Localization near the edge for the Anderson Bernoulli model on the two-dimensional lattice

Jian Ding, University of Pennsylvania

Joint work with Charles Smart (University of Chicago)

HT's Birthday Conference, August 2019

Anderson-Bernoulli Model

Anderson-Bernoulli Model

Anderson-Bernoulli model: consider the random Schrödinger operator on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ given by

$$
H=-\Delta+\delta V
$$

where

- $(\Delta u)(x)=\sum_{|y-x|=1}(u(y)-u(x))$ is the discrete Laplacian;
- $(V u)(x)=V_{x} u(x)$ is a random potential;
- $V_{x} \in\{0,1\}$ are i.i.d. Bernoulli variables;
- $\delta>0$ is the noise strength.

One word on physics motivation: model the motion of an electron moving in a randomly disordered crystal (P.W. Anderson 1958).

Anderson-Bernoulli Model

Anderson-Bernoulli model: consider the random Schrödinger operator on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ given by

$$
H=-\Delta+\delta V
$$

where

- $(\Delta u)(x)=\sum_{|y-x|=1}(u(y)-u(x))$ is the discrete Laplacian;
- $(V u)(x)=V_{x} u(x)$ is a random potential;
- $V_{x} \in\{0,1\}$ are i.i.d. Bernoulli variables;
- $\delta>0$ is the noise strength.

One word on physics motivation: model the motion of an electron moving in a randomly disordered crystal (P.W. Anderson 1958).
Remark: the spectrum $\sigma(H)=[0,4 d+\delta]$.

Anderson-Bernoulli Model

Anderson-Bernoulli model: consider the random Schrödinger operator on $\ell^{2}\left(\mathbb{Z}^{d}\right)$ given by

$$
H=-\Delta+\delta V
$$

where

- $(\Delta u)(x)=\sum_{|y-x|=1}(u(y)-u(x))$ is the discrete Laplacian;
- $(V u)(x)=V_{x} u(x)$ is a random potential;
- $V_{x} \in\{0,1\}$ are i.i.d. Bernoulli variables;
- $\delta>0$ is the noise strength.

One word on physics motivation: model the motion of an electron moving in a randomly disordered crystal (P.W. Anderson 1958).
Remark: the spectrum $\sigma(H)=[0,4 d+\delta]$.
Remark: For concreteness we assume $\delta=1$, and $\mathbb{P}\left(V_{x}=0\right)=1 / 2$.

Anderson localization

Anderson localization

We say that H has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

Anderson localization

We say that H has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

$$
\inf _{t>0} \sup _{x \in \mathbb{Z}^{d}} e^{t|x|}|\psi(x)|<\infty,
$$

holds for any ψ satisfying the following:

- $\psi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$,
- $\lambda \in I$,
- $H \psi=\lambda \psi$,
- $\inf _{n>0} \sup _{x \in \mathbb{Z}^{d}}(1+|x|)^{-n}|\psi(x)|<\infty$.

Anderson localization

We say that H has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

$$
\inf _{t>0} \sup _{x \in \mathbb{Z}^{d}} e^{t|x|}|\psi(x)|<\infty,
$$

holds for any ψ satisfying the following:

- $\psi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$,
- $\lambda \in I$,
- $H \psi=\lambda \psi$,
- $\inf _{n>0} \sup _{x \in \mathbb{Z}^{d}}(1+|x|)^{-n}|\psi(x)|<\infty$.

That is, every polynomially bounded solution of the eigenfunction equation $\boldsymbol{H} \psi=\lambda \psi$ with $\lambda \in I$ is an exponentially decaying eigenfunction.

Anderson localization

We say that H has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

$$
\inf _{t>0} \sup _{x \in \mathbb{Z}^{d}} e^{t|x|}|\psi(x)|<\infty
$$

holds for any ψ satisfying the following:

- $\psi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$,
- $\lambda \in I$,
- $H \psi=\lambda \psi$,
- $\inf _{n>0} \sup _{x \in \mathbb{Z}^{d}}(1+|x|)^{-n}|\psi(x)|<\infty$.

That is, every polynomially bounded solution of the eigenfunction equation $\boldsymbol{H} \psi=\lambda \psi$ with $\lambda \in I$ is an exponentially decaying eigenfunction.

Remark: the above is usually referred to as spectral localization. There is also a notion of dynamic localization which is more directly related to the transport of the electron.

Anderson localization

We say that H has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

$$
\inf _{t>0} \sup _{x \in \mathbb{Z}^{d}} e^{t|x|}|\psi(x)|<\infty,
$$

holds for any ψ satisfying the following:

- $\psi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$,
- $\lambda \in I$,
- $\boldsymbol{H} \psi=\lambda \psi$,
- $\inf _{n>0} \sup _{x \in \mathbb{Z}^{d}}(1+|x|)^{-n}|\psi(x)|<\infty$.

That is, every polynomially bounded solution of the eigenfunction equation $\boldsymbol{H} \psi=\lambda \psi$ with $\lambda \in I$ is an exponentially decaying eigenfunction.
Remark: Except for a spectral measure 0, each spectrum value has a polynomially bounded solution to the eigenfunction equation.

Our main result

Our main result

Theorem. (D.-Smart 18) In dimension $d=2$ there is an $\epsilon>0$ such that, almost surely, H has Anderson localization in $[0, \epsilon]$.

Our main result

Theorem. (D.-Smart 18) In dimension $d=2$ there is an $\epsilon>0$ such that, almost surely, H has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

Our main result

Theorem. (D.-Smart 18) In dimension $d=2$ there is an $\epsilon>0$ such that, almost surely, H has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

- If $d=1$, then H almost surely has Anderson localization in all of $\sigma(H)$ (Kunz-Souillard 80 and Carmona-Klein-Martinelli 87).

Our main result

Theorem. (D.-Smart 18) In dimension $d=2$ there is an $\epsilon>0$ such that, almost surely, H has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

- If $d=1$, then H almost surely has Anderson localization in all of $\sigma(H)$ (Kunz-Souillard 80 and Carmona-Klein-Martinelli 87).
- If the noise is continuous (that is, the random variables $V_{x} \in[0,1]$ have bounded density), then H almost surely has Anderson localization in [$0, \epsilon$] (Fröhlich-Spencer 83)

Our main result

Theorem. (D.-Smart 18) In dimension $d=2$ there is an $\epsilon>0$ such that, almost surely, H has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

- If $d=1$, then H almost surely has Anderson localization in all of $\sigma(H)$ (Kunz-Souillard 80 and Carmona-Klein-Martinelli 87).
- If the noise is continuous (that is, the random variables $V_{x} \in[0,1]$ have bounded density), then H almost surely has Anderson localization in [$0, \epsilon$] (Fröhlich-Spencer 83)
- If the noise is continuous (or a sufficiently nice discrete approximation of a continuous noise) and $\delta \geq C$ is large, then H almost surely has Anderson localization in all of $\sigma(H)$
(Aizenman-Molchanov 93, Frohlich-Martinelli-Scoppola-Spencer 85 and Imbrie 16).

Our main result

Theorem. (D.-Smart 18) In dimension $d=2$ there is an $\epsilon>0$ such that, almost surely, H has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

- If $d=1$, then H almost surely has Anderson localization in all of $\sigma(H)$ (Kunz-Souillard 80 and Carmona-Klein-Martinelli 87).
- If the noise is continuous (that is, the random variables $V_{x} \in[0,1]$ have bounded density), then H almost surely has Anderson localization in [$0, \epsilon$] (Fröhlich-Spencer 83)
- If the noise is continuous (or a sufficiently nice discrete approximation of a continuous noise) and $\delta \geq C$ is large, then H almost surely has Anderson localization in all of $\sigma(H)$
(Aizenman-Molchanov 93, Frohlich-Martinelli-Scoppola-Spencer 85 and Imbrie 16).
- If the lattice is replaced by the continuum \mathbb{R}^{d}, then H almost surely has Anderson localization in $[0, \epsilon]$ (Bourgain-Kenig 05).

The main step of our result: resolvent estimate

The main step of our result: resolvent estimate

Theorem. (Exponential decay for resolvent; D.-Smart 18) Suppose $d=2$. For any $1 / 2>\gamma>0$, there are $\alpha>1>\epsilon>0$ such that, for every energy $\bar{\lambda} \in[0, \epsilon]$ and square $Q \subseteq \mathbb{Z}^{2}$ of side length $L \geq \alpha$, (write $H_{Q}=1_{Q} H 1_{Q}$)

$$
\mathbb{P}\left[\left|\left(H_{Q}-\bar{\lambda}\right)^{-1}(x, y)\right| \leq e^{L^{1-\epsilon}-\epsilon|x-y|} \text { for } x, y \in Q\right] \geq 1-L^{-\gamma} .
$$

The main step of our result: resolvent estimate

Theorem. (Exponential decay for resolvent; D.-Smart 18) Suppose $d=2$. For any $1 / 2>\gamma>0$, there are $\alpha>1>\epsilon>0$ such that, for every energy $\bar{\lambda} \in[0, \epsilon]$ and square $Q \subseteq \mathbb{Z}^{2}$ of side length $L \geq \alpha$, (write $H_{Q}=1_{Q} H 1_{Q}$)

$$
\mathbb{P}\left[\left|\left(H_{Q}-\bar{\lambda}\right)^{-1}(x, y)\right| \leq e^{L^{1-\epsilon}-\epsilon|x-y|} \text { for } x, y \in Q\right] \geq 1-L^{-\gamma} .
$$

Remark: To deduce Anderson localization, intuition is that resolvent decay implies eigenfunction decay. But a rigorous proof is highly nontrivial, and done in Bourgain-Kenig 05 and Germinet-Klein 13 (by Peierls argument and bootstrapping for multiple times).

The main step of our result: resolvent estimate

Theorem. (Exponential decay for resolvent; D.-Smart 18) Suppose $d=2$. For any $1 / 2>\gamma>0$, there are $\alpha>1>\epsilon>0$ such that, for every energy $\bar{\lambda} \in[0, \epsilon]$ and square $Q \subseteq \mathbb{Z}^{2}$ of side length $L \geq \alpha$, (write $H_{Q}=1_{Q} H 1_{Q}$)

$$
\mathbb{P}\left[\left|\left(H_{Q}-\bar{\lambda}\right)^{-1}(x, y)\right| \leq e^{L^{1-\epsilon}-\epsilon|x-y|} \text { for } x, y \in Q\right] \geq 1-L^{-\gamma} .
$$

Remark: To deduce Anderson localization, intuition is that resolvent decay implies eigenfunction decay. But a rigorous proof is highly nontrivial, and done in Bourgain-Kenig 05 and Germinet-Klein 13 (by Peierls argument and bootstrapping for multiple times).
Remark: Resolvent decay was established for \mathbb{R}^{d} in Bourgain-Kenig 05, via a powerful framework of multi-scale analysis.

Unique continuation principle

Unique continuation principle

Unique continuation principle (UCP) on \mathbb{R}^{d} : if $u \in C^{2}\left(B_{R}\right)$, $|u(0)|=1,|\Delta u| \leq \alpha|u|$, and $|u| \leq \alpha$, then for some $\beta>0$

$$
\min _{x \in B_{R / 2}} \max _{y \in B_{1}(x)}|u(y)| \geq \beta^{-1} e^{-\beta R^{4 / 3} \log R} .
$$

Unique continuation principle

Unique continuation principle (UCP) on \mathbb{R}^{d} : if $u \in C^{2}\left(B_{R}\right)$, $|u(0)|=1,|\Delta u| \leq \alpha|u|$, and $|u| \leq \alpha$, then for some $\beta>0$

$$
\min _{x \in B_{R / 2}} \max _{y \in B_{1}(x)}|u(y)| \geq \beta^{-1} e^{-\beta R^{4 / 3} \log R}
$$

UCP is a key ingredient in Bourgain-Kenig 05 for \mathbb{R}^{d} which does not hold for \mathbb{Z}^{d}, even for harmonic functions.

- In \mathbb{Z}^{2} there exists a non-zero harmonic function which vanishes on half of the plane.
- In \mathbb{Z}^{3} there exists a non-zero harmonic function which vanishes except on a plane.

Sperner's lemma

Sperner's lemma

Sperner's Lemma If \mathcal{A} is a Sperner set of subsets of $\{1, \ldots, n\}$ (no containment relation holds for any pair in \mathcal{A}), then

$$
|\mathcal{A}| \leq 2^{n} n^{-1 / 2}
$$

Sperner's lemma

Sperner's Lemma If \mathcal{A} is a Sperner set of subsets of $\{1, \ldots, n\}$ (no containment relation holds for any pair in \mathcal{A}), then

$$
|\mathcal{A}| \leq 2^{n} n^{-1 / 2}
$$

Very roughly speaking, in Bourgain-Kenig, Sperner's lemma is applied in junction with UCP to derive a Wegner type of estimate, i.e., for a cube of size L and $1 \leq k \leq L^{d}$, the probability that the k-th eigenvalue is in an interval of size $e^{-L^{4 / 3+\epsilon}}$ is at most $O\left(L^{-d / 2}\right)$.

Sperner's lemma

Sperner's Lemma If \mathcal{A} is a Sperner set of subsets of $\{1, \ldots, n\}$ (no containment relation holds for any pair in \mathcal{A}), then

$$
|\mathcal{A}| \leq 2^{n} n^{-1 / 2}
$$

Very roughly speaking, in Bourgain-Kenig, Sperner's lemma is applied in junction with UCP to derive a Wegner type of estimate, i.e., for a cube of size L and $1 \leq k \leq L^{d}$, the probability that the k-th eigenvalue is in an interval of size $e^{-L^{4 / 3+\epsilon}}$ is at most $O\left(L^{-d / 2}\right)$.
Remark: The $4 / 3$ above corresponds to $4 / 3$ in UCP. The estimate is far from being optimal, but turns out sufficient.

Sperner's lemma

Sperner's Lemma If \mathcal{A} is a Sperner set of subsets of $\{1, \ldots, n\}$ (no containment relation holds for any pair in \mathcal{A}), then

$$
|\mathcal{A}| \leq 2^{n} n^{-1 / 2}
$$

Very roughly speaking, in Bourgain-Kenig, Sperner's lemma is applied in junction with UCP to derive a Wegner type of estimate, i.e., for a cube of size L and $1 \leq k \leq L^{d}$, the probability that the k-th eigenvalue is in an interval of size $e^{-L^{4 / 3+\epsilon}}$ is at most $O\left(L^{-d / 2}\right)$.
Remark: The $4 / 3$ above corresponds to $4 / 3$ in UCP. The estimate is far from being optimal, but turns out sufficient.

By UCP, flip the potential at each site will perturb the eigenvalue by $e^{-L^{4 / 3+\epsilon}}$. Thus, Sperner's lemma implies the desired estimate.

Sperner's lemma

Sperner's Lemma If \mathcal{A} is a Sperner set of subsets of $\{1, \ldots, n\}$ (no containment relation holds for any pair in \mathcal{A}), then

$$
|\mathcal{A}| \leq 2^{n} n^{-1 / 2}
$$

Very roughly speaking, in Bourgain-Kenig, Sperner's lemma is applied in junction with UCP to derive a Wegner type of estimate, i.e., for a cube of size L and $1 \leq k \leq L^{d}$, the probability that the k-th eigenvalue is in an interval of size $e^{-L^{4 / 3+\epsilon}}$ is at most $O\left(L^{-d / 2}\right)$.
Remark: The $4 / 3$ above corresponds to $4 / 3$ in UCP. The estimate is far from being optimal, but turns out sufficient.

By UCP, flip the potential at each site will perturb the eigenvalue by $e^{-L^{4 / 3+\epsilon}}$. Thus, Sperner's lemma implies the desired estimate.

The key point is that every site responds to the potential perturbation by UCP.

A generalization of Sperner's lemma

A generalization of Sperner's lemma

Definition. Suppose $\rho \in(0,1]$. A set \mathcal{A} of subsets of $\{1, \ldots, n\}$ is ρ-Sperner if, for every $A \in \mathcal{A}$, there is a set $B(A) \subseteq\{1, \ldots, n\} \backslash A$ such that $|B(A)| \geq \rho(n-|A|)$ and $A \subseteq A^{\prime} \in \mathcal{A}$ implies $A^{\prime} \cap B(A)=\varnothing$.

A generalization of Sperner's lemma

Definition. Suppose $\rho \in(0,1]$. A set \mathcal{A} of subsets of $\{1, \ldots, n\}$ is ρ-Sperner if, for every $A \in \mathcal{A}$, there is a set $B(A) \subseteq\{1, \ldots, n\} \backslash A$ such that $|B(A)| \geq \rho(n-|A|)$ and $A \subseteq A^{\prime} \in \mathcal{A}$ implies $A^{\prime} \cap B(A)=\varnothing$.
Remark: Sperner family is 1 -Sperner with $B(A)=\{1, \ldots, n\} \backslash A$.

A generalization of Sperner's lemma

Definition. Suppose $\rho \in(0,1]$. A set \mathcal{A} of subsets of $\{1, \ldots, n\}$ is ρ-Sperner if, for every $A \in \mathcal{A}$, there is a set $B(A) \subseteq\{1, \ldots, n\} \backslash A$ such that $|B(A)| \geq \rho(n-|A|)$ and $A \subseteq A^{\prime} \in \mathcal{A}$ implies $A^{\prime} \cap B(A)=\varnothing$.
Remark: Sperner family is 1-Sperner with $B(A)=\{1, \ldots, n\} \backslash A$. Theorem. If $\rho \in(0,1]$ and \mathcal{A} is a ρ-Sperner set of subsets of $\{1, \ldots, n\}$, then

$$
|\mathcal{A}| \leq 2^{n} n^{-1 / 2} \rho^{-1}
$$

A generalization of Sperner's lemma

Definition. Suppose $\rho \in(0,1]$. A set \mathcal{A} of subsets of $\{1, \ldots, n\}$ is ρ-Sperner if, for every $A \in \mathcal{A}$, there is a set $B(A) \subseteq\{1, \ldots, n\} \backslash A$ such that $|B(A)| \geq \rho(n-|A|)$ and $A \subseteq A^{\prime} \in \mathcal{A}$ implies $A^{\prime} \cap B(A)=\varnothing$.
Remark: Sperner family is 1-Sperner with $B(A)=\{1, \ldots, n\} \backslash A$. Theorem. If $\rho \in(0,1]$ and \mathcal{A} is a ρ-Sperner set of subsets of $\{1, \ldots, n\}$, then

$$
|\mathcal{A}| \leq 2^{n} n^{-1 / 2} \rho^{-1}
$$

Thus, we only need a version of UCP on \mathbb{Z}^{d} with size of support $\gg \sqrt{\text { volume }}$.

Inspiration from Buhovsky-Logunov-Malinnikova-Sodin

Inspiration from Buhovsky-Logunov-Malinnikova-Sodin

Theorem.(Buhovsky-Logunov-Malinnikova-Sodin 17) There are constants $\alpha>1>\epsilon>0$ such that, if $u: \mathbb{Z}^{2} \rightarrow \mathbb{R}$ is lattice harmonic in a square $Q \subseteq \mathbb{Z}^{2}$ of side length $L \geq \alpha$, then

$$
\left|\left\{x \in Q:|u(x)| \geq e^{-\alpha L}\|u\|_{\ell \infty\left(\frac{1}{2} Q\right)}\right\}\right| \geq \epsilon L^{2} .
$$

Inspiration from Buhovsky-Logunov-Malinnikova-Sodin

Theorem.(Buhovsky-Logunov-Malinnikova-Sodin 17) There are constants $\alpha>1>\epsilon>0$ such that, if $u: \mathbb{Z}^{2} \rightarrow \mathbb{R}$ is lattice harmonic in a square $Q \subseteq \mathbb{Z}^{2}$ of side length $L \geq \alpha$, then

$$
\left|\left\{x \in Q:|u(x)| \geq e^{-\alpha L}\|u\|_{\ell \infty\left(\frac{1}{2} Q\right)}\right\}\right| \geq \epsilon L^{2} .
$$

Key challenge for us is to deal with potentials.

- In the worst case potential, there exists a harmonic function supported only on a diagonal. We have to use "randomness" of the potential in some way.
- A key step in Buhovsky-Logunov-Malinnikova-Sodin is to study the propagation of the harmonic function with 0-boundary on west diagonals and input on the south diagonals.

A key step in Buhovsky-Logunov-Malinnikova-Sodin

A key step in Buhovsky-Logunov-Malinnikova-Sodin

- Given values of a harmonic function on black and red bullets (in particular, assume 0 on black), one can inductively determine the values on all circles;

A key step in Buhovsky-Logunov-Malinnikova-Sodin

A key step in Buhovsky-Logunov-Malinnikova-Sodin

- Given values of a harmonic function on black and red bullets (in particular, assume 0 on black), one can inductively determine the values on all circles;
- The values on blue circles is a polynomial on its northeast coordinate;
- Apply Remez ineauality: $\max _{I}|p| \leq\left(4|I| /\left|I^{\prime}\right|\right)^{d}$ max $_{I^{\prime}}|p|$ for a polynomial p of degree d.

A key step in Buhovsky-Logunov-Malinnikova-Sodin

	- Given values of a harmonic function on black and red bullets (in particular, assume 0 on black), one can inductively determine the values on all circles; - The values on blue circles is a polynomial on its northeast coordinate; - Apply Remez ineauality: $\max _{I}\|p\| \leq\left(4\|I\| /\left\|I^{\prime}\right\|\right)^{d}$ max $_{I^{\prime}}\|p\|$ for a polynomial p of degree d. Conclusion: If blue circles are bounded on half fraction, it is bounded on all (up to an exponential factor).

Main challenge with presence of potentials

```
                \(\because \circ\)
                    - - 000
                    - - ○○○○○
                    - - ○○○○○○○
                    - OOOOOOOOO
                        - - OOOOOOOOOOO
                - - ○○○○○○○○○○○○○
- ○○○○○○○○○○○○○○○
- - ○○○○○○○○○○○○○○○○○
- - ○○○○○○○○○○○○○○○○○○○
- ○○○○○○○○○○○○○○○○○○○○○
- - OOOOOOOOOOOOOOOOOOOOO
- ००००००००००००००००००००००
- ○○○○○○○○○○○○○○○○○○○
- ००००००००००००००००००
- -OOOOOOOOOOOOOOO
-००००००००००००००
- - ०००००००००००
- ○○○○○○○○○
            - - OOOOOOO
            - OOOOO
            - O O O
                    - - O
```


Main challenge with presence of potentials

Our main challenge: the presence of potentials eliminates the polynomial structure.

Main challenge with presence of potentials

Recent progress on $d=3$

Recent progress on $d=3$

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for $d=3$.

Recent progress on $d=3$

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for $d=3$.

- By our work, the remaining challenge for $d=3$ is to prove a version of UCP where the support (with exponential lower bound) is much larger than $\sqrt{\text { volume }}$.

Recent progress on $d=3$

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for $d=3$.

- By our work, the remaining challenge for $d=3$ is to prove a version of UCP where the support (with exponential lower bound) is much larger than $\sqrt{\text { volume }}$.
- In $d=2$, proving such a UCP necessarily has to use the randomness of the potential, as the worst potential has solutions (to eigenfunction equation) supported on a diagonal line.

Recent progress on $d=3$

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for $d=3$.

- By our work, the remaining challenge for $d=3$ is to prove a version of UCP where the support (with exponential lower bound) is much larger than $\sqrt{\text { volume }}$.
- In $d=2$, proving such a UCP necessarily has to use the randomness of the potential, as the worst potential has solutions (to eigenfunction equation) supported on a diagonal line.
- But, in $d=3$, it seems even with worst potential the support of any solution is at least two-dimensional.

Recent progress on $d=3$

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for $d=3$.

- By our work, the remaining challenge for $d=3$ is to prove a version of UCP where the support (with exponential lower bound) is much larger than $\sqrt{\text { volume }}$.
- In $d=2$, proving such a UCP necessarily has to use the randomness of the potential, as the worst potential has solutions (to eigenfunction equation) supported on a diagonal line.
- But, in $d=3$, it seems even with worst potential the support of any solution is at least two-dimensional.
- Li-Zhang proved a weaker version: for $d=3$, with any potential any solution has support with exponential lower bound on at least $N^{3 / 2+\epsilon}$ vertices.
(Ambitious) open problems

(Ambitious) open problems

- Localization through the spectrum for $d=2$ with weak potentials.

(Ambitious) open problems

- Localization through the spectrum for $d=2$ with weak potentials.
- Localization/delocalization phase transition for $d \geq 3$ with weak potentials.

(Ambitious) open problems

- Localization through the spectrum for $d=2$ with weak potentials.
- Localization/delocalization phase transition for $d \geq 3$ with weak potentials.

Related work on random banded matrices by Bourgade, Erdös, Yang, Yau, Yin; Shcherbyna, Shcherbyna, etc.

(Ambitious) open problems

- Localization through the spectrum for $d=2$ with weak potentials.
- Localization/delocalization phase transition for $d \geq 3$ with weak potentials.

Related work on random banded matrices by Bourgade, Erdös, Yang, Yau, Yin; Shcherbyna, Shcherbyna, etc.

Happy birthday to HT!

