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Introduction SK model

The Hamiltonian of the Sherrington-Kirkpatrick (SK) model is

H
pSKq
N pσq “

1
?

2N

ÿ

i‰j

gijσiσj

where
tgiju

N
i,j“1 „ iid N p0, 1q

and
tσiu

N
i“1 P t´1,`1uN

• Introduced in 1975 by [SK] as a mean field model of a spin glass with the
goal of understanding properties of magnetic alloys with competing
ferromagnetic and anti-ferromagnetic interactions

• Scaling is so that the phase transition is at β “ 1.



Introduction SK model

Parisi formula

Fundamental problem is to calculate the N Ñ8 limit f pSKqpβq of the free
energy

F
pSKq
N pβq :“

1

N
logZ

pSKq
N pβq,

where ZN pβq “
ř

σ exp p´βHN pσqq.

Famously, Parisi (1980) found a variational formula,

lim
NÑ8

F
pSKq
N pβq “ inf

ξ
Pβpξq

where Pβpξq is complicated functional, and the infimum is taken over
cumulative distribution functions on r0, 1s.

The Parisi formula was rigorously proven by Talagrand (2006)



Introduction SK model

Parisi minimizer and the overlap

Given two replicas σp1q, σp2q (independent samples from the Gibbs measure),
the overlap is,

R
pSKq
12 :“

1

N
σp1q ¨ σp2q

The minimizer in the Parisi formula is interpreted as the limiting distribution of
the overlap, and describes the ”geometry of the support of the asymptotic
Gibbs measure.”

In the high temperature phase β ă 1, the Parisi minimizer is the cdf of a trivial

random variable and so R
pSKq
12 concentrates around 0.

In the low temperature phase β ą 1, the Parisi minimizer and asymptotic Gibbs
measure a complicated ultrametric structure (replica symmetry breaking).



Introduction SSK model

A simpler model is given by the spherical Sherington-Kirkpatrick (SSK)
Hamiltonian,

HN pσq “
1

?
2N

ÿ

i‰j

gijσiσj ,

where the disorder gij are iid Gaussians as before.

Replace the ˘1 Ising spins with a continuous phase space:

σ P SN´1 :“

#

σ P RN :
ÿ

i

σ2
i “ N

+

.

Note: this is different than replacing each individual spin σi P ˘1 with σi P S
1.



Introduction SSK model

Thermodynamic quantities of interest:

• Partition function is now an integral,

ZN pβq :“

ż

SN´1

e´βHN pσqdωN´1pσq

where ωN´1 is normalized surface measure on SN´1.

• Free energy has the same form as before

FN pβq :“
1

N
logZN pβq

• Overlap is

R12 :“
1

N
σp1q ¨ σp2q

where σpiq are independent samples from the Gibbs measure (replicas)



SSK model Free energy

SSK was introduced by Kosterlitz, Thouless and Jones (1976) as a simpler
version of the SK model.

[KTJ] calculated the limiting free energy using a contour integral
representation and a non-rigorous saddle point analysis:

lim
NÑ8

FN pβq “ fpβq “

#

β2

4 β ď 1

β ´ logpβq`3{2
2 β ě 1

.

Note that there is a phase transition at β “ 1 where fpβq is C2 but not C3.

Talagrand (2006) rigorously proved above formula, using similar methods to
SK.



SSK model Fluctuation result of Baik and Lee

Theorem (Baik, Lee, 2015)

Let FN pβq be the SSK free energy and fpβq its limiting value as above.

1. In the high temperature regime, β ă 1

NpFN pβq ´ fpβqq Ñ Npm,αq

where Npm,αq is a normal random variable,

2. In the low temperature regime, β ą 1,

2

β ´ 1
N2{3pFN pβq ´ fpβqq Ñ TW1

where TW1 is the Tracy-Widom distribution (for the GOE).

• Appearance of random matrix quantities in fluctuations of spin glasses

• High temperature Gaussian fluctuations obtained for SK model by
Aizenman, Lebowitz and Ruelle (1987).

• A similar high temperature result appeared earlier in theoretical statistics
[Onatski, Moreira and Hallin, 2013].



SSK model Overlap fluctuations

Recall that the overlap is defined by,

R12 “
1

N
σp1q ¨ σp2q

where σpiq are two independent samples from the (random) Gibbs measure.

Talagrand and Panchenko proved that R12 concentrates about the values
˘qpβq where,

qpβq :“

#

0 β ď 1

1´ 1
β β ě 1

Notation: we will denote expectation wrt the random Gibbs measure by x¨y.



SSK model Overlap fluctuations at high temperature

Theorem (Nguyen, Sosoe, 2018)

Let x¨y be the Gibbs expectation of the SSK model and R12 the overlap. In the
high temperature phase β ă 1 and for all t,

xetR12y “ et
2

` op1q

with very high probability as N Ñ8.

• In particular, R12 converges almost surely (with respect to the disorder)
to a normal random variable.

• Result holds even for β “ βN tending to 1 as long as,

1´ β ě N´1{3`τ , τ ą 0

• This is expected to be optimal, in that a different distribution should
emerge for 1´ β „ N´1{3

• Annealed result for SK model due to Talagrand



Main results Overlap fluctuations at low temperature

Theorem (L.-Sosoe, 2019)

Let R12 be the overlap in the SSK model. In the low temperature phase
β ą 1, we have the convergence in distribution of

β2

2pβ ´ 1q
ˆ lim
NÑ8

N1{3
`

xR2
12y ´ qpβq

2
˘

“ Ξ

where Ξ is a random variable defined in terms of the Airy1 random point field.

• The presence of the square xR2
12y removes the ˘qpβq ambiguity.

• Can prove xpR2
12 ´ qpβq

2q2y ď CN´2{3 and so a similar result holds for
x|R12|y.

• Presently, only “annealed” result available, but higher moments xpR12q
ky

are in principle accessible.

• Similar results obtained in parallel in forthcoming work of Baik, Le
Doussal and Wu by non-rigorous methods (also are investigating the cases
of external fields)



Proof overview Connection to RMT

Connection to random matrix theory: Note,

HN pσq “
1

?
2N

ÿ

i‰j

gijσiσj “ ´
1

2
σTMσ,

where M is a zero-diagonal Gaussian Orthogonal Ensemble matrix:

Mij “ ´
gij ` gji
?

2N
, Mii “ 0.

• Part 1: with high probability,

xR2
12y ´ qpβq

2 “
2pβ ´ 1q

β2

˜

1

N

N
ÿ

j“2

1

λj ´ λ1
` 1

¸

` opN´1{3q

where λ1 ě λ2 ě . . . ě λN are the eigenvalues of M .

• Part 2: convergence in distribution of

ΞN :“ N1{3

˜

1

N

N
ÿ

j“2

1

λj ´ λ1
` 1

¸

Ñ Ξ.



Proof overview Contour integral representation

Due to continuous nature of phase space, observables in the SSK are
accessible through contour integral representations:

Lemma

We have,

ZN pβq “

ż

Γ

e
N
2 Gpzqdz

and

xR2
12y “

1

ZN pβq2

ż

Γ2

e
N
2 pGpzq`Gpwqq

˜

N
ÿ

i“1

1

β2N2pz ´ λiqpw ´ λiq

¸

dzdw

where Γ “ tγ ` it : t P Ru and γ ą λ1, and

Gpzq “ βz ´
1

N

N
ÿ

i“1

logpz ´ λiq.

• Such representations used by Kosterlitz-Thouless-Jones, Baik-Lee,
Nguyen-Sosoe.



Proof overview Contour integral representation

Idea of Lemma: replace the integrals over the N ´ 1 sphere:

ZN pβq “

ż

SN´1

e
β
2 σ

TMσdωpσq Ñ

ż

RN
e
β
2 σ

T
pM´zqσdσ

by an integral over RN (and adding a complex convergence factor z) which is
a calculable Gaussian integral:

ż

RN
e
β
2 σ

T
pM´zqσdσ “ CN,β

ź

j

pz ´ λjq
´1{2

On the other hand, after switching to polar coordinates and a change of
variable:

ż

RN
e
β
2 σ

T
pM´zqσdσ “

ż 8

0

e´zrJ prqdr

where J prq is a spherical integral such that J
´

Nβ
2

¯

“ ZN pβq.

Apply Laplace inversion formula.



Proof overview Contour integral representation

Proof of part 1: Saddle point analysis using contour integral representation

Recall,

Gpzq “ βz ´
1

N

N
ÿ

i“1

logpz ´ λiq, G1pzq “ β `
1

N

N
ÿ

i“1

1

λi ´ z

In the low temperature regime, the saddle γ (i.e., solution to G1pγq “ 0) is
close (OpN´1q) to a branch point of the integrand due to the logpz ´ λ1q

term.

Branch point causes problems in the analysis; use level repulsion of
Knowles-Yin to control λ2 ´ λ1, as well as rigidity from Erdős-Schlein-Yau-Yin.



Proof overview: step 2

Part 2 of proof: Convergence of ΞN Ñ Ξ.

Recall, from part 1:

β2

2pβ ´ 1q
N1{3

`

xR2
12y ´ qpβq

2
˘

“ N1{3

˜

1

N

N
ÿ

j“2

1

λj ´ λ1
` 1

¸

`op1q “: ΞN`op1q

Two RMT ingredients:

• Scaling limit of the extremal eigenvalues:

!

N2{3p2´ λiq
)k

i“1
Ñ tχiu

k
i“1

where tχiu
8

i“1 is the Airy1 random point field.

• Erdős-Schlein-Yau-Yin rigidity: λi concentrates around its classical
location γi (the N -quantiles of Wigner’s semicircle distribution ρscpEq).



Proof overview: step 2

Basic scheme:

1. Realize that the 1 in ΞN is:

´1 “

ż

1

E ´ 2
ρscpEqdE «

1

N

8
ÿ

j“2

1

γj ´ γ1

2. Write ΞN as,

ΞN “
1

N2{3

N
ÿ

j“2

ˆ

1

λj ´ λ1
` 1

˙

«
1

N2{3

N
ÿ

j“2

ˆ

1

λj ´ λ1
´

1

γj ´ γ1

˙

“
1

N2{3

K
ÿ

j“2

ˆ

1

λj ´ λ1
´

1

γj ´ γ1

˙

` pError Termq .



Proof overview: step 2

For fixed K ą 0, the first term converges to

lim
NÑ8

1

N2{3

N
ÿ

j“2

ˆ

1

λj ´ λ1
´

1

γj ´ γ1

˙

“ ´

K
ÿ

j“2

¨

˝

1

χj ´ χ1
´

1
`

3πj
2

˘2{3
´
`

3π
2

˘2{3

˛

‚

So, define Ξ to be

Ξ :“ ´ lim
KÑ8

K
ÿ

j“2

¨

˝

1

χj ´ χ1
´

1
`

3πj
2

˘2{3
´
`

3π
2

˘2{3

˛

‚

• But there is an interchange of limits!

• How to deal with the pError Termq?

I am a student of Yau, so try rigidity!



Proof overview: step 2

For fixed K ą 0, the first term converges to

lim
NÑ8

1

N2{3

N
ÿ

j“2

ˆ

1

λj ´ λ1
´

1

γj ´ γ1

˙

“ ´

K
ÿ

j“2

¨

˝

1

χj ´ χ1
´

1
`

3πj
2

˘2{3
´
`

3π
2

˘2{3

˛

‚

So, define Ξ to be

Ξ :“ ´ lim
KÑ8

K
ÿ

j“2

¨

˝

1

χj ´ χ1
´

1
`

3πj
2

˘2{3
´
`

3π
2

˘2{3

˛

‚

• But there is an interchange of limits!

• How to deal with the pError Termq?

I am a student of Yau, so try rigidity!



Proof overview: step 2

Try to use rigidity: |λj ´ γj | ď N´
2
3`εj´

1
3 , for any ε ą 0.

ˇ

ˇ

ˇ

ˇ

ˇ

1

N2{3

N
ÿ

j“K`1

1

λj ´ λ1
´

1

γj ´ γ1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

N2{3

N
ÿ

j“K`1

|λ1 ´ γ1| ` |λj ´ γj |

pλj ´ λ1qpγj ´ γ1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
Nε

N2{3

ˇ

ˇ

ˇ

ˇ

ˇ

1

N2{3

N
ÿ

j“K`1

1

pλj ´ λ1qpγj ´ γ1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď CNε
ÿ

jąK

1

j4{3
ď C

Nε

K1{3

• We lose a polynomial factor - need to take K Á N3ε.

• Proving convergence of first Nε eigenvalues to Airy1 seems beyond reach
of literature.

• Erdős-Schlein-Yau-Yin rigidity alone is insufficient.



Proof overview: step 2

• For the GUE, Gustafsson (2005) proved that

VarpN p2´ sN´2{3qq ď Cp1` | logpsq|q, (1)

where N pEq “ |tλi ě Eu| is the eigenvalue counting function.

• Eigenvalue rigidity would lose an Nε factor on RHS of (1)

• Can extend to the GOE using a coupling of Forrester and Rains (1999)

• Use duality N pEq ă j ðñ λj ă E to find,

E
ˇ

ˇ

ˇ
N2{3pλj ´ γjq

ˇ

ˇ

ˇ
ď C

| logpjq|2 ` 1

j1{3
.

No N dependance on RHS!

• Markov’s inequality shows that

ˇ

ˇ

ˇ

ˇ

ˇ

1

N2{3

N
ÿ

j“K`1

1

λj ´ λ1
´

1

γj ´ γ1

ˇ

ˇ

ˇ

ˇ

ˇ

“ oKp1q

with probability 1´ oKp1q.



Proof overview: step 2

• What about existence of

Ξ :“ ´ lim
KÑ8

K
ÿ

j“2

¨

˝

1

χj ´ χ1
´

1
`

3πj
2

˘2{3
´
`

3π
2

˘2{3

˛

‚

• Soshnikov (1999) proved for the Airy2 rpf that

VarpN pEqq ď Cp1` | logpEq|q

where N pEq is the Airy2 particle counting function.

• Similarly, we use the Forrester-Rains coupling as well as the fact that
Airyβ are limits of GOE/GUE to extend this to the Airy1 rpf

• Similar arguments imply the a.s. existence of Ξ.



Comparison with [PT]

• Interesting to compare the expansion

xR2
12y ´ qpβq

2 “
2pβ ´ 1q

β2

˜

1

N

N
ÿ

j“2

1

λj ´ λ1
` 1

¸

` opN´1{3q

with a result of Talagrand and Panchenko (2006)

• They observed that P
“

xR2
12y ě q2 ` ε

‰

ď e´cN for all positive ε ą 0, but

observed that P
“

xR2
12y ď q2 ´ ε

‰

could not be controlled at the level of
large deviations.

• Due to having a relatively large probability error, we can not rigorously
address this, but:

• ΞN ď N´1{3`ε with very high probability due to eigenvalue rigidity
• 1

N2{3pλ2´λ1q
has a (relatively) heavy negative tail due to

PrN2{3
pλ1 ´ λ2q P ps, s` dsqs „ sds

for small s.



Looking forward

Looking forward:

• Investigate the case of a magnetic field HN pσq ` hσ ¨ v, for general v.
Different scaling regimes for h (Fyodorov- Le Doussal), and different
statistics.

• Find order of fluctuations for FN pβq at β “ 1. For SK (and SSK by same
method) Chen and Lam find OplogpNq{Nq. Likely that it is
Op

a

logpNq{Nq.

• ”Quenched” result for R2
12 - calculation of higher moments?



Looking forward

Happy Birthday!



Looking forward

Thank you to the organizers for a wonderful conference!
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