Localization near the edge for the Anderson Bernoulli model on the two-dimensional lattice

Jian Ding, University of Pennsylvania

Joint work with Charles Smart (University of Chicago)

HT's Birthday Conference, August 2019

Anderson–Bernoulli model: consider the random Schrödinger operator on $\ell^2(\mathbb{Z}^d)$ given by

$$H = -\Delta + \delta V$$

where

- $(\Delta u)(x) = \sum_{|y-x|=1} (u(y) u(x))$ is the discrete Laplacian;
- $(Vu)(x) = V_x u(x)$ is a random potential;
- $V_x \in \{0, 1\}$ are i.i.d. Bernoulli variables;
- $\delta > 0$ is the noise strength.

One word on physics motivation: model the motion of an electron moving in a randomly disordered crystal (P.W. Anderson 1958).

Anderson–Bernoulli model: consider the random Schrödinger operator on $\ell^2(\mathbb{Z}^d)$ given by

$$H = -\Delta + \delta V$$

where

- $(\Delta u)(x) = \sum_{|y-x|=1} (u(y) u(x))$ is the discrete Laplacian;
- $(Vu)(x) = V_x u(x)$ is a random potential;
- $V_x \in \{0, 1\}$ are i.i.d. Bernoulli variables;
- $\delta > 0$ is the noise strength.

One word on physics motivation: model the motion of an electron moving in a randomly disordered crystal (P.W. Anderson 1958).

Remark: the spectrum $\sigma(H) = [0, 4d + \delta]$.

Anderson–Bernoulli model: consider the random Schrödinger operator on $\ell^2(\mathbb{Z}^d)$ given by

$$H = -\Delta + \delta V$$

where

- $(\Delta u)(x) = \sum_{|y-x|=1} (u(y) u(x))$ is the discrete Laplacian;
- $(Vu)(x) = V_x u(x)$ is a random potential;
- $V_x \in \{0, 1\}$ are i.i.d. Bernoulli variables;
- $\delta > 0$ is the noise strength.

One word on physics motivation: model the motion of an electron moving in a randomly disordered crystal (P.W. Anderson 1958).

Remark: the spectrum $\sigma(H) = [0, 4d + \delta]$.

Remark: For concreteness we assume $\delta = 1$, and $\mathbb{P}(V_x = 0) = 1/2$.

We say that H has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

We say that *H* has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

$$\inf_{t>0}\sup_{x\in\mathbb{Z}^d}e^{t|x|}|\psi(x)|<\infty,$$

holds for any ψ satisfying the following:

- $\psi: \mathbb{Z}^d \to \mathbb{R}$,
- $\lambda \in I$,
- $H\psi = \lambda\psi$,
- $\inf_{n>0} \sup_{x\in\mathbb{Z}^d} (1+|x|)^{-n} |\psi(x)| < \infty.$

We say that H has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

$$\inf_{t>0}\sup_{x\in\mathbb{Z}^d}e^{t|x|}|\psi(x)|<\infty,$$

holds for any ψ satisfying the following:

- $\psi: \mathbb{Z}^d \to \mathbb{R}$,
- $\lambda \in I$,
- $H\psi = \lambda\psi$,
- $\inf_{n>0} \sup_{x\in\mathbb{Z}^d} (1+|x|)^{-n} |\psi(x)| < \infty.$

That is, every polynomially bounded solution of the eigenfunction equation $H\psi = \lambda\psi$ with $\lambda \in I$ is an exponentially decaying eigenfunction.

We say that H has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

$$\inf_{t>0}\sup_{x\in\mathbb{Z}^d}e^{t|x|}|\psi(x)|<\infty,$$

holds for any ψ satisfying the following:

- $\psi : \mathbb{Z}^d \to \mathbb{R}$,
- $\lambda \in I$,
- $H\psi = \lambda\psi$,
- $\inf_{n>0} \sup_{x\in\mathbb{Z}^d} (1+|x|)^{-n} |\psi(x)| < \infty.$

That is, every polynomially bounded solution of the eigenfunction equation $H\psi = \lambda\psi$ with $\lambda \in I$ is an exponentially decaying eigenfunction.

Remark: the above is usually referred to as spectral localization. There is also a notion of dynamic localization which is more directly related to the transport of the electron.

We say that H has "Anderson localization" in the spectral interval $I \subseteq \sigma(H)$ if

$$\inf_{t>0}\sup_{x\in\mathbb{Z}^d}e^{t|x|}|\psi(x)|<\infty,$$

holds for any ψ satisfying the following:

- $\psi: \mathbb{Z}^d \to \mathbb{R}$,
- $\lambda \in I$,
- $H\psi = \lambda\psi$,
- $\inf_{n>0} \sup_{x\in\mathbb{Z}^d} (1+|x|)^{-n} |\psi(x)| < \infty.$

That is, every polynomially bounded solution of the eigenfunction equation $H\psi = \lambda\psi$ with $\lambda \in I$ is an exponentially decaying eigenfunction.

Remark: Except for a spectral measure 0, each spectrum value has a polynomially bounded solution to the eigenfunction equation.

Theorem. (D.–Smart 18) In dimension d = 2 there is an $\epsilon > 0$ such that, almost surely, *H* has Anderson localization in $[0, \epsilon]$.

Theorem. (D.–Smart 18) In dimension d = 2 there is an $\epsilon > 0$ such that, almost surely, *H* has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

Theorem. (D.–Smart 18) In dimension d = 2 there is an $\epsilon > 0$ such that, almost surely, *H* has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

• If d = 1, then H almost surely has Anderson localization in all of $\sigma(H)$ (Kunz-Souillard 80 and Carmona-Klein-Martinelli 87).

Theorem. (D.–Smart 18) In dimension d = 2 there is an $\epsilon > 0$ such that, almost surely, *H* has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

- If d = 1, then H almost surely has Anderson localization in all of $\sigma(H)$ (Kunz-Souillard 80 and Carmona-Klein-Martinelli 87).
- If the noise is continuous (that is, the random variables $V_x \in [0,1]$ have bounded density), then H almost surely has Anderson localization in $[0,\epsilon]$ (Fröhlich–Spencer 83)

Theorem. (D.–Smart 18) In dimension d = 2 there is an $\epsilon > 0$ such that, almost surely, *H* has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

- If d = 1, then H almost surely has Anderson localization in all of $\sigma(H)$ (Kunz-Souillard 80 and Carmona-Klein-Martinelli 87).
- If the noise is continuous (that is, the random variables $V_x \in [0, 1]$ have bounded density), then H almost surely has Anderson localization in $[0, \epsilon]$ (Fröhlich–Spencer 83)
- If the noise is continuous (or a sufficiently nice discrete approximation of a continuous noise) and $\delta \ge C$ is large, then H almost surely has Anderson localization in all of $\sigma(H)$ (Aizenman–Molchanov 93, Frohlich–Martinelli–Scoppola–Spencer 85 and Imbrie 16).

Theorem. (D.–Smart 18) In dimension d = 2 there is an $\epsilon > 0$ such that, almost surely, *H* has Anderson localization in $[0, \epsilon]$.

Closely related rigorous mathematical results:

- If d = 1, then H almost surely has Anderson localization in all of $\sigma(H)$ (Kunz-Souillard 80 and Carmona-Klein-Martinelli 87).
- If the noise is continuous (that is, the random variables $V_x \in [0,1]$ have bounded density), then H almost surely has Anderson localization in $[0,\epsilon]$ (Fröhlich–Spencer 83)
- If the noise is continuous (or a sufficiently nice discrete approximation of a continuous noise) and $\delta \ge C$ is large, then H almost surely has Anderson localization in all of $\sigma(H)$ (Aizenman–Molchanov 93, Frohlich–Martinelli–Scoppola–Spencer 85 and Imbrie 16).

• If the lattice is replaced by the continuum \mathbb{R}^d , then H almost surely has Anderson localization in $[0, \epsilon]$ (Bourgain–Kenig 05).

Theorem. (Exponential decay for resolvent; D.–Smart 18) Suppose d = 2. For any $1/2 > \gamma > 0$, there are $\alpha > 1 > \epsilon > 0$ such that, for every energy $\overline{\lambda} \in [0, \epsilon]$ and square $Q \subseteq \mathbb{Z}^2$ of side length $L \ge \alpha$, (write $H_Q = 1_Q H 1_Q$)

$$\mathbb{P}[|(H_Q-ar\lambda)^{-1}(x,y)|\leq e^{L^{1-\epsilon}-\epsilon|x-y|} ext{ for }x,y\in Q]\geq 1-L^{-\gamma}.$$

Theorem. (Exponential decay for resolvent; D.–Smart 18) Suppose d = 2. For any $1/2 > \gamma > 0$, there are $\alpha > 1 > \epsilon > 0$ such that, for every energy $\overline{\lambda} \in [0, \epsilon]$ and square $Q \subseteq \mathbb{Z}^2$ of side length $L \ge \alpha$, (write $H_Q = 1_Q H 1_Q$)

$$\mathbb{P}[|(H_Q-ar\lambda)^{-1}(x,y)|\leq e^{L^{1-\epsilon}-\epsilon|x-y|} ext{ for }x,y\in Q]\geq 1-L^{-\gamma}.$$

Remark: To deduce Anderson localization, intuition is that resolvent decay implies eigenfunction decay. But a rigorous proof is highly nontrivial, and done in Bourgain–Kenig 05 and Germinet–Klein 13 (by Peierls argument and bootstrapping for multiple times).

Theorem. (Exponential decay for resolvent; D.–Smart 18) Suppose d = 2. For any $1/2 > \gamma > 0$, there are $\alpha > 1 > \epsilon > 0$ such that, for every energy $\overline{\lambda} \in [0, \epsilon]$ and square $Q \subseteq \mathbb{Z}^2$ of side length $L \ge \alpha$, (write $H_Q = 1_Q H 1_Q$)

$$\mathbb{P}[|(H_Q-ar\lambda)^{-1}(x,y)|\leq e^{L^{1-\epsilon}-\epsilon|x-y|} ext{ for }x,y\in Q]\geq 1-L^{-\gamma}.$$

Remark: To deduce Anderson localization, intuition is that resolvent decay implies eigenfunction decay. But a rigorous proof is highly nontrivial, and done in Bourgain–Kenig 05 and Germinet–Klein 13 (by Peierls argument and bootstrapping for multiple times).

Remark: Resolvent decay was established for \mathbb{R}^d in Bourgain–Kenig 05, via a powerful framework of multi-scale analysis.

Unique continuation principle

Unique continuation principle

Unique continuation principle (UCP) on \mathbb{R}^d : if $u \in C^2(B_R)$, |u(0)| = 1, $|\Delta u| \le \alpha |u|$, and $|u| \le \alpha$, then for some $\beta > 0$

$$\min_{x \in B_{R/2}} \max_{y \in B_1(x)} |u(y)| \ge \beta^{-1} e^{-\beta R^{4/3} \log R}$$

Unique continuation principle

Unique continuation principle (UCP) on \mathbb{R}^d : if $u \in C^2(B_R)$, |u(0)| = 1, $|\Delta u| \le \alpha |u|$, and $|u| \le \alpha$, then for some $\beta > 0$

$$\min_{x \in B_{R/2}} \max_{y \in B_1(x)} |u(y)| \ge \beta^{-1} e^{-\beta R^{4/3} \log R}$$

UCP is a key ingredient in Bourgain–Kenig 05 for \mathbb{R}^d which does not hold for \mathbb{Z}^d , even for harmonic functions.

- \bullet In \mathbb{Z}^2 there exists a non-zero harmonic function which vanishes on half of the plane.
- \bullet In \mathbb{Z}^3 there exists a non-zero harmonic function which vanishes except on a plane.

Sperner's Lemma If A is a Sperner set of subsets of $\{1, ..., n\}$ (no containment relation holds for any pair in A), then

 $|\mathcal{A}| \leq 2^n n^{-1/2}.$

Sperner's Lemma If A is a Sperner set of subsets of $\{1, ..., n\}$ (no containment relation holds for any pair in A), then

$$|\mathcal{A}| \leq 2^n n^{-1/2}.$$

Very roughly speaking, in Bourgain–Kenig, Sperner's lemma is applied in junction with UCP to derive a Wegner type of estimate, i.e., for a cube of size L and $1 \le k \le L^d$, the probability that the k-th eigenvalue is in an interval of size $e^{-L^{4/3+\epsilon}}$ is at most $O(L^{-d/2})$.

Sperner's Lemma If A is a Sperner set of subsets of $\{1, ..., n\}$ (no containment relation holds for any pair in A), then

$$|\mathcal{A}| \leq 2^n n^{-1/2}.$$

Very roughly speaking, in Bourgain–Kenig, Sperner's lemma is applied in junction with UCP to derive a Wegner type of estimate, i.e., for a cube of size L and $1 \le k \le L^d$, the probability that the k-th eigenvalue is in an interval of size $e^{-L^{4/3+\epsilon}}$ is at most $O(L^{-d/2})$.

Remark: The 4/3 above corresponds to 4/3 in UCP. The estimate is far from being optimal, but turns out sufficient.

Sperner's Lemma If A is a Sperner set of subsets of $\{1, ..., n\}$ (no containment relation holds for any pair in A), then

 $|\mathcal{A}| \leq 2^n n^{-1/2}.$

Very roughly speaking, in Bourgain–Kenig, Sperner's lemma is applied in junction with UCP to derive a Wegner type of estimate, i.e., for a cube of size L and $1 \le k \le L^d$, the probability that the k-th eigenvalue is in an interval of size $e^{-L^{4/3+\epsilon}}$ is at most $O(L^{-d/2})$.

Remark: The 4/3 above corresponds to 4/3 in UCP. The estimate is far from being optimal, but turns out sufficient.

By UCP, flip the potential at each site will perturb the eigenvalue by $e^{-L^{4/3+\epsilon}}$. Thus, Sperner's lemma implies the desired estimate.

Sperner's Lemma If A is a Sperner set of subsets of $\{1, ..., n\}$ (no containment relation holds for any pair in A), then

$$|\mathcal{A}| \leq 2^n n^{-1/2}.$$

Very roughly speaking, in Bourgain–Kenig, Sperner's lemma is applied in junction with UCP to derive a Wegner type of estimate, i.e., for a cube of size L and $1 \le k \le L^d$, the probability that the k-th eigenvalue is in an interval of size $e^{-L^{4/3+\epsilon}}$ is at most $O(L^{-d/2})$.

Remark: The 4/3 above corresponds to 4/3 in UCP. The estimate is far from being optimal, but turns out sufficient.

By UCP, flip the potential at each site will perturb the eigenvalue by $e^{-L^{4/3+\epsilon}}$. Thus, Sperner's lemma implies the desired estimate.

The key point is that every site responds to the potential perturbation by UCP.

Definition. Suppose $\rho \in (0, 1]$. A set \mathcal{A} of subsets of $\{1, ..., n\}$ is ρ -Sperner if, for every $A \in \mathcal{A}$, there is a set $B(A) \subseteq \{1, ..., n\} \setminus A$ such that $|B(A)| \ge \rho(n - |A|)$ and $A \subseteq A' \in \mathcal{A}$ implies $A' \cap B(A) = \emptyset$.

Definition. Suppose $\rho \in (0, 1]$. A set \mathcal{A} of subsets of $\{1, ..., n\}$ is ρ -Sperner if, for every $A \in \mathcal{A}$, there is a set $B(A) \subseteq \{1, ..., n\} \setminus A$ such that $|B(A)| \ge \rho(n - |A|)$ and $A \subseteq A' \in \mathcal{A}$ implies $A' \cap B(A) = \emptyset$.

Remark: Sperner family is 1-Sperner with $B(A) = \{1, ..., n\} \setminus A$.

Definition. Suppose $\rho \in (0, 1]$. A set \mathcal{A} of subsets of $\{1, ..., n\}$ is ρ -Sperner if, for every $A \in \mathcal{A}$, there is a set $B(A) \subseteq \{1, ..., n\} \setminus A$ such that $|B(A)| \ge \rho(n - |A|)$ and $A \subseteq A' \in \mathcal{A}$ implies $A' \cap B(A) = \emptyset$.

Remark: Sperner family is 1-Sperner with $B(A) = \{1, ..., n\} \setminus A$. **Theorem.** If $\rho \in (0, 1]$ and A is a ρ -Sperner set of subsets of $\{1, ..., n\}$, then

$$|\mathcal{A}| \le 2^n n^{-1/2} \rho^{-1}.$$

Definition. Suppose $\rho \in (0, 1]$. A set \mathcal{A} of subsets of $\{1, ..., n\}$ is ρ -Sperner if, for every $A \in \mathcal{A}$, there is a set $B(A) \subseteq \{1, ..., n\} \setminus A$ such that $|B(A)| \ge \rho(n - |A|)$ and $A \subseteq A' \in \mathcal{A}$ implies $A' \cap B(A) = \emptyset$.

Remark: Sperner family is 1-Sperner with $B(A) = \{1, ..., n\} \setminus A$. **Theorem.** If $\rho \in (0, 1]$ and A is a ρ -Sperner set of subsets of

 $\{1, ..., n\}$, then

$$|\mathcal{A}| \le 2^n n^{-1/2} \rho^{-1}.$$

Thus, we only need a version of UCP on \mathbb{Z}^d with size of support $\gg \sqrt{volume}$.

Inspiration from Buhovsky-Logunov-Malinnikova-Sodin

Inspiration from Buhovsky-Logunov-Malinnikova-Sodin

Theorem. (Buhovsky-Logunov-Malinnikova-Sodin 17) There are constants $\alpha > 1 > \epsilon > 0$ such that, if $u : \mathbb{Z}^2 \to \mathbb{R}$ is lattice harmonic in a square $Q \subseteq \mathbb{Z}^2$ of side length $L \ge \alpha$, then

$$|\{x \in Q: |u(x)| \ge e^{-\alpha L} ||u||_{\ell^{\infty}(\frac{1}{2}Q)}\}| \ge \epsilon L^2.$$

Inspiration from Buhovsky–Logunov–Malinnikova–Sodin

Theorem. (Buhovsky-Logunov-Malinnikova-Sodin 17) There are constants $\alpha > 1 > \epsilon > 0$ such that, if $u : \mathbb{Z}^2 \to \mathbb{R}$ is lattice harmonic in a square $Q \subseteq \mathbb{Z}^2$ of side length $L \ge \alpha$, then

$$|\{x \in Q: |u(x)| \ge e^{-\alpha L} \|u\|_{\ell^{\infty}(\frac{1}{2}Q)}\}| \ge \epsilon L^2.$$

Key challenge for us is to deal with potentials.

• In the worst case potential, there exists a harmonic function supported only on a diagonal. We have to use "randomness" of the potential in some way.

• A key step in Buhovsky-Logunov-Malinnikova-Sodin is to study the propagation of the harmonic function with 0-boundary on west diagonals and input on the south diagonals.

• Given values of a harmonic function on black and red bullets (in particular, assume 0 on black), one can inductively determine the values on all circles:

• Given values of a harmonic function on black and red bullets (in particular, assume 0 on black), one can inductively determine the values on all circles:

• The values on blue circles is a polynomial on its northeast coordinate;

• Given values of a harmonic function on black and red bullets (in particular, assume 0 on black), one can inductively determine the values on all circles;

- The values on blue circles is a polynomial on its northeast coordinate;
- Apply Remez ineauality: $\max_{I} |p| \leq (4|I|/|I'|)^d \max_{I'} |p|$ for a polynomial p of degree d.

• Given values of a harmonic function on black and red bullets (in particular, assume 0 on black), one can inductively determine the values on all circles;

- The values on blue circles is a polynomial on its northeast coordinate;
- Apply Remez ineauality: $\max_{I} |p| \le (4|I|/|I'|)^d \max_{I'} |p|$ for a polynomial p of degree d. **Conclusion**: If blue circles are bounded on half fraction, it is bounded on all (up to an exponential factor).

Main challenge with presence of potentials

Main challenge with presence of potentials

Our main challenge: the presence of potentials eliminates the polynomial structure.

Main challenge with presence of potentials

Our main challenge: the presence of potentials eliminates the polynomial structure.

Our main idea: Show that if the max on red bullets is 1, then at least a linear fraction of blue circles is lower bounded by exponential decay.

- Apply union bound with regularity on red input.
- Regularity is poor due to inhomogeneity for influences from different red bullets.
- Thus can only work in a thin rectangle.

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for d = 3.

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for d = 3.

• By our work, the remaining challenge for d = 3 is to prove a version of UCP where the support (with exponential lower bound) is much larger than \sqrt{volume} .

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for d = 3.

• By our work, the remaining challenge for d = 3 is to prove a version of UCP where the support (with exponential lower bound) is much larger than \sqrt{volume} .

• In d = 2, proving such a UCP necessarily has to use the randomness of the potential, as the worst potential has solutions (to eigenfunction equation) supported on a diagonal line.

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for d = 3.

• By our work, the remaining challenge for d = 3 is to prove a version of UCP where the support (with exponential lower bound) is much larger than \sqrt{volume} .

• In d = 2, proving such a UCP necessarily has to use the randomness of the potential, as the worst potential has solutions (to eigenfunction equation) supported on a diagonal line.

• But, in d = 3, it seems even with worst potential the support of any solution is at least two-dimensional.

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an analogous result for d = 3.

• By our work, the remaining challenge for d = 3 is to prove a version of UCP where the support (with exponential lower bound) is much larger than \sqrt{volume} .

• In d = 2, proving such a UCP necessarily has to use the randomness of the potential, as the worst potential has solutions (to eigenfunction equation) supported on a diagonal line.

- But, in d = 3, it seems even with worst potential the support of any solution is at least two-dimensional.
- Li–Zhang proved a weaker version: for d = 3, with any potential any solution has support with exponential lower bound on at least $N^{3/2+\epsilon}$ vertices.

• Localization through the spectrum for d = 2 with weak potentials.

- Localization through the spectrum for d = 2 with weak potentials.
- Localization/delocalization phase transition for $d \ge 3$ with weak potentials.

- Localization through the spectrum for d = 2 with weak potentials.
- Localization/delocalization phase transition for $d \ge 3$ with weak potentials.

Related work on random banded matrices by Bourgade, Erdös, Yang, Yau, Yin; Shcherbyna, Shcherbyna, etc.

- Localization through the spectrum for d = 2 with weak potentials.
- Localization/delocalization phase transition for $d \ge 3$ with weak potentials.

Related work on random banded matrices by Bourgade, Erdös, Yang, Yau, Yin; Shcherbyna, Shcherbyna, etc.

Happy birthday to HT!