\left(D+16 \pi \mathfrak{a}_{0}\left|\varphi_{\mathrm{GP}}\right|^{2}\right) D^{1 / 2}\right]^{1 / 2}
$$

Spectrum of $H_{N}\left(V_{\text {ext }}\right)-E_{N}\left(V_{\text {ext }}\right)$ below threshold $\zeta>0$ consists of eigenvalues having the form

$$
\sum_{i \in \mathbb{N}} n_{i} e_{i}+o(1) \quad \text { where } e_{i} \text { are eigenvalues of } E \text { and } n_{i} \in \mathbb{N} \text {. }
$$

Dynamics generated by change of external fields

First results by [Erdös-S.-Yau, '06, '08], and by [PickI, '10].
Theorem [Brennecke-S., '16]: let $\psi_{N} \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right)$ with reduced density matrix γ_{N} such that

$$
\begin{aligned}
a_{N} & =1-\left\langle\varphi_{\mathrm{GP}}, \gamma_{N} \varphi_{\mathrm{GP}}\right\rangle \rightarrow 0 \\
b_{N} & =\left|N^{-1}\left\langle\psi_{N}, H_{N}\left(V_{\mathrm{ext}}\right) \psi_{N}\right\rangle-\mathcal{E}_{\mathrm{GP}}\left(\varphi_{\mathrm{GP}}\right)\right| \rightarrow 0
\end{aligned}
$$

Let

$$
H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\sum_{i<j}^{N} N^{2} V\left(N\left(x_{i}-x_{j}\right)\right) \quad \text { on } L_{s}^{2}\left(\mathbb{R}^{3 N}\right)
$$

and $\psi_{N, t}=e^{-i H_{N} t} \psi_{N}$ solve many-body Schrödinger equation. Then

$$
1-\left\langle\varphi_{t}, \gamma_{N, t} \varphi_{t}\right\rangle \leq C\left[a_{N}+b_{N}+N^{-1}\right] \exp (c \exp (c|t|))
$$

where φ_{t} solves time-dependent Gross-Pitaevskii equation

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+8 \pi \mathfrak{a}_{0}\left|\varphi_{t}\right|^{2} \varphi_{t}, \quad \text { with } \varphi_{t=0}=\varphi_{\mathrm{GP}}
$$

Thermodynamic limit

Consider N bosons in $\Lambda_{L}=[0 ; L]^{3}$, with $N, L \rightarrow \infty$ but fixed density $\rho=N / L^{3}$.

As $\rho \rightarrow 0$, Lee-Huang-Yang predicted

$$
\lim _{\substack{N, L \rightarrow \infty \\ N / L^{3}=\rho}} \frac{E_{N}}{N}=4 \pi \mathfrak{a}_{0} \rho\left[1+\frac{128}{15 \sqrt{\pi}}\left(\rho \mathfrak{a}_{0}^{3}\right)^{1 / 2}+o\left(\rho^{1 / 2}\right)\right]
$$

Leading order known from [Lieb-Yngvason, '98].
Upper bound to second order in [Erdös-S.-Yau,'08], [Yau-Yin,'09].
[Fournais-Solovej, '19] got matching lower bound (next talk!).
Remark: Gross-Pitaevskii regime corresponds to limit $\rho=N^{-2}$.
Still open: prove BEC and determine excitations in thermodynamic limit.

Bogoliubov approximation

Fock space: define $\mathcal{F}=\bigoplus_{n \geq 0} L_{s}^{2}\left(\wedge^{n}\right)$.
Creation and annihilation operators: for $p \in 2 \pi \mathbb{Z}^{3}$, introduce a_{p}^{*}, a_{p} creating and annihilating particle with momentum p.

Canonical commutation relations: for any $p, q \in 2 \pi \mathbb{Z}^{3}$,

$$
\left[a_{p}, a_{q}^{*}\right]=\delta_{p, q}, \quad\left[a_{p}, a_{q}\right]=\left[a_{p}^{*}, a_{q}^{*}\right]=0
$$

Number of particles: $a_{p}^{*} a_{p}$ measures number of particles with momentum p,

$$
\mathcal{N}=\sum_{p \in \Lambda^{*}} a_{p}^{*} a_{p}=\text { total number of particles operator }
$$

Hamilton operator: we write

$$
H_{N}=\sum_{p \in \Lambda^{*}} p^{2} a_{p}^{*} a_{p}+\frac{1}{N} \sum_{p, q, r \in \Lambda^{*}} \hat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}
$$

Number substitution: BEC implies that

$$
a_{0}, a_{0}^{*} \simeq \sqrt{N} \gg 1=\left[a_{0}, a_{0}^{*}\right]
$$

Bogoliubov replaced a_{0}^{*}, a_{0} by factors of \sqrt{N}. He found

$$
\begin{aligned}
H_{N} \simeq & \frac{(N-1)}{2} \widehat{V}(0)+\sum_{p \neq 0} p^{2} a_{p}^{*} a_{p}+\widehat{V}(0) \sum_{p \neq 0} a_{p}^{*} a_{p} \\
& +\frac{1}{2} \sum_{p \neq 0} \widehat{V}(p / N)\left[2 a_{p}^{*} a_{p}+a_{p}^{*} a_{-p}^{*}+a_{p} a_{-p}\right] \\
& +\frac{1}{\sqrt{N}} \sum_{p, q \neq 0} \widehat{V}(p / N)\left[a_{p+q}^{*} a_{-p}^{*} a_{q}+a_{q}^{*} a_{-p} a_{p+q}\right] \\
& +\frac{1}{N} \sum_{p, q, r \neq 0} \widehat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}
\end{aligned}
$$

Diagonalization: neglecting cubic and quartic terms, and using appropriate Bogoliubov transformation

$$
T=\exp \left\{\sum_{p \in \wedge_{+}^{*}} \tau_{p}\left(a_{p}^{*} a_{-p}^{*}-a_{p} a_{-p}\right)\right\}
$$

one finds

$$
\begin{aligned}
T^{*} H_{N} T \simeq & \frac{(N-1)}{2} \widehat{V}(0)-\frac{1}{2} \sum_{p \neq 0} \frac{\hat{V}^{2}(p / N)}{2 p^{2}} \\
& -\frac{1}{2} \sum_{p \neq 0}\left[p^{2}+\widehat{V}(0)-\sqrt{|p|^{4}+2 \widehat{V}(0) p^{2}}-\frac{\widehat{V}(0)^{2}}{2 p^{2}}\right] \\
& +\sum_{p \neq 0} \sqrt{|p|^{4}+2 \hat{V}(0) p^{2}} a_{p}^{*} a_{p}
\end{aligned}
$$

Born series: for small potentials, scattering length given by $8 \pi \mathfrak{a}_{0}=\widehat{V}(0)$

$$
+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n} N^{n}} \sum_{p_{1}, \ldots, p_{n} \neq 0} \frac{\widehat{V}\left(p_{1} / N\right)}{p_{1}^{2}} \prod_{j=1}^{n-1} \frac{\widehat{V}\left(\left(p_{j}-p_{j+1}\right) / N\right)}{p_{j+1}^{2}} \widehat{V}\left(p_{n} / N\right)
$$

Scattering length: replacing

$$
\hat{V}(0) \rightarrow 8 \pi \mathfrak{a}_{0}, \quad \hat{V}(0)-\frac{1}{N} \sum_{p} \frac{\hat{V}^{2}(p / N)}{2 p^{2}} \rightarrow 8 \pi \mathfrak{a}_{0}
$$

Bogoliubov obtained

$$
\begin{aligned}
T^{*} H_{N} T \simeq & 4 \pi \mathfrak{a}_{0}(N-1) \\
& -\frac{1}{2} \sum_{p \neq 0}\left[p^{2}+8 \pi \mathfrak{a}_{0}-\sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}}-\frac{\left(8 \pi \mathfrak{a}_{0}\right)^{2}}{2 p^{2}}\right] \\
& +\sum_{p \neq 0} \sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}} a_{p}^{*} a_{p}
\end{aligned}
$$

Hence
$E_{N}=4 \pi \mathfrak{a}_{0}(N-1)-\frac{1}{2} \sum_{p \neq 0}\left[p^{2}+8 \pi \mathfrak{a}_{0}-\sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}}-\frac{\left(8 \pi \mathfrak{a}_{0}\right)^{2}}{2 p^{2}}\right]$
and excitation spectrum consists of

$$
\sum_{p \neq 0} n_{p} \sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}}, \quad n_{p} \in \mathbb{N}
$$

Final replacement makes up for missing cubic and quartic terms!

Factoring out the condensate

Orthogonal excitations: for $\psi_{N} \in L_{s}^{2}\left(\wedge^{N}\right), \varphi_{0} \equiv 1$ on \wedge, write

$$
\psi_{N}=\alpha_{0} \varphi_{0}^{\otimes N}+\alpha_{1} \otimes_{s} \varphi_{0}^{\otimes(N-1)}+\alpha_{2} \otimes_{s} \varphi_{0}^{\otimes(N-2)}+\cdots+\alpha_{N}
$$

where $\alpha_{j} \in L_{\perp \varphi_{0}}^{2}(\wedge)^{\otimes_{s} j}$.
As in [Lewin-Nam-Serfaty-Solovej, '12], define unitary map

$$
\begin{aligned}
U: L_{s}^{2}\left(\wedge^{N}\right) \rightarrow \mathcal{F}_{\mp}^{\leq N}: & =\bigoplus_{j=0}^{N} L_{\perp \varphi_{0}}^{2}(\wedge)^{\otimes_{s} j} \\
\psi_{N} \rightarrow U \psi_{N} & =\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}\right\}
\end{aligned}
$$

Excitation Hamiltonian: we use unitary map U to define

$$
\mathcal{L}_{N}=U H_{N} U^{*}: \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{\mp}^{\leq N}
$$

For $p, q \in \wedge_{+}^{*}=2 \pi \mathbb{Z}^{3} \backslash\{0\}$, we have

$$
\begin{aligned}
U a_{p}^{*} a_{q} U^{*} & =a_{p}^{*} a_{q}, \\
U a_{0}^{*} a_{0} U^{*} & =N-\mathcal{N}_{+} \\
U a_{p}^{*} a_{0} U^{*} & =a_{p}^{*} \sqrt{N-\mathcal{N}_{+}}=: \sqrt{N} b_{p}^{*}, \\
U a_{0}^{*} a_{p} U^{*} & =\sqrt{N-\mathcal{N}_{+}} a_{p}=: \sqrt{N} b_{p}
\end{aligned}
$$

Hence, similarly to Bogoliubov substitution,

$$
\begin{aligned}
\mathcal{L}_{N}= & \frac{(N-1)}{2} \widehat{V}(0)+\sum_{p \in \Lambda_{+}^{*}} p^{2} a_{p}^{*} a_{p}+\sum_{p \in \Lambda_{+}^{*}} \hat{V}(p / N) a_{p}^{*} a_{p} \\
& +\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}} \widehat{V}(p / N)\left[b_{p}^{*} b_{-p}^{*}+b_{p} b_{-p}\right] \\
& +\frac{1}{\sqrt{N}} \sum_{p, q \in \Lambda_{+}^{*}: p+q \neq 0} \widehat{V}(p / N)\left[b_{p+q}^{*} a_{-p}^{*} a_{q}+a_{q}^{*} a_{-p} b_{p+q}\right] \\
& +\frac{1}{2 N} \sum_{p, q \in \Lambda_{+}^{*}, r \in \Lambda^{*}: r \neq-p,-q} \hat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r}
\end{aligned}
$$

Renormalized excitation Hamiltonian

Problem: in contrast with mean-field regime, after conjugation with U there are still large contributions in higher order terms.

Reason: $U^{*} \Omega=\varphi_{0}^{\otimes N}$ not good approximation for ground state! We need to take into account correlations!

Natural idea: conjugate \mathcal{L}_{N} with a Bogoliubov transformation, ie. a unitary map of the form

$$
\widetilde{T}=\exp \left[\frac{1}{2} \sum_{p \in \wedge_{+}^{*}} \eta_{p}\left(a_{p}^{*} a_{-p}^{*}-a_{p} a_{-p}\right)\right]
$$

generating correlations.

Nice feature: action of Bogoliubov transformations is explicit:

$$
\widetilde{T}^{*} a_{p} \widetilde{T}=a_{p} \cosh \left(\eta_{p}\right)+a_{-p}^{*} \sinh \left(\eta_{p}\right)
$$

Challenge: \widetilde{T} does not preserve excitation space $\mathcal{F}_{+}^{\leq N}$.
Generalized Bogoliubov transformations: we use

$$
T=\exp \left[\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}} \eta_{p}\left(b_{p}^{*} b_{-p}^{*}-b_{p} b_{-p}\right)\right]
$$

where

$$
b_{p}^{*}=a_{p}^{*} \sqrt{\frac{N-\mathcal{N}_{+}}{N}}, \quad b_{p}=\sqrt{\frac{N-\mathcal{N}_{+}}{N}} a_{p}
$$

Recall:

$$
U^{*} b_{p}^{*} U=a_{p}^{*} \frac{a_{0}}{\sqrt{N}}, \quad U^{*} b_{p} U=\frac{a_{0}^{*}}{\sqrt{N}} a_{p}
$$

Action: on states with few excitations, $b_{p} \simeq a_{p}, b_{p}^{*} \simeq a_{p}^{*}$. Thus

$$
T^{*} b_{p} T=\cosh \left(\eta_{p}\right) b_{p}+\sinh \left(\eta_{p}\right) b_{-p}^{*}+d_{p}
$$

where

$$
\left\|d_{p} \xi\right\| \leq C N^{-1}\left\|\left(\mathcal{N}_{+}+1\right)^{3 / 2} \xi\right\|
$$

Choice of correlations: consider

$$
\left[-\Delta+\frac{1}{2} V\right] f=0, \quad \text { with } f(x) \rightarrow 1, \text { as }|x| \rightarrow \infty
$$

and let $w=1-f$. We define

$$
\eta_{p}=-\frac{1}{N^{2}} \widehat{w}(p / N) \quad \Rightarrow \quad \eta_{p} \simeq \frac{C}{p^{2}} e^{-|p| / N}
$$

We set

$$
T=\exp \left\{\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}} \eta_{p}\left(b_{p}^{*} b_{-p}^{*}-b_{p} b_{-p}\right)\right\}
$$

Observation: recall that

$$
T^{*} a_{p} T \simeq \cosh \left(\eta_{p}\right) a_{p}+\sinh \left(\eta_{p}\right) a_{-p}^{*}
$$

Hence

$$
\begin{aligned}
\left\langle\Omega, T^{*} \mathcal{N}_{+} T \Omega\right\rangle & \simeq \sum \sinh ^{2}\left(\eta_{p}\right) \leq C \sum \eta_{p}^{2} \leq C \\
\left\langle\Omega, T^{*} \mathcal{K} T \Omega\right\rangle & \simeq \sum p^{2} \sinh ^{2}\left(\eta_{p}\right) \simeq \sum p^{2} \eta_{p}^{2} \simeq C N
\end{aligned}
$$

T generates finitely many excitations but macroscopic energy.

Renormalized excitation Hamiltonian: define

$$
\mathcal{G}_{N}=T^{*} \mathcal{L}_{N} T=T^{*} U H_{N} U^{*} T: \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{\mp}^{\leq N}
$$

Bounds on \mathcal{G}_{N} : with $\mathcal{H}_{N}=\mathcal{K}+\mathcal{V}_{N}$, we find

$$
\mathcal{G}_{N}=4 \pi \mathfrak{a}_{0} N+\mathcal{H}_{N}+\mathcal{E}_{N}
$$

where, for every $\delta>0$, there exists constant $C>0$ with

$$
\pm \mathcal{E}_{N} \leq \delta \mathcal{H}_{N}+C\|V\| \mathcal{N}_{+}
$$

Condensation: for small potential, we can use gap

$$
\mathcal{N}_{+} \leq(2 \pi)^{-2} \mathcal{K} \leq(2 \pi)^{-2} \mathcal{H}_{N}
$$

to conclude that

$$
\mathcal{G}_{N}-4 \pi \mathfrak{a}_{0} N \geq \frac{1}{2} \mathcal{H}_{N}-C
$$

This implies BEC for low-energy states.

Commutator bounds: we also obtain

$$
\pm\left[\mathcal{G}_{N}, \mathcal{N}_{+}\right] \leq C\left(\mathcal{H}_{N}+1\right)
$$

This is important for dynamics and also for moments of \mathcal{N}_{+}.
Corollary: Let $\psi_{N}=\chi\left(H_{N} \leq E_{N}+\zeta\right) \psi_{N}$ and $\xi_{N}=T^{*} U \psi_{N}$. Then, for every $k \in \mathbb{N}$, there exists $C>0$ such that

$$
\left\langle\xi_{N},\left(\mathcal{H}_{N}+1\right)\left(\mathcal{N}_{+}+1\right)^{k} \xi_{N}\right\rangle \leq C(\zeta+1)^{k+1}
$$

With these improved bounds, we can go back to \mathcal{G}_{N}.

Theorem: renormalized excitation Hamiltonian is such that

$$
\mathcal{G}_{N}=C_{N}+\mathcal{Q}_{N}+\mathcal{C}_{N}+\mathcal{V}_{N}+\delta_{N}
$$

where C_{N} is a constant, \mathcal{Q}_{N} is quadratic,

$$
\begin{aligned}
& \mathcal{C}_{N}=\frac{1}{\sqrt{N}} \sum_{p, q \in \Lambda_{+}^{*}} \widehat{V}(p / N)\left[b_{p+q}^{*} b_{-p}^{*}\left(\gamma_{q} b_{q}+\sigma_{q} b_{-q}^{*}\right)+\text { h.c. }\right] \\
& \mathcal{V}_{N}=\frac{1}{2 N} \sum_{p, q \in \Lambda_{+}^{*}} \widehat{V}(r / N) a_{p+r}^{*} a_{q}^{*} a_{q+r} a_{p}
\end{aligned}
$$

and, where,

$$
\pm \delta_{N} \leq \frac{C}{\sqrt{N}}\left[\left(\mathcal{H}_{N}+1\right)\left(\mathcal{N}_{+}+1\right)+\left(\mathcal{N}_{+}+1\right)^{3}\right]
$$

Problem: \mathcal{G}_{N} still contains non-negligible cubic and quartic terms! This is substantial difference compared with case $\beta<1$!

New cubic phase: we define

$$
A=\frac{1}{\sqrt{N}} \sum_{|r|>\sqrt{N},|v|<\sqrt{N}} \eta_{r}\left[\sigma_{v} b_{r+v}^{*} b_{-r}^{*} b_{-v}^{*}+\gamma_{v} b_{r+v}^{*} b_{-r}^{*} b_{v}-\text { h.c. }\right]
$$

Set $S=e^{A}$ and introduce new excitation Hamiltonian

$$
\mathcal{J}_{N}=S^{*} \mathcal{G}_{N} S=S^{*} T^{*} U_{N} H_{N} U_{N}^{*} T S: \mathcal{F}_{\mp}^{\leq N} \rightarrow \mathcal{F}_{\mp}^{\leq N}
$$

Remark: a similar cubic conjugation was used in [Yau-Yin, 09].

Proposition: we can decompose

$$
\mathcal{J}_{N}=\widetilde{C}_{N}+\widetilde{Q}_{N}+\mathcal{V}_{N}+\widetilde{\delta}_{N}
$$

where \widetilde{C}_{N} is a constant, \widetilde{Q}_{N} is quadratic and where

$$
\pm \widetilde{\delta}_{N} \leq \frac{C}{N^{1 / 4}}\left[\left(\mathcal{H}_{N}+1\right)\left(\mathcal{N}_{+}+1\right)+\left(\mathcal{N}_{+}+1\right)^{3}\right]
$$

Mechanism: we have
where

$$
\mathcal{G}_{N} \simeq C_{N}+Q_{N}+\mathcal{C}_{N}+\mathcal{V}_{N}
$$

Combine $\left[Q_{N}, A\right],\left[\mathcal{V}_{N}, A\right]$ with \mathcal{C}_{N} (use scattering equation).

At same time, $\left[\mathcal{C}_{N}, A\right]$ modifies constant and quadratic terms.

Diagonalization: with last Bogoliubov transformation R, set

$$
\mathcal{M}_{N}=R^{*} \mathcal{J}_{N} R=R^{*} S^{*} T^{*} U_{N} H_{N} U_{N}^{*} T S R: \mathcal{F}_{+}^{\leq N} \rightarrow \mathcal{F}_{\mp}^{\leq N}
$$

Then

$$
\begin{aligned}
\mathcal{M}_{N}= & 4 \pi \mathfrak{a}_{N}(N-1) \\
& -\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+8 \pi \mathfrak{a}_{0}-\sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}}-\frac{\left(8 \pi \mathfrak{a}_{0}\right)^{2}}{2 p^{2}}\right] \\
& +\sum_{p \in \Lambda_{+}^{*}} \sqrt{|p|^{4}+16 \pi \mathfrak{a}_{0} p^{2}} a_{p}^{*} a_{p}+\mathcal{V}_{N}+\delta_{N}^{\prime}
\end{aligned}
$$

where

$$
\pm \delta_{N}^{\prime} \leq C N^{-1 / 4}\left[\left(\mathcal{H}_{N}+1\right)\left(\mathcal{N}_{+}+1\right)+\left(\mathcal{N}_{+}+1\right)^{3}\right]
$$

Main theorem follows from min-max principle, because on lowenergy states of diagonal quadratic Hamiltonian, we find

$$
\mathcal{V}_{N} \leq C N^{-1}(\zeta+1)^{7 / 2}
$$

