Ocean (Climate) Models or

State of the Art in Ocean (Climate) Modeling

Workshop on Physics-Dynamics Coupling in ESMs 2019, Banff International Research Station Alistair Adcroft

Questions added under "Oceans" in document

- What is the total energy budget in the component? What are the fluxes in/out of the system? What are the energy source/sinks due to numerical errors? Where are the spurious source/sinks of energy put?
- Coupling (frequency, ...): Which quantities are communicated between components? Are quantities missing? Consequences of having components on different grids? Are they using different time-steps? Dynamics and physics on different grids? Wind stress mapping? Error propagation between components. What is latent heat flux (physical understanding)?
- Ocean physics parameterizations: time-integration and conservation: physics-dynamics coupling, dycore time-stepping, component coupling
- Water cycle: mass exchange between components and associated heat exchange, what processes are we missing (for example, enthalpy of falling rain)

Outline

- 1. Some equations (because you asked)
- 2. Survey of methods used in ocean dynamical cores
- 3. Splitting and sub-cycling
- 4. Energy budget of ocean (to set up Remi)
- 5. Spurious mixing and the energy budget that matters
 - using energy to diagnose magnitude of problem
 - consequences for heat uptake and climate
- 6. Coupling the ocean and sea-ice

Approximations

- Shallow ocean
 - Ocean is thin relative to radius of planet
- Hydrostatic balance
 - Non-hydrostatic motions normally associated with overturning (aspect ratio 1)
 - Systematic effects (non-overturning) are still small
- Boussinesq approximation
 - Avoids sound in the external mode
 - Avoids sound waves in non-hydrostatic models

NOAA GFDI

Equations of oceanic motion

- Horizontal momentum $\rho_0 \left(\frac{\partial \mathbf{u}}{\partial t} + (f + \zeta) \, \hat{\mathbf{z}} \wedge \mathbf{u} + w \, \frac{\partial \mathbf{u}}{\partial z} + \nabla_z \, K \right) = -\nabla_z \, p \rho^{\mathbf{v}}$ • Hydrostatic balance $\left(K = \frac{1}{2} \mathbf{u} \cdot \mathbf{u} \text{ and } \zeta = \nabla \times \mathbf{u} \right)$ $\rho \, \frac{\partial \Phi}{\partial z} + \frac{\partial p}{\partial z} = 0$
- Non-divergence
- Conservation of heat
- Conservations of salts
- Equation of state
- Free-surface

NOAA GFDI

Equations of oceanic motion: the z-p Isomorphism

PRINCETON UNIVERSITY

NOAA GFDL 💓 6/29

Ocean Models (for Climate)

- MPAS-Ocean
- NEMO
- FESOM
- MOM6
- ICON-O
- MICOM
- POP
- MOM5
- HYCOM
- MITgcm
- ROMS

- All models conserve heat, salt, and either mass or volume
 - Models differ in conservation of momentum (angular/linear), PV, KE, enstrophy, ...
 - Mimetic discretizations are typical
- All use hydrostatic approximation (in global mode)
- Most are still Boussinesq
 - Although many have non-Boussinesq option
- All are explicit in time for baroclinic equations
- All treat the external mode separately
- All stagger in space
 - but use same grid for dynamics/physics

NOAA GFDL

Global ocean dynamic cores

	Method	Hor. grid	Vertical method	Coord.	External mode	Mom. eqns	Time integr.	Mom. transport	Tracer transport
MPAS-Ocean	FV, TRSK	Voronoi	ALE	Z*	Split expl	VI	PC CN		FCT SG2011
NEMO	FV	C-grid	ALE	z~, s~	Split expl	FF or VI	MLF	FCT2 UP3	FCT2/4, UP3, Q
FESOM	FE/FV	Tri B-grid	ALE	z-σ	Semi-impl	FF or VI			PPM, PSM
MOM6	FV	C-grid	Lagr-remap	z-ρ	Split expl	VI	RK2	C2	PLM,PPM
ICON-O	FE?	Tri C-grid		z		VI	AB2		
MICOM	FD	C-grid	Layered	р-р	Split expl	VI	LF		
РОР	FD	B-grid	Eulerian	z		FF			
MOM5	FD	B-grid	Eulerian	z*	Split expl	FF			U3, Q
НҮСОМ	FD	C-grid	Lagr-remap	р-р					PLM
MITgcm	FV (NH)	C-grid	Eulerian	z*	Semi-impl	FF or VI	AB3	C2 C4	U3, U7,
ROMS	FD	C-grid	Eulerian	σ	Split expl				

PRINCETON UNIVERSITY

Dyn-Phys Coupling BIRS 2019

Modes of motion $g\rho_0\eta$ $-(f+\zeta)\hat{\mathbf{z}}\wedge\mathbf{u}+w\,\frac{\partial\mathbf{u}}{\partial z}+\nabla_{z}\,K$ $-\nabla_z p$ $\rho \nabla_z \Phi + \mathcal{F}$ $\partial \Phi$ () • $f \sim 10^{-4} \text{ 1/s}$; $g \sim 10 \text{ m/s}$; $H \sim 6000 \text{ m}$; $\frac{N}{f} \sim 10$ ∂z $\nabla_z \cdot \mathbf{u} +$ $u \sim 2 \text{ m/s}$ () $-\sqrt{g}H \sim 250 \text{ m/s} NH \sim 5 \text{ m/s}$ $\partial \theta$ $\partial(\theta w)$ + $\nabla_z \cdot (\theta \mathbf{u})$ + ∂t $\Delta x \sim 10 \text{ km}$ $\Delta x \sim 100 \text{ km}$ • ∂z $\partial J_S^{(z)}$ $-\Delta t_{gH} \sim 400 \text{ s}$ $\Delta t_{gH} \sim 40 \text{ s}$ ∂S $\partial(Sw)$ $+ \nabla_z \cdot (S \mathbf{u}) +$ ∂z $-\Delta t_f \sim 1 \text{ hr}$ $\Delta t_f \sim 1 \text{ hr}$ $\rho = \rho(S, \theta, \neg g \rho_0 z)$ $-\Delta t_{NH} \sim 5 \text{ hr}$ $\Delta t_{NH} \sim 30 \text{ mn}$ $\Delta t_{u} \sim 1 \text{ hr}$ $-\Delta t_{u} \sim 12$ hr **u** dz P - E

PRINCETON UNIVERSITY

Dyn-Phys Coupling BIRS 2019

NOAA GFDL

Typical Eulerian algorithm

- Barotropic-baroclinic split usually designed for consistency with baroclinic equations
 - Energetics of split system are normally not a primary consideration?
- Alternative is to make the free-surface implicit in time (Dukowicz, 1994; MITgcm) Shchepetkin & McWilliams, 2005

NOAA GFDL

General coordinates r = r(x, y, z, t)

$$\rho_{0}\left(\frac{\partial \mathbf{u}}{\partial t} + (f + \zeta)\hat{\mathbf{z}} \wedge \mathbf{u} + \dot{r}\frac{\partial \mathbf{u}}{\partial r} + \nabla_{r}K\right) = -\nabla_{r}p - \rho\nabla_{r}\Phi + \mathcal{F}$$

$$\rho\frac{\partial \Phi}{\partial r} + \frac{\partial p}{\partial r} = 0$$

$$\frac{\partial z_{r}}{\partial t} + \nabla_{r} \cdot (z_{r}\mathbf{u}) + \frac{\partial(z_{r}\dot{r})}{\partial r} = 0$$

$$z_{r} = \frac{\partial z}{\partial r}$$

$$\frac{\partial(\theta z_{r})}{\partial t} + \nabla_{r} \cdot (\theta z_{r}\mathbf{u}) + \frac{\partial(\theta z_{r}\dot{r})}{\partial r} = z_{r}\mathcal{N}_{\theta}^{\gamma} - \frac{\partial J_{\theta}^{(z)}}{\partial r}$$

$$\frac{\partial(S z_{r})}{\partial t} + \nabla_{r} \cdot (S z_{r}\mathbf{u}) + \frac{\partial(S z_{r}\dot{r})}{\partial r} = z_{r}\mathcal{N}_{S}^{\gamma} - \frac{\partial J_{S}^{(z)}}{\partial r}$$

$$\rho = \rho(S, \theta, -g\rho_{0}z(r))$$

Starr, 1945; Kasahara, 1974; ...

Dyn-Phys Coupling BIRS 2019

-

PRINCETON UNIVERSITY

Lagrangian method in the vertical

Dyn-Phys Coupling BIRS 2019

Sub-cycling in a Lagrangian-remap algorithm

$$\delta_{k}p = -\rho(z, S^{n}, \theta^{n})\delta_{k}\Phi$$

$$v_{h}^{m+1} = v_{h}^{m} + \frac{1}{M\rho_{0}}(-\nabla_{\Gamma}p - \rho\nabla_{\Gamma}\Phi + \cdots)$$

$$h^{m+1} = h^{m} - \frac{1}{M}\Delta t\nabla_{\Gamma} \cdot (h^{m}v_{h}^{m+1})$$

$$u^{l+1} = h^{m} - \frac{1}{M}\Delta t\nabla_{\Gamma} \cdot (h^{m}v_{h}^{m+1})$$

$$U^{l+1} = U^{l} + \frac{1}{L}\Delta t(-\nabla\eta^{l} + \cdots)$$

$$\eta^{l+1} = \eta^{m} - \frac{1}{L}\Delta t\nabla_{\Gamma} \cdot (HU^{l+1})$$

$$\int_{waves} Barotropic gravity waves$$

$$\Delta t \sqrt{gH}$$

$$L\Delta x < 1$$

$$h^{*}C^{*} = h^{n}C^{n} - M\Delta t \left[\nabla \cdot \left(\sum_{m=1}^{M} h^{m}v_{h}^{m+1}C^{n}\right)\right]^{\text{Tracers}}$$

$$\frac{M\Delta tu_{h}}{\Delta x} < 1$$

$$h^{n+1} \leftarrow \delta_{k}Z(h^{*}); C^{n+1} = C^{*}(Z(h^{*})); \cdots \quad \text{Vertical remap}$$
PRINCETON UNIVERSITY
$$Dy-Phys Coupling BISS 2019$$

$$NOAA GFDL (2) 13/29$$

-

What is the total energy budget in the component?

10 EJ / 10 TW = 11.5 days 20 YJ / 1 TW = 630,000 years

Figure 5 Strawman energy budget for the global ocean circulation, with uncertainties of at least factors of 2 and possibly as large as 10. Top row of boxes represent possible energy sources. Shaded boxes are the principal energy reservoirs in the ocean, with crude energy values given [in exajoules (EJ) 10¹⁸ J, and yottajoules (YJ) 10²⁴ J]. Fluxes to and from the reservoirs are in terrawatts (TWs). Tidal input (see Munk & Wunsch 1998) of 3.5 TW is the only accurate number here. ...

Wunsch & Ferrari, 2004

This picture is all about mixing

PRINCETON UNIVERSITY

Dyn-Phys Coupling BIRS 2019

Ocean Heat Uptake

PRINCETON UNIVERSITY

- By taking up heat, the ocean reduces the transient climate response (TCR)
- OHU is has been hard to reconstruct
 - Absence of data
 - Models have unknown spurious heat uptake (due to numerical diffusion)
 - Models do not properly represent processes that govern OHU (eddies)
 - The real world OHU is governed by a balance between mixing and eddies
- OHU of 4 ZJ/yr $^{\sim}$ 120 TW $^{\sim}$ 0.35 W/m2

Quantifying spurious mixing using energetics

• Potential energy

$$PE=g \iiint \rho z \, dV$$

- Available potential energy (APE) APE=PE - RPE $RPE=g \iiint \rho^* z \, dV$
- ρ* is the adiabatically re-arranged state with minimal potential energy
- RPE can only be changed by diapycnal mixing
 - Mixing raises center of mass

Winters et al., JFM 1995 Ilicak et al., OM 2012

Global spin-down

- CM2G is the "right amount of mixing"
- MOM5 1°
 - $\kappa_V{=}0$ about 20% of CM2G
 - Very acceptable IMHO
- MOM5 ¼°
 - $\kappa_V{=}0$ as large as CM2G
- POP 1°
 - !!!
- MPAS-O
 - \tilde{z} -coordinate
 - Is this convergence, or good choice of dissipation?

Fig 13, Petersen et al., 2014

NOAA GFDL

What controls spurious mixing

- 1. Accuracy of transport scheme most significant at low orders
 - Large difference between 1st and 2nd order
 - Small difference between 3rd and 7th order
- 2. Noise in flow field
 - Controlled by grid Reynolds number

$$\operatorname{Re}_{\Delta} = \frac{U\Delta x}{v}$$

Usual practice is to use largest Re_Δ that is stable!

Note: this primarily concerns 3D transport in non-isopycnal coordinates

Lock exchange test problem

llicak et al., OM 2012

An era where we get the mixing right: observed trends?

50 year zonal-average temperature trend [°C]

- Understanding/control of numerical mixing
 - High fidelity
 - We might now know when we get right answer for wrong reasons

OM4.0: Role of eddies

- Transition of laminar to eddying motion at mid-latitudes happens between ½°-¼° resolutions
- Mesoscale eddies in coarse resolution models must be parameterized

NOAA GFDL

20/29

PRINCETON UNIVERSITY

Sequential Coupling

PRINCETON UNIVERSITY

NOAA GFDL 21/29

Concurrent Coupling

PRINCETON UNIVERSITY

NOAA GFDL 22/29

 $\eta_{1/2}$

 $\eta_{\rm 3/2}$

ice

ocean

A coupled gravity-wave toy model

2-layer (sea-ice & ocean) linear nonrotating flat-bottom channel flow with no viscosity.

$\frac{\partial u_1}{\partial t} = -g \frac{\partial \eta_{1/2}}{\partial x}$	
$= -g \frac{\partial}{\partial x} (h_1 + h_2)$	$H_1 \longrightarrow U_1$
$\frac{\partial u_2}{\partial t} = -g \frac{\rho_I}{\rho_o} \frac{\partial \eta_{1/2}}{\partial x} - g \frac{\rho_o - \rho_I}{\rho_o} \frac{\partial \eta_{3/2}}{\partial x}$	$H_2 \longrightarrow U_2$
$= -(g - g')\frac{\partial}{\partial x}(h_1 + h_2) - g'\frac{\partial h_2}{\partial x}$	
$= -(g - g')\frac{\partial h_1}{\partial x} - g\frac{\partial h_2}{\partial x}$	
$\frac{\partial h_1}{\partial t} = -H_1 \frac{\partial u_1}{\partial x}$	
$\frac{\partial h_2}{\partial t} = -H_2 \frac{\partial u_2}{\partial x}$	

From Hallberg, 2014

A coupled gravity-wave toy model Sequential coupling of gravity waves only:

 $\frac{\partial h_1}{\partial t} = -H_1 \frac{\partial u_1}{\partial x} \qquad \frac{\partial u_1}{\partial t} = -g \frac{\partial h_1}{\partial x} - g \frac{\partial h_2^n}{\partial x}$ $\frac{\partial h_2}{\partial t} = -H_2 \frac{\partial u_2}{\partial x} \qquad \frac{\partial u_2}{\partial t} = -g \frac{\partial h_2}{\partial x} - (g - g') \frac{\partial h_1^{n+1}}{\partial x}$

Concurrent (forward) coupling: $\frac{\partial h_1}{\partial t} = -H_1 \frac{\partial u_1}{\partial x} \qquad \frac{\partial u_1}{\partial t} = -g \frac{\partial h_1}{\partial x} - g \frac{\partial h_2^n}{\partial x}$ $\frac{\partial h_2}{\partial t} = -H_2 \frac{\partial u_2}{\partial x} \qquad \frac{\partial u_2}{\partial t} = -g \frac{\partial h_2}{\partial x} - (g - g') \frac{\partial h_1^n}{\partial x}$

Sequential (filtered) coupling: $\frac{\partial h_2}{\partial t} = -H_2 \frac{\partial u_2}{\partial x} \quad \frac{\partial u_2}{\partial t} = -g \frac{\partial h_2}{\partial x} - (g - g') \frac{\partial h_1^n}{\partial x}$ $\frac{\partial h_1}{\partial t} = -H_1 \frac{\partial u_1}{\partial x} \quad \frac{\partial u_1}{\partial t} = -g \frac{\partial h_1}{\partial x} - g \frac{\partial}{\partial x} \left(\frac{1}{\Delta T} \int_0^{\Delta T} h_2 dt\right)$

Sequential coupling:

Marginally stable if waves are treated analytically in each component.

$$\omega_1 \equiv \sqrt{gH_1}k \quad ; \quad \omega_2 \equiv \sqrt{gH_2}k$$
$$0 \le \omega_2 \Delta T < \sim 100$$

Concurrent forward coupling: Unconditionally unstable, growth rate:

$$\approx \frac{(g-g')}{g\Delta T} \left[1 - \cos(\omega_1 \Delta T)\right] \left[1 - \cos(\omega_2 \Delta T)\right]$$

Sequential filtered coupling: Unconditionally unstable, growth rate: $\approx \frac{1}{2}$ Concurrent growth rate for small $\omega_2 \Delta T$ $\propto \frac{1}{\omega_2 \Delta T}$, for large $\omega_2 \Delta T$

NGAA GFDL

Numerical Ice-Ocean Coupling Instabilities

From Hallberg, 2014

1. Lagged stress / inertial oscillation instability

$$\begin{aligned} u' &= u - u_{Steady} \\ \frac{\partial u}{\partial t} + ifu &= \frac{c_d U}{H} \left(u_{Atm} - u^n \right) \\ u' \left(t^{n+1} \right) &= \left[e^{-if\Delta t} + i \frac{c_d U}{Hf} \left(1 - e^{-if\Delta t} \right) \right] u' \left(t^n \right) \\ &= Au' \left(t^n \right) \\ \|A\|^2 &= 1 - 2 \frac{c_d U}{Hf} \sin\left(f\Delta t \right) + 2 \left(\frac{c_d U}{Hf} \right)^2 \left(1 - \cos\left(f\Delta t \right) \right) \end{aligned}$$

2. Thermal forcing instability

 $\frac{\partial \theta_{1}}{\partial t} = -\frac{\lambda}{H_{1}} (\theta_{1} - \theta_{2}) \qquad \qquad \frac{\theta_{1}^{n+1} - \theta_{1}^{n}}{\Delta t} = -\frac{\lambda}{H_{1}} (\theta_{1}^{n+1} - \theta_{2}^{n}) \qquad \qquad Eigenvalues:$ $\frac{\partial \theta_{2}}{\partial t} = +\frac{\lambda}{H_{2}} (\theta_{1} - \theta_{2}) \qquad \qquad \frac{\theta_{2}^{n+1} - \theta_{2}^{n}}{\Delta t} = +\frac{\lambda}{H_{2}} (\theta_{1}^{n+1} - \theta_{2}^{n}) \qquad \qquad A_{2} = 1 - \lambda \Delta t / H_{2}$

- 3. Gravity wave instability
 - Sea-ice and icebergs participate in barotropic gravity waves
 - Stability analysis analogous to split-explicit ocean time stepping (e.g., Hallberg, J. Comp. Phys., 1997)
 - Instability growth rate proportional to the sea-ice external $\frac{\sqrt{gH_{Ice}}\Delta T}{\Delta x} < O(1)$

$$\frac{\Delta x}{\Delta x} < O(1)$$

Lagged Stress-Inertial Coupling Instability in Sea-Ice Thickness

PRINCETON UNIVERSITY

Concurrent/Embedded Ice Coupling

PRINCETON UNIVERSITY

NOAA GFDL 27/29

Conservatively Recalculating Solar Heating

Increasing sea-ice area or albedo → Apply excess reflected shortwave to ocean

PRINCETON UNIVERSITY

Summary

- Ocean models need to conserve heat, salt and volume or mass
 Other moments not as critical (at least for now)?
- The energy budget for mixing work on the ocean is critical
- Spurious heat uptake is understood but still an issue
 - Compensating errors (spurious mixing inefficient eddies)
- Sea-ice is really part of the ocean
 - Challenges when treating sea-ice as an independent component

