Eigenvalues and eigenvectors of critical Erdős-Rényi graphs

Antti Knowles

With Johannes Alt, Yukun He, Raphaël Ducatez, Matteo Marcozzi

Erdős-Rényi graph and critical regime

Erdős-Rényi graph $G(N, d / N)$: random graph on N vertices where each edge $\{i, j\}$ is chosen independently with probability d / N.

We consider $N \rightarrow \infty$ and $d \equiv d_{N}$.
Critical regime: $d \approx \log N$, below which degrees do not concentrate.

$d \gg \log N$

$d \ll \log N$

Supercritical $d \gg \log N$: homogeneous.
Subcritical $d \ll \log N$: inhomogeneous (hubs, leaves, isolated vertices, ...).

Eigenvalues and eigenvectors

Let $A=\left(A_{x y}\right) \in\{0,1\}^{N \times N}$ be the adjacency matrix of $G(N, d / N)$.
Denote by $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{N}$ the eigenvalues and $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{N} \in \mathbb{S}^{N-1}$ the associated eigenvectors of $d^{-1 / 2} A$.

Then [Wigner; 1955] the empirical measure $\frac{1}{N} \sum_{i} \delta_{\lambda_{i}}$ converges to the semicircle law on $[-2,2]$ iff $d \rightarrow \infty$.

Key questions in spectral graph theory

(a) Extremal eigenvalues. Convergence, fluctuations.
(b) Eigenvector (de)localization. Delocalization: $\left\|\mathbf{u}_{i}\right\|_{\infty}^{2} \leqslant N^{-1+\mathrm{o}(1)}$.

(Very incomplete) summary of previous results

- [Vu; 2007]: If $d \gg(\log N)^{4}$ then $\lambda_{2}=2+\mathrm{o}(1)$.
- [Erdős, K, Yau, Yin; 2012]: If $d \gg(\log N)^{6}$ then delocalization everywhere. If $d \gg N^{2 / 3}$ then λ_{2} has Tracy-Widom fluctuations.
- [Lee, Schnelli; 2016]: If $d \gg N^{1 / 3}$ then λ_{2} has Tracy-Widom fluctuations.
- [Huang, Landon, Yau; 2017]: If $N^{2 / 9} \ll d \ll N^{1 / 3}$ then λ_{2} has Gaussian fluctuations.
- [Bordenave, Benaych-Georges, K; 2017]: If $d \gg \log N$ then $\lambda_{2}=2+\mathrm{o}(1)$.
- [Bordenave, Benaych-Georges, K; 2017]: If $d \ll \log N$ then

$$
\lambda_{2}=(1+\mathrm{o}(1)) \sqrt{\frac{\max _{x} \sum_{y} A_{x y}}{d}}=(1+\mathrm{o}(1)) \sqrt{\frac{(\log N) / d}{\log ((\log N) / d)}} .
$$

Results: overview

From now on, consider only the (unique) giant component of $G(N, d / N)$.

Phase diagram in the (λ, b)-plane, where λ is an eigenvalue and $d=b \log N$.

Results I: extremal eigenvalues

Define $\alpha_{x}:=\frac{1}{d} \sum_{y} A_{x y}$ and let $\sigma \in S_{N}$ satisfy $\alpha_{\sigma(1)} \geqslant \alpha_{\sigma(2)} \geqslant \cdots \geqslant \alpha_{\sigma(N)}$.
Theorem [Alt, Ducatez, K; 2019]. Suppose $(\log N)^{1-c} \leqslant d \leqslant N / 2$. Set

$$
L:=\max \left\{l \geqslant 1: \alpha_{\sigma(l)} \geqslant 2+\mathrm{o}(1)\right\} .
$$

Then with very high probability for $1 \leqslant l \leqslant L$ we have

$$
\begin{equation*}
\left|\lambda_{l+1}-\Lambda\left(\alpha_{\sigma(l)}\right)\right| \leqslant d^{-c}, \quad \Lambda(\alpha):=\frac{\alpha}{\sqrt{\alpha-1}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\lambda_{L+2}-2\right| \leqslant(\log d)^{-c} . \tag{2}
\end{equation*}
$$

Remark. Qualitative version of this result for $l=O(1)$ was independently proved by [Tikhomirov, Youssef; 2019].
Remark. For the subcritical regime $d \ll \log N$ and $\alpha_{\sigma(l)} \gg 1$, (1) was proved in [Bordenave, Benaych-Georges, K; 2017] using a perturbative argument.

Combine with typical behaviour of degree sequence $\alpha_{\sigma(1)}, \alpha_{\sigma(2)}, \ldots$: (1) occurs if and only if $b>b_{*}:=\frac{1}{\log 4-1}$. Graphical analysis of typical behaviour of $\Lambda\left(\alpha_{\sigma(l)}\right)$ as a function of $b=d / \log N:(\lambda, b)$-plane for $N=50$

To the eigenvectors

Simulation: scatter plot of $\left(\lambda_{i},\left\|\mathbf{u}_{i}\right\|_{\infty}\right) .\left(N=10^{\prime} 000, b=0.6\right)$

Results II: delocalization

Recall: delocalization at λ_{i} means $\left\|\mathbf{u}_{i}\right\|_{\infty}^{2} \leqslant N^{-1+\mathrm{o}(1)}$.
Theorem [He, K, Marcozzi; 2018]. If $d \geqslant C \log N$ then delocalization everywhere.

Theorem [Alt, Ducatez, K; 2019+]. If $d \geqslant C \sqrt{\log N}$ then delocalization in

$$
\{E \in \mathbb{R}: \mathrm{o}(1) \leqslant|E| \leqslant 2-\mathrm{o}(1)\} .
$$

Remark. The assumptions are optimal in both cases, up to constant C. Consider two identical stars of central degrees D attached to a common vertex.

This gives rise to a localized eigenvector with eigenvalue $\sqrt{D / d}$.

Such pairs occur up to $D=\mathrm{O}(1)$ if $d \leqslant$ $C \log N$ and up to $D=\mathrm{O}(d)$ for $d \leqslant$ $C \sqrt{\log N}$.

Results III: localization

Theorem [Alt, Ducatez, K; 2019+]. Let $\lambda \geqslant 2+\mathrm{o}(1)$ be an eigenvalue with eigenvector $\mathbf{u} \in \mathbb{S}^{N-1}$. Define the set of vertices in resonance with λ,

$$
\mathcal{W}(\lambda):=\left\{x: \alpha_{x} \geqslant 2,\left|\Lambda\left(\alpha_{x}\right)-\lambda\right|=\mathrm{o}(1)\right\}, \quad \Lambda(\alpha):=\frac{\alpha}{\sqrt{\alpha-1}}
$$

For $r \geqslant 1$ define the resonant balls $\mathcal{B}_{r}(\lambda):=\bigcup_{x \in \mathcal{W}(\lambda)} B_{r}(x)$. Then for $r \gg 1$, with very high probability,

$$
\sum_{x \notin \mathcal{B}_{r}(\lambda)} u(x)^{2}=\mathrm{o}(1), \quad \sum_{x \in \mathcal{W}(\lambda)} u(x)^{2} \geqslant c .
$$

$$
\text { - } \mathcal{W}(\lambda)
$$

$$
\mathcal{B}_{r}(\lambda)
$$

Spatial structure of the localized states

For each $x \in \mathcal{W}(\lambda)$ define the spherically symmetric vector

$$
\mathbf{v}^{(x)}:=\sum_{i=0}^{r} w_{i}^{(x)} \frac{\mathbf{1}_{S_{i}(x)}}{\left\|\mathbf{1}_{S_{i}(x)}\right\|},
$$

where

$$
w_{1}^{(x)}=\frac{\sqrt{\alpha_{x}}}{\sqrt{\alpha_{x}-1}} w_{0}^{(x)}, \quad w_{i+1}^{(x)}=\frac{1}{\sqrt{\alpha_{x}-1}} w_{i}^{(x)} \quad(i \geqslant 1)
$$

Let Π denote the orthogonal projection onto $\operatorname{Span}\left\{\mathbf{v}^{(x)}: x \in \mathcal{W}(\lambda)\right\}$. Then

$$
\|(1-\Pi) \mathbf{u}\|=\mathrm{o}(1) .
$$

Outline of proof for locations of extremal eigenvalues

Basic observation: The normalized degrees $\alpha_{x}=\left|S_{1}(x)\right| / d$ do not concentrate. However, if α_{x} is sufficiently large then there is $r \gg 1$ such that with very high probability:
(a) For each $1 \leqslant i \leqslant r$, the ratio $\left|S_{i+1}(x)\right| /\left|S_{i}(x)\right|$ concentrates around d.
(b) The subgraph $\left.G\right|_{B_{r}(x)}$ is a tree up to a bounded number of edges.

Consider the toy tree graph \mathcal{T} on N vertices: root x with degree $\alpha_{x} d$, up to radius r all other vertices have degree $d+1$.

Use the tridiagonal representation of A around x : Let $\mathbf{f}_{0}, \ldots, \mathbf{f}_{r}$ be the orthonormalization of $\mathbf{1}_{x}, A \mathbf{1}_{x}, A^{2} \mathbf{1}_{x}, \ldots, A^{r} \mathbf{1}_{x}$, completed to an orthonormal basis of \mathbb{R}^{N}. Define

$$
M^{(x)}:=F^{*} A F, \quad F=\left[\mathbf{f}_{0} \mathbf{f}_{1} \cdots \mathbf{f}_{N-1}\right] .
$$

Then $M^{(x)}$ is tridiagonal.
For the tree \mathcal{T}, the upper $(r+1) \times(r+1)$ block of $M^{(x)}$ is

$$
\sqrt{d}\left(\begin{array}{cccccc}
0 & \sqrt{\alpha_{x}} & & & & \\
\sqrt{\alpha_{x}} & 0 & 1 & & & \\
& 1 & 0 & 1 & & \\
& & 1 & 0 & \ddots & \\
& & & \ddots & \ddots & 1 \\
& & & & 1 & 0
\end{array}\right) .
$$

For $\alpha_{x} \leqslant 2$, spectrum is in $[-2,2]$. For $\alpha_{x}>2$, there are two eigenvalues $\pm \Lambda\left(\alpha_{x}\right)$ outside [-2,2].

Let \mathbf{w} be the eigenvector corresponding to $\Lambda\left(\alpha_{x}\right)$. A transfer matrix analysis yields

$$
w_{1}^{(x)}=\frac{\sqrt{\alpha_{x}}}{\sqrt{\alpha_{x}-1}} w_{0}^{(x)}, \quad w_{i+1}^{(x)}=\frac{1}{\sqrt{\alpha_{x}-1}} w_{i}^{(x)} \quad(1 \leqslant i \leqslant r) .
$$

Exponential decay for $\alpha_{x}>2$.
Back to full graph $G(N, d / N)$: we expect that for $\alpha_{x}>2$ the vector

$$
\mathbf{v}^{(x)}:=\sum_{i=0}^{r} w_{i}^{(x)} \frac{\mathbf{1}_{S_{i}(x)}}{\left\|\mathbf{1}_{S_{i}(x)}\right\|},
$$

is an approximate eigenvector with eigenvalue near $\Lambda\left(\alpha_{x}\right)$. This is in fact true.

Two key steps in proof:
(L) Every vertex x with $\alpha_{x}>2$ gives rise to a unique eigenvalue near $\Lambda\left(\alpha_{x}\right)$. Lower bound on λ_{k}.
(U) There are no other eigenvalues in $[2+\mathrm{o}(1), \infty)$. Upper bound on λ_{k}.

For Step (L), we construct a subgraph $G_{2} \subset G$ such that

- G_{2} is close to G (in some appropriate sense).
- All balls $\left\{B_{r}^{G_{2}}(x): \alpha_{x} \geqslant 2\right\}$ are disjoint.

Then by previous construction all approximate eigenvectors are orthogonal \Rightarrow unique eigenvalues.

For the proof of Step (U), consider for simplicity $H:=d^{-1 / 2}(A-\mathbb{E} A)$, with eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots$. (Going back easy.)
Let $\mathcal{V}:=\left\{x: \alpha_{x} \geqslant 2\right\}$. By Step (L), it suffices to prove that $\lambda_{|\mathcal{V}|+1} \leqslant 2+\mathrm{o}(1)$.
By min-max principle,

$$
\lambda_{|\mathcal{V}|+1} \leqslant \max _{\mathbf{w} \in \mathbb{S}(\mathcal{V})}\langle\mathbf{w}, H \mathbf{w}\rangle, \quad \mathbb{S}(\mathcal{V}):=\left\{\mathbf{w} \in \mathbb{S}^{N-1}: w(x)=0 \forall x \in \mathcal{V}\right\}
$$

Let the maximum be attained at $\tilde{\mathbf{w}}$.
Lemma 1. $H \leqslant I+D+\mathrm{o}(1)$ where $D=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{N}\right)$.
Proof. Define the nonbacktracking matrix $B=\left(B_{e f}\right)_{e, f \in[N]^{2}}$ associated with H through

$$
B_{(i j)(k l)}:=H_{k l} \mathbf{1}_{j=k} \mathbf{1}_{i \neq l} .
$$

Then, by [Bordenave, Benaych-Georges, K; 2017], $\rho(B)=1+\mathrm{o}(1)$. Moreover, using an Ihara-Bass-type formula from [Bordenave, Benaych-Georges, K; 2017], we deduce $H \leqslant \rho(B)+D+o(1)$.

Using Lemma 1, we deduce that

$$
\lambda_{|\mathcal{V}|+1}-\mathrm{o}(1) \leqslant\langle\tilde{\mathbf{w}},(I+D) \tilde{\mathbf{w}}\rangle,
$$

where $\tilde{\mathbf{w}}$ is the largest eigenvalue of $\left.H\right|_{[N] \backslash \mathcal{V}}$. We choose $1<\tau<2$ and write the right-hand-side as

$$
1+\sum_{x: \alpha_{x}<\tau} \alpha_{x} \tilde{w}(x)^{2}+\sum_{x: \tau<\alpha_{x} \leqslant 2} \alpha_{x} \tilde{w}(x)^{2} .
$$

Choosing $\tau=1+\mathrm{o}(1)$, we conclude that

$$
\lambda_{|\mathcal{V}|+1} \leqslant 2+\mathrm{o}(1)+\sum_{x: \tau<\alpha_{x} \leqslant 2} \alpha_{x} \tilde{w}(x)^{2} .
$$

We'll be done if we can prove the following delocalization estimate.
Lemma 2. $\sum_{x: \tau<\alpha_{x} \leqslant 2} \alpha_{x} \tilde{w}(x)^{2}=\mathrm{o}(1)$ for $\tau=1+\mathrm{o}(1)$.

Proof of Lemma 2. As before, we construct a subgraph $G_{\tau} \subset G$ such that

- G_{τ} is close to G (in some appropriate sense).
- All balls $\left\{B_{r}^{G_{\tau}}(x): \alpha_{x} \geqslant \tau\right\}$ are disjoint.

Then the main work is to prove that

$$
\begin{equation*}
\tilde{w}(x)^{2} \leqslant \mathrm{o}(1)\left\|\left.\tilde{\mathbf{w}}\right|_{B_{r}^{G_{\tau}}(x)}\right\|^{2} \tag{3}
\end{equation*}
$$

whenever $\alpha_{x} \geqslant \tau$. We do this using the tridiagonal representation around x. Using (3) we conclude

$$
\sum_{x: \tau<\alpha_{x} \leqslant 2} \alpha_{x} \tilde{w}(x)^{2} \leqslant 2 \mathrm{o}(1) \sum_{x: \tau<\alpha_{x} \leqslant 2}\left\|\left.\tilde{\mathbf{w}}\right|_{B_{r}^{G_{\tau}}(x)}\right\|^{2} \leqslant 2 \mathrm{o}(1),
$$

by disjointness of balls.

To Yau:

And many more happy mathematical adventures!

