Eigenvalues and eigenvectors of critical Erdős-Rényi graphs

Antti Knowles

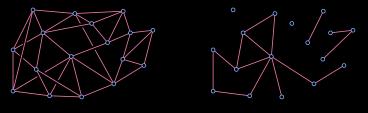
With Johannes Alt, Yukun He, Raphaël Ducatez, Matteo Marcozzi

Erdős-Rényi graph and critical regime

Erdős-Rényi graph G(N, d/N): random graph on N vertices where each edge $\{i, j\}$ is chosen independently with probability d/N.

We consider $N \to \infty$ and $d \equiv d_N$.

Critical regime: $d \approx \log N$, below which degrees do not concentrate.



 $d \gg \log N$

 $d \ll \log N$

Supercritical $d \gg \log N$: homogeneous.

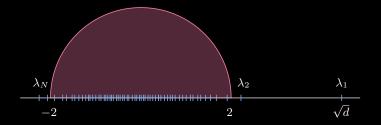
Subcritical $d \ll \log N$: inhomogeneous (hubs, leaves, isolated vertices, ...).

Eigenvalues and eigenvectors

Let $A = (A_{xy}) \in \{0,1\}^{N \times N}$ be the adjacency matrix of G(N, d/N).

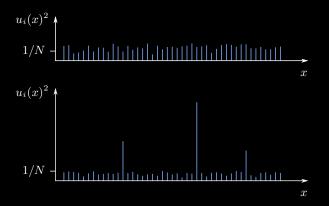
Denote by $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$ the eigenvalues and $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N \in \mathbb{S}^{N-1}$ the associated eigenvectors of $d^{-1/2}A$.

Then [Wigner; 1955] the empirical measure $\frac{1}{N} \sum_{i} \delta_{\lambda_i}$ converges to the semicircle law on [-2,2] iff $d \to \infty$.



Key questions in spectral graph theory

- (a) Extremal eigenvalues. Convergence, fluctuations.
- (b) Eigenvector (de)localization. Delocalization: $\|\mathbf{u}_i\|_{\infty}^2 \leq N^{-1+o(1)}$.



(Very incomplete) summary of previous results

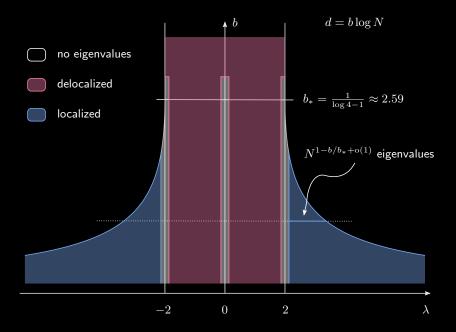
- [Vu; 2007]: If $d \gg (\log N)^4$ then $\lambda_2 = 2 + o(1)$.
- [Erdős, K, Yau, Yin; 2012]: If $d \gg (\log N)^6$ then delocalization everywhere. If $d \gg N^{2/3}$ then λ_2 has Tracy-Widom fluctuations.
- [Lee, Schnelli; 2016]: If $d \gg N^{1/3}$ then λ_2 has Tracy-Widom fluctuations.
- [Huang, Landon, Yau; 2017]: If $N^{2/9} \ll d \ll N^{1/3}$ then λ_2 has Gaussian fluctuations.
- [Bordenave, Benaych-Georges, K; 2017]: If $d \gg \log N$ then $\lambda_2 = 2 + o(1)$.
- [Bordenave, Benaych-Georges, K; 2017]: If $d \ll \log N$ then

$$\lambda_2 = (1 + o(1))\sqrt{\frac{\max_x \sum_y A_{xy}}{d}} = (1 + o(1))\sqrt{\frac{(\log N)/d}{\log((\log N)/d)}}.$$

Results: overview

From now on, consider only the (unique) giant component of G(N, d/N).

Phase diagram in the (λ, b) -plane, where λ is an eigenvalue and $d = b \log N$.



Results I: extremal eigenvalues

Define $\alpha_x := \frac{1}{d} \sum_y \overline{A_{xy}}$ and let $\sigma \in S_N$ satisfy $\alpha_{\sigma(1)} \ge \alpha_{\sigma(2)} \ge \cdots \ge \alpha_{\sigma(N)}$. Theorem [Alt, Ducatez, K; 2019]. Suppose $(\log N)^{1-c} \le d \le N/2$. Set

$$L := \max\{l \ge 1 : \alpha_{\sigma(l)} \ge 2 + o(1)\}.$$

Then with very high probability for $1 \leq l \leq L$ we have

$$|\lambda_{l+1} - \Lambda(\alpha_{\sigma(l)})| \leq d^{-c}, \qquad \Lambda(\alpha) := \frac{\alpha}{\sqrt{\alpha - 1}}, \tag{1}$$

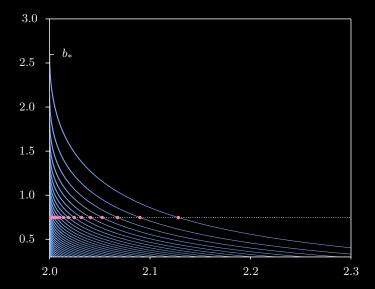
and

$$|\lambda_{L+2} - 2| \leqslant (\log d)^{-c} \,. \tag{2}$$

Remark. Qualitative version of this result for l = O(1) was independently proved by [Tikhomirov, Youssef; 2019].

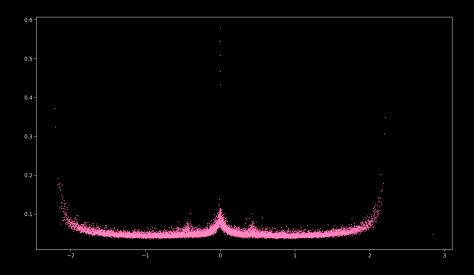
Remark. For the subcritical regime $d \ll \log N$ and $\alpha_{\sigma(l)} \gg 1$, (1) was proved in [Bordenave, Benaych-Georges, K; 2017] using a perturbative argument.

Combine with typical behaviour of degree sequence $\alpha_{\sigma(1)}, \alpha_{\sigma(2)}, \ldots$: (1) occurs if and only if $b > b_* := \frac{1}{\log 4 - 1}$. Graphical analysis of typical behaviour of $\Lambda(\alpha_{\sigma(l)})$ as a function of $b = d/\log N$: (λ, b) -plane for N = 50



To the eigenvectors

Simulation: scatter plot of $(\lambda_i, \|\mathbf{u}_i\|_{\infty})$. (N = 10'000, b = 0.6)



Results II: delocalization

Recall: delocalization at λ_i means $\|\mathbf{u}_i\|_{\infty}^2 \leq N^{-1+o(1)}$.

Theorem [He, K, Marcozzi; 2018]. If $d \ge C \log N$ then delocalization everywhere.

Theorem [Alt, Ducatez, K; 2019+]. If $d \ge C\sqrt{\log N}$ then delocalization in

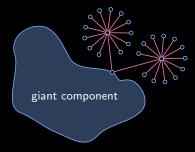
 $\left\{ E \in \mathbb{R} : \mathbf{o}(1) \leqslant |E| \leqslant 2 - \mathbf{o}(1) \right\}.$

Remark. The assumptions are optimal in both cases, up to constant C.

Consider two identical stars of central degrees D attached to a common vertex.

This gives rise to a localized eigenvector with eigenvalue $\sqrt{D/d}$.

Such pairs occur up to D = O(1) if $d \leq C \log N$ and up to D = O(d) for $d \leq C \sqrt{\log N}$.



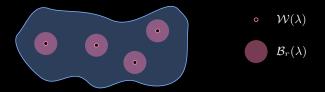
Results III: localization

Theorem [Alt, Ducatez, K; 2019+]. Let $\lambda \ge 2 + o(1)$ be an eigenvalue with eigenvector $\mathbf{u} \in \mathbb{S}^{N-1}$. Define the set of vertices in resonance with λ ,

$$\mathcal{W}(\lambda) := \left\{ x : \alpha_x \ge 2, |\Lambda(\alpha_x) - \lambda| = \mathbf{o}(1) \right\}, \qquad \Lambda(\alpha) := \frac{\alpha}{\sqrt{\alpha - 1}}$$

For $r \ge 1$ define the resonant balls $\mathcal{B}_r(\lambda) := \bigcup_{x \in \mathcal{W}(\lambda)} B_r(x)$. Then for $r \gg 1$, with very high probability,

$$\sum_{x \notin \mathcal{B}_r(\lambda)} u(x)^2 = o(1), \qquad \sum_{x \in \mathcal{W}(\lambda)} u(x)^2 \ge c.$$



Spatial structure of the localized states

For each $x \in \mathcal{W}(\lambda)$ define the spherically symmetric vector

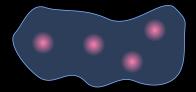
$$\mathbf{v}^{(x)} := \sum_{i=0}^{r} w_i^{(x)} \frac{\mathbf{1}_{S_i(x)}}{\|\mathbf{1}_{S_i(x)}\|} \,,$$

where

$$w_1^{(x)} = \frac{\sqrt{\alpha_x}}{\sqrt{\alpha_x - 1}} w_0^{(x)}, \qquad w_{i+1}^{(x)} = \frac{1}{\sqrt{\alpha_x - 1}} w_i^{(x)} \quad (i \ge 1).$$

Let Π denote the orthogonal projection onto $\text{Span}\{\mathbf{v}^{(x)}: x \in \mathcal{W}(\lambda)\}$. Then

 $\|(1-\Pi)\mathbf{u}\| = o(1).$

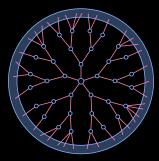


Outline of proof for locations of extremal eigenvalues

Basic observation: The normalized degrees $\alpha_x = |S_1(x)|/d$ do not concentrate. However, if α_x is sufficiently large then there is $r \gg 1$ such that with very high probability:

- (a) For each $1 \leq i \leq r$, the ratio $|S_{i+1}(x)|/|S_i(x)|$ concentrates around d.
- (b) The subgraph $G|_{B_r(x)}$ is a tree up to a bounded number of edges.

Consider the toy tree graph \mathcal{T} on N vertices: root x with degree $\alpha_x d$, up to radius r all other vertices have degree d + 1.



Use the tridiagonal representation of A around x: Let $\mathbf{f}_0, \ldots, \mathbf{f}_r$ be the orthonormalization of $\mathbf{1}_x, A\mathbf{1}_x, A^2\mathbf{1}_x, \ldots, A^r\mathbf{1}_x$, completed to an orthonormal basis of \mathbb{R}^N . Define

$$M^{(x)} := F^* A F, \qquad F = [\mathbf{f}_0 \mathbf{f}_1 \cdots \mathbf{f}_{N-1}].$$

Then $M^{(x)}$ is tridiagonal.

For the tree ${\mathcal T},$ the upper $(r+1)\times (r+1)$ block of $M^{(x)}$ is

$$\sqrt{d} \begin{pmatrix} 0 & \sqrt{\alpha_x} & & & \\ \sqrt{\alpha_x} & 0 & 1 & & \\ & 1 & 0 & 1 & & \\ & & 1 & 0 & \ddots & \\ & & & \ddots & \ddots & 1 \\ & & & & 1 & 0 \end{pmatrix}$$

For $\alpha_x \leq 2$, spectrum is in [-2, 2]. For $\alpha_x > 2$, there are two eigenvalues $\pm \Lambda(\alpha_x)$ outside [-2, 2].

Let w be the eigenvector corresponding to $\Lambda(\alpha_x)$. A transfer matrix analysis yields

$$w_1^{(x)} = \frac{\sqrt{\alpha_x}}{\sqrt{\alpha_x - 1}} w_0^{(x)}, \qquad w_{i+1}^{(x)} = \frac{1}{\sqrt{\alpha_x - 1}} w_i^{(x)} \quad (1 \le i \le r).$$

Exponential decay for $\alpha_x > 2$.

Back to full graph G(N, d/N): we expect that for $\alpha_x > 2$ the vector

$$\mathbf{v}^{(x)} := \sum_{i=0}^{r} w_i^{(x)} \frac{\mathbf{1}_{S_i(x)}}{\|\mathbf{1}_{S_i(x)}\|} \,,$$

is an approximate eigenvector with eigenvalue near $\Lambda(\alpha_x)$. This is in fact true.

Two key steps in proof:

- (L) Every vertex x with $\alpha_x > 2$ gives rise to a unique eigenvalue near $\Lambda(\alpha_x)$. Lower bound on λ_k .
- (U) There are no other eigenvalues in $[2 + o(1), \infty)$. Upper bound on λ_k .

For Step (L), we construct a subgraph $G_2 \subset G$ such that

- G₂ is close to G (in some appropriate sense).
- All balls $\{B_r^{G_2}(x) : \alpha_x \ge 2\}$ are disjoint.

Then by previous construction all approximate eigenvectors are orthogonal \Rightarrow unique eigenvalues.

For the proof of Step (U), consider for simplicity $H := d^{-1/2}(A - \mathbb{E}A)$, with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots$. (Going back easy.)

Let $\mathcal{V} := \{x : \alpha_x \ge 2\}$. By Step (L), it suffices to prove that $\lambda_{|\mathcal{V}|+1} \le 2 + o(1)$. By min-max principle,

 $\lambda_{|\mathcal{V}|+1} \leqslant \max_{\mathbf{w} \in \mathbb{S}(\mathcal{V})} \langle \mathbf{w}, H\mathbf{w} \rangle, \qquad \mathbb{S}(\mathcal{V}) := \{ \mathbf{w} \in \mathbb{S}^{N-1} : w(x) = 0 \, \forall x \in \mathcal{V} \}.$

Let the maximum be attained at $\tilde{\mathbf{w}}$.

Lemma 1. $H \leq I + D + o(1)$ where $D = \operatorname{diag}(\alpha_1, \ldots, \alpha_N)$.

Proof. Define the nonbacktracking matrix $B = (B_{ef})_{e,f \in [N]^2}$ associated with H through

Then, by [Bordenave, Benaych-Georges, K; 2017], $\rho(B) = 1 + o(1)$. Moreover, using an Ihara-Bass-type formula from [Bordenave, Benaych-Georges, K; 2017], we deduce $H \leq \rho(B) + D + o(1)$.

Using Lemma 1, we deduce that

$$\lambda_{|\mathcal{V}|+1} - \mathrm{o}(1) \leq \langle \tilde{\mathbf{w}}, (I+D)\tilde{\mathbf{w}} \rangle,$$

where $\tilde{\mathbf{w}}$ is the largest eigenvalue of $H|_{[N]\setminus\mathcal{V}}$. We choose $1 < \tau < 2$ and write the right-hand-side as

$$1 + \sum_{x:\alpha_x < \tau} \alpha_x \tilde{w}(x)^2 + \sum_{x:\tau < \alpha_x \leqslant 2} \alpha_x \tilde{w}(x)^2.$$

Choosing $\tau = 1 + o(1)$, we conclude that

$$\lambda_{|\mathcal{V}|+1} \leqslant 2 + \mathbf{o}(1) + \sum_{x:\tau < \alpha_x \leqslant 2} \alpha_x \tilde{w}(x)^2 \,.$$

We'll be done if we can prove the following delocalization estimate. Lemma 2. $\sum_{x:\tau < \alpha_x \leqslant 2} \alpha_x \tilde{w}(x)^2 = o(1)$ for $\tau = 1 + o(1)$. **Proof of Lemma 2.** As before, we construct a subgraph $G_{\tau} \subset G$ such that

- G_{τ} is close to G (in some appropriate sense).
- All balls $\{B_r^{G_\tau}(x) : \alpha_x \ge \tau\}$ are disjoint.

Then the main work is to prove that

$$\tilde{w}(x)^2 \leqslant o(1) \left\| \tilde{\mathbf{w}} \right\|_{B_r^{G_\tau}(x)} \left\|^2 \tag{3}$$

whenever $\alpha_x \ge \tau$. We do this using the tridiagonal representation around x. Using (3) we conclude

$$\sum_{x:\tau<\alpha_x\leqslant 2} \alpha_x \tilde{w}(x)^2 \leqslant 2 \operatorname{o}(1) \sum_{x:\tau<\alpha_x\leqslant 2} \left\|\tilde{\mathbf{w}}\right\|_{B_r^{G_\tau}(x)} \left\|^2 \leqslant 2\operatorname{o}(1),\right\|_{C^{G_\tau}(x)} \leq 2\operatorname{o}(1),$$

by disjointness of balls.

To Yau:



And many more happy mathematical adventures!