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Anderson–Bernoulli Model

Anderson–Bernoulli model: consider the random Schrödinger
operator on `2(Zd) given by

H = −∆ + δV

where
• (∆u)(x) =

∑
|y−x |=1(u(y)− u(x)) is the discrete Laplacian;

• (Vu)(x) = Vxu(x) is a random potential;
• Vx ∈ {0, 1} are i.i.d. Bernoulli variables;
• δ > 0 is the noise strength.

One word on physics motivation: model the motion of an electron
moving in a randomly disordered crystal (P.W. Anderson 1958).

Remark: the spectrum σ(H) = [0, 4d + δ].

Remark: For concreteness we assume δ = 1, and P(Vx = 0) = 1/2.
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Anderson localization

We say that H has “Anderson localization” in the spectral interval
I ⊆ σ(H) if

inf
t>0

sup
x∈Zd

et|x ||ψ(x)| <∞,

holds for any ψ satisfying the following:
• ψ : Zd → R,
• λ ∈ I ,
• Hψ = λψ,
• infn>0 supx∈Zd (1 + |x |)−n|ψ(x)| <∞.
That is, every polynomially bounded solution of the eigenfunction
equation Hψ = λψ with λ ∈ I is an exponentially decaying
eigenfunction.

Remark: the above is usually referred to as spectral localization.
There is also a notion of dynamic localization which is more
directly related to the transport of the electron.



Anderson localization

We say that H has “Anderson localization” in the spectral interval
I ⊆ σ(H) if

inf
t>0

sup
x∈Zd

et|x ||ψ(x)| <∞,

holds for any ψ satisfying the following:
• ψ : Zd → R,
• λ ∈ I ,
• Hψ = λψ,
• infn>0 supx∈Zd (1 + |x |)−n|ψ(x)| <∞.
That is, every polynomially bounded solution of the eigenfunction
equation Hψ = λψ with λ ∈ I is an exponentially decaying
eigenfunction.

Remark: the above is usually referred to as spectral localization.
There is also a notion of dynamic localization which is more
directly related to the transport of the electron.



Anderson localization

We say that H has “Anderson localization” in the spectral interval
I ⊆ σ(H) if

inf
t>0

sup
x∈Zd

et|x ||ψ(x)| <∞,

holds for any ψ satisfying the following:
• ψ : Zd → R,
• λ ∈ I ,
• Hψ = λψ,
• infn>0 supx∈Zd (1 + |x |)−n|ψ(x)| <∞.

That is, every polynomially bounded solution of the eigenfunction
equation Hψ = λψ with λ ∈ I is an exponentially decaying
eigenfunction.

Remark: the above is usually referred to as spectral localization.
There is also a notion of dynamic localization which is more
directly related to the transport of the electron.



Anderson localization

We say that H has “Anderson localization” in the spectral interval
I ⊆ σ(H) if

inf
t>0

sup
x∈Zd

et|x ||ψ(x)| <∞,

holds for any ψ satisfying the following:
• ψ : Zd → R,
• λ ∈ I ,
• Hψ = λψ,
• infn>0 supx∈Zd (1 + |x |)−n|ψ(x)| <∞.
That is, every polynomially bounded solution of the eigenfunction
equation Hψ = λψ with λ ∈ I is an exponentially decaying
eigenfunction.

Remark: the above is usually referred to as spectral localization.
There is also a notion of dynamic localization which is more
directly related to the transport of the electron.



Anderson localization

We say that H has “Anderson localization” in the spectral interval
I ⊆ σ(H) if

inf
t>0

sup
x∈Zd

et|x ||ψ(x)| <∞,

holds for any ψ satisfying the following:
• ψ : Zd → R,
• λ ∈ I ,
• Hψ = λψ,
• infn>0 supx∈Zd (1 + |x |)−n|ψ(x)| <∞.
That is, every polynomially bounded solution of the eigenfunction
equation Hψ = λψ with λ ∈ I is an exponentially decaying
eigenfunction.

Remark: the above is usually referred to as spectral localization.
There is also a notion of dynamic localization which is more
directly related to the transport of the electron.



Anderson localization

We say that H has “Anderson localization” in the spectral interval
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inf
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sup
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et|x ||ψ(x)| <∞,

holds for any ψ satisfying the following:
• ψ : Zd → R,
• λ ∈ I ,
• Hψ = λψ,
• infn>0 supx∈Zd (1 + |x |)−n|ψ(x)| <∞.
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equation Hψ = λψ with λ ∈ I is an exponentially decaying
eigenfunction.

Remark: Except for a spectral measure 0, each spectrum value has
a polynomially bounded solution to the eigenfunction equation.



Our main result

Theorem. (D.–Smart 18) In dimension d = 2 there is an ε > 0
such that, almost surely, H has Anderson localization in [0, ε].

Closely related rigorous mathematical results:
• If d = 1, then H almost surely has Anderson localization in all of
σ(H) (Kunz–Souillard 80 and Carmona–Klein–Martinelli 87).
• If the noise is continuous (that is, the random variables
Vx ∈ [0, 1] have bounded density), then H almost surely has
Anderson localization in [0, ε] (Fröhlich–Spencer 83)
• If the noise is continuous (or a sufficiently nice discrete
approximation of a continuous noise) and δ ≥ C is large, then H
almost surely has Anderson localization in all of σ(H)
(Aizenman–Molchanov 93, Frohlich–Martinelli–Scoppola–Spencer
85 and Imbrie 16).
• If the lattice is replaced by the continuum Rd , then H almost
surely has Anderson localization in [0, ε] (Bourgain–Kenig 05).
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The main step of our result: resolvent estimate

Theorem. (Exponential decay for resolvent; D.–Smart 18)
Suppose d = 2. For any 1/2 > γ > 0, there are α > 1 > ε > 0
such that, for every energy λ̄ ∈ [0, ε] and square Q ⊆ Z2 of side
length L ≥ α, (write HQ = 1QH1Q)

P[|(HQ − λ̄)−1(x , y)| ≤ eL
1−ε−ε|x−y | for x , y ∈ Q] ≥ 1− L−γ .

Remark: To deduce Anderson localization, intuition is that
resolvent decay implies eigenfunction decay. But a rigorous proof is
highly nontrivial, and done in Bourgain–Kenig 05 and
Germinet–Klein 13 (by Peierls argument and bootstrapping for
multiple times).
Remark: Resolvent decay was established for Rd in Bourgain–Kenig
05, via a powerful framework of multi-scale analysis.
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Unique continuation principle

Unique continuation principle (UCP) on Rd : if u ∈ C 2(BR),
|u(0)| = 1, |∆u| ≤ α|u|, and |u| ≤ α, then for some β > 0

min
x∈BR/2

max
y∈B1(x)

|u(y)| ≥ β−1e−βR4/3 logR .

UCP is a key ingredient in Bourgain–Kenig 05 for Rd which does
not hold for Zd , even for harmonic functions.
• In Z2 there exists a non-zero harmonic function which vanishes
on half of the plane.
• In Z3 there exists a non-zero harmonic function which vanishes
except on a plane.
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Sperner’s lemma

Sperner’s Lemma If A is a Sperner set of subsets of {1, ..., n} (no
containment relation holds for any pair in A), then

|A| ≤ 2nn−1/2.

Very roughly speaking, in Bourgain–Kenig, Sperner’s lemma is
applied in junction with UCP to derive a Wegner type of estimate,
i.e., for a cube of size L and 1 ≤ k ≤ Ld , the probability that the
k-th eigenvalue is in an interval of size e−L

4/3+ε
is at most

O(L−d/2).

Remark: The 4/3 above corresponds to 4/3 in UCP. The estimate
is far from being optimal, but turns out sufficient.

By UCP, flip the potential at each site will perturb the eigenvalue
by e−L

4/3+ε
. Thus, Sperner’s lemma implies the desired estimate.

The key point is that every site responds to the potential
perturbation by UCP.
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A generalization of Sperner’s lemma

Definition. Suppose ρ ∈ (0, 1]. A set A of subsets of {1, ..., n} is
ρ-Sperner if, for every A ∈ A, there is a set B(A) ⊆ {1, ..., n} \ A
such that |B(A)| ≥ ρ(n − |A|) and A ⊆ A′ ∈ A implies
A′ ∩ B(A) = ∅.

Remark: Sperner family is 1-Sperner with B(A) = {1, ..., n} \ A.
Theorem. If ρ ∈ (0, 1] and A is a ρ-Sperner set of subsets of

{1, ..., n}, then
|A| ≤ 2nn−1/2ρ−1.

Thus, we only need a version of UCP on Zd with size of support
�
√
volume.
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Inspiration from Buhovsky–Logunov–Malinnikova–Sodin

Theorem.(Buhovsky-Logunov-Malinnikova-Sodin 17) There are
constants α > 1 > ε > 0 such that, if u : Z2 → R is lattice
harmonic in a square Q ⊆ Z2 of side length L ≥ α, then

|{x ∈ Q : |u(x)| ≥ e−αL‖u‖`∞( 1
2
Q)}| ≥ εL

2.

Key challenge for us is to deal with potentials.
• In the worst case potential, there exists a harmonic function
supported only on a diagonal. We have to use “randomness” of
the potential in some way.
• A key step in Buhovsky-Logunov-Malinnikova-Sodin is to study
the propagation of the harmonic function with 0-boundary on west
diagonals and input on the south diagonals.
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A key step in Buhovsky-Logunov-Malinnikova-Sodin
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• Given values of a harmonic
function on black and red bullets
(in particular, assume 0 on
black), one can inductively
determine the values on all
circles;
• The values on blue circles is a
polynomial on its northeast
coordinate;
• Apply Remez ineauality:
maxI |p| ≤ (4|I |/|I ′|)d maxI ′ |p|
for a polynomial p of degree d .
Conclusion: If blue circles are
bounded on half fraction, it is
bounded on all (up to an
exponential factor).
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Our main challenge: the presence
of potentials eliminates the
polynomial structure.
Our main idea: Show that if the
max on red bullets is 1, then at
least a linear fraction of blue
circles is lower bounded by
exponential decay.
• Apply union bound with
regularity on red input.
• Regularity is poor due to
inhomogeneity for influences
from different red bullets.
• Thus can only work in a thin
rectangle.
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Recent progress on d = 3

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an
analogous result for d = 3.
• By our work, the remaining challenge for d = 3 is to prove a
version of UCP where the support (with exponential lower bound)
is much larger than

√
volume.

• In d = 2, proving such a UCP necessarily has to use the
randomness of the potential, as the worst potential has solutions
(to eigenfunction equation) supported on a diagonal line.
• But, in d = 3, it seems even with worst potential the support of
any solution is at least two-dimensional.
• Li–Zhang proved a weaker version: for d = 3, with any potential
any solution has support with exponential lower bound on at least
N3/2+ε vertices.
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(Ambitious) open problems

• Localization through the spectrum for d = 2 with weak
potentials.
• Localization/delocalization phase transition for d ≥ 3 with weak
potentials.

Related work on random banded matrices by Bourgade, Erdös,
Yang, Yau, Yin; Shcherbyna, Shcherbyna, etc.

Happy birthday to HT!
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