Projective spectrum, group theory and complex dynamics

Rongwei Yang
SUNY at Albany, USA

Banff, April 1, 2019

Spectrum

\mathcal{B} : a unital Banach algebra over \mathbb{C} with unit $I, a \in \mathcal{B}$.
spectrum $\sigma(a)=\{z \in \mathbb{C}: a-z l$ not invertible in \mathcal{B}.

- Conventional point of view: $\sigma(a)$ is a reflects a.

Spectrum

\mathcal{B} : a unital Banach algebra over \mathbb{C} with unit $I, a \in \mathcal{B}$.
spectrum $\sigma(a)=\{z \in \mathbb{C}: a-z l$ not invertible in \mathcal{B}.

- Conventional point of view: $\sigma(a)$ is a reflects a.
- A different point of view: $\sigma(a)$ is a reflects how a and I interact.

Spectrum

\mathcal{B} : a unital Banach algebra over \mathbb{C} with unit $I, a \in \mathcal{B}$.
spectrum $\sigma(a)=\{z \in \mathbb{C}: a-z l$ not invertible in \mathcal{B}.

- Conventional point of view: $\sigma(a)$ is a reflects a.
- A different point of view: $\sigma(a)$ is a reflects how a and I interact.
- linear pencil : $A_{1}-\lambda A_{2}$;
- multiparameter pencil: $A(z)=z_{1} A_{1}+z_{2} A_{2}+\cdots+z_{n} A_{n}$; (algebraic geometry, differential equations, group theory, math physics, etc.)

Joint spectra

$A_{1}, A_{2}, \ldots, A_{n}$: elements in \mathcal{B}.
Problem. How to define a joint spectrum for these elements?

Preferred properties:

1. Reflects joint behavior of the elements.
2. Reflects interaction of the elements.
3. Reflects algebraic properties of the elements, if any.
4. Computable in many examples.

Known joint spectra:

- 70s, Taylor's spectrum for commuting operators: invertibility of $\left(A_{1}-\lambda_{1} I, A_{2}-\lambda_{2} I, \ldots, A_{n}-\lambda_{n} I\right)$ through the exactness of Koszul complex.
- 70s, Harte spectrum: invertibility of $\sum B_{k}\left(A_{k}-\lambda_{k} I\right)$.
- 80s, HcIntosh-Pryde spectrum: invertibility of $\sum\left(A_{k}-\lambda_{k} I\right)^{2}$

Projective spectrum

Let $A(z)=z_{1} A_{1}+z_{2} A_{2}+\cdots+z_{n} A_{n}$.
Projective joint spectrum:
$P(A)=\left\{z \in \mathbb{C}^{n}: A(z)\right.$ is not invertible in $\left.\mathcal{B}.\right\}$
$p(A)=\left\{z=\left[z_{1}, z_{2}, \ldots, z_{n}\right] \in \mathbb{P}^{n-1}: A(z)\right.$ is not invertible in $\left.\mathcal{B}.\right\}$
Projective resolvent sets: $P^{c}(A)$ in $\mathbb{C}^{n}, p^{c}(A)$ in \mathbb{P}^{n-1}.

Projective spectrum

Let $A(z)=z_{1} A_{1}+z_{2} A_{2}+\cdots+z_{n} A_{n}$.
Projective joint spectrum:
$P(A)=\left\{z \in \mathbb{C}^{n}: A(z)\right.$ is not invertible in $\left.\mathcal{B}.\right\}$
$p(A)=\left\{z=\left[z_{1}, z_{2}, \ldots, z_{n}\right] \in \mathbb{P}^{n-1}: A(z)\right.$ is not invertible in $\left.\mathcal{B}.\right\}$
Projective resolvent sets: $P^{c}(A)$ in $\mathbb{C}^{n}, p^{c}(A)$ in \mathbb{P}^{n-1}.
Features:

1. symmetry: A_{1}, \ldots, A_{n} are treated equally.
2. base-free: parameter is assigned to each A_{j}. "I can help but I am not central".
3. generality: applicable to noncommuting operators.
4. computability: easy to compute in many examples.

Examples

- 1. Let $\mathcal{B}=M_{2}(\mathbb{C}), A_{0}=I$ and $A_{1}=i \sigma_{1}, A_{2}=i \sigma_{2}, A_{3}=i \sigma_{3}$, where σ_{i} are the Pauli matrices, i.e.,

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then $\mathfrak{s u}(2)=\operatorname{span}\left\{A_{1}, A_{2}, A_{3}\right\}$. And $p(A)=\left\{z \in \mathbb{P}^{3}: z_{0}^{2}+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0\right\}$ is a compact algebraic manifold.

Examples

- 1. Let $\mathcal{B}=M_{2}(\mathbb{C}), A_{0}=I$ and $A_{1}=i \sigma_{1}, A_{2}=i \sigma_{2}, A_{3}=i \sigma_{3}$, where σ_{i} are the Pauli matrices, i.e.,

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then $\mathfrak{s u}(2)=\operatorname{span}\left\{A_{1}, A_{2}, A_{3}\right\}$. And $p(A)=\left\{z \in \mathbb{P}^{3}: z_{0}^{2}+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0\right\}$ is a compact algebraic manifold.

- 2 [Bannon, Cade, Y., 2013]. Free group F_{n} with generators $\left\{g_{1}, g_{2}, \cdots, g_{n}\right\}$, and let λ be the regular representation of F_{n} on $\ell^{2}\left(F_{n}\right)$. Set $\left.A(z)=z_{1} \lambda\left(g_{1}\right)+\cdots+z_{n} \lambda\left(g_{n}\right)\right)$, then

$$
P(A)=\bigcap_{j=1}^{n} R_{j}
$$

where $R_{j}=\left\{z \in \mathbb{C}^{n}: 2\left|z_{j}\right|^{2} \leq\|z\|^{2}\right\}, j=1,2, \cdots, n$.

- 3 [He, Wang, Y., 2017]. The Cuntz algebra \mathcal{O}_{n} is the universal C^{*}-algebra generated by n isometries $S_{1}, S_{2}, \ldots, S_{n}$ satisfying

$$
\sum_{i=1}^{n} S_{i} S_{i}^{*}=I \text { and } S_{i}^{*} S_{j}=\delta_{i j} / \quad \text { for } 1 \leq i, j \leq n
$$

Let $S(z)=z_{1} S_{1}+\cdots z_{n} S_{n}$ and $S_{*}(z)=I+S(z)$. Then it is shown in that
(a) $P(S)=\mathbb{C}^{n}$.
(b) $P^{c}\left(S_{*}\right)$ is equal to the unit ball $\mathbb{B}_{n}=\left\{z \in \mathbb{C}^{n}:\|z\|<1\right\}$.

- 3 [He, Wang, Y., 2017]. The Cuntz algebra \mathcal{O}_{n} is the universal C^{*}-algebra generated by n isometries $S_{1}, S_{2}, \ldots, S_{n}$ satisfying

$$
\sum_{i=1}^{n} S_{i} S_{i}^{*}=I \text { and } S_{i}^{*} S_{j}=\delta_{i j} / \quad \text { for } 1 \leq i, j \leq n
$$

Let $S(z)=z_{1} S_{1}+\cdots z_{n} S_{n}$ and $S_{*}(z)=I+S(z)$. Then it is shown in that
(a) $P(S)=\mathbb{C}^{n}$.
(b) $P^{c}\left(S_{*}\right)$ is equal to the unit ball $\mathbb{B}_{n}=\left\{z \in \mathbb{C}^{n}:\|z\|<1\right\}$.

- 4 [Stessin, Y., Zhu, 2011; He, Wang, Y., 2017]. If $A_{*}(z)=I+z_{1} A_{1}+\cdots+z_{n} A_{n}$, where A_{j} are compact operators on a Hilbert space, then
(i) $P\left(A_{*}\right)$ is a thin set.
(ii) When $P\left(A_{*}\right)$ is smooth, then $E_{A}=\bigvee_{z \in P\left(A_{*}\right)} \operatorname{Ker} A_{*}(z)$ is a holomorphic line bundle (kernel bundle) over $P\left(A_{*}\right)$.

Finitely generated groups

$G=<g_{1}, g_{2}, \cdots, g_{n} \mid \cdots>, \rho: G \rightarrow U(\mathcal{H})$ a unitary representation.
Set $A_{\rho}(z)=z_{0} I+z_{1} \rho\left(g_{1}\right)+\cdots+z_{n} \rho\left(g_{n}\right)$.

Finitely generated groups

$G=<g_{1}, g_{2}, \cdots, g_{n} \mid \cdots>, \rho: G \rightarrow U(\mathcal{H})$ a unitary representation.
Set $A_{\rho}(z)=z_{0} I+z_{1} \rho\left(g_{1}\right)+\cdots+z_{n} \rho\left(g_{n}\right)$.
Example: If $1_{G}: G \rightarrow 1$ is the trivial representation, then $P\left(A_{1_{G}}\right)=\left\{z_{0}+z_{1}+\cdots+z_{n}=0\right\}:=H_{1}$.

Finitely generated groups

$G=<g_{1}, g_{2}, \cdots, g_{n} \mid \cdots>, \rho: G \rightarrow U(\mathcal{H})$ a unitary representation.
Set $A_{\rho}(z)=z_{0} I+z_{1} \rho\left(g_{1}\right)+\cdots+z_{n} \rho\left(g_{n}\right)$.
Example: If $1_{G}: G \rightarrow 1$ is the trivial representation, then $P\left(A_{1_{G}}\right)=\left\{z_{0}+z_{1}+\cdots+z_{n}=0\right\}:=H_{1}$.

Theorem (Y.)

Let $\lambda_{G}: G \rightarrow \ell^{2}(G)$ be the left regular representation. Then G is amenable if and only if $P\left(A_{\lambda}\right)$ contains the hyperplane H_{1}.

Proposition

If ρ and π are weakly equivalent unitary representations, then $P\left(A_{\rho}\right)=P\left(A_{\pi}\right)$.

Finitely generated groups

$G=<g_{1}, g_{2}, \cdots, g_{n} \mid \cdots>, \rho: G \rightarrow U(\mathcal{H})$ a unitary representation.
Set $A_{\rho}(z)=z_{0} I+z_{1} \rho\left(g_{1}\right)+\cdots+z_{n} \rho\left(g_{n}\right)$.
Example: If $1_{G}: G \rightarrow 1$ is the trivial representation, then $P\left(A_{1_{G}}\right)=\left\{z_{0}+z_{1}+\cdots+z_{n}=0\right\}:=H_{1}$.

Theorem (Y.)

Let $\lambda_{G}: G \rightarrow \ell^{2}(G)$ be the left regular representation. Then G is amenable if and only if $P\left(A_{\lambda}\right)$ contains the hyperplane H_{1}.

Proposition

If ρ and π are weakly equivalent unitary representations, then $P\left(A_{\rho}\right)=P\left(A_{\pi}\right)$.

Problem: Does the converse hold for irreducible representations?

Infinite dihedral group $D_{\infty}=<a, t \mid a^{2}=t^{2}=1>$
For a fixed $\theta \in[0,2 \pi)$, consider two-dimensional representation ρ_{θ} given by

$$
\rho_{\theta}(a)=\left[\begin{array}{cc}
0 & e^{i \theta} \\
e^{-i \theta} & 0
\end{array}\right], \quad \rho_{\theta}(t)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Known: every irreducible repr. of D_{∞} is either one dimensional or two dimensional.

Halmos: Every irreducbile 2-dim. repr. of D_{∞} is of the form ρ_{θ} for some $\theta \in(0, \pi)$.

Infinite dihedral group $D_{\infty}=<a, t \mid a^{2}=t^{2}=1>$
For a fixed $\theta \in[0,2 \pi)$, consider two-dimensional representation ρ_{θ} given by

$$
\rho_{\theta}(a)=\left[\begin{array}{cc}
0 & e^{i \theta} \\
e^{-i \theta} & 0
\end{array}\right], \quad \rho_{\theta}(t)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Known: every irreducible repr. of D_{∞} is either one dimensional or two dimensional.

Halmos: Every irreducbile 2-dim. repr. of D_{∞} is of the form ρ_{θ} for some $\theta \in(0, \pi)$.

Fact: $P\left(A_{\rho_{\theta}}\right)=\left\{z \in \mathbb{C}^{3}: z_{0}^{2}-z_{1}^{2}-z_{2}^{2}-2 z_{1} z_{2} \cos \theta=0\right\}$.

Infinite dihedral group $D_{\infty}=<a, t \mid a^{2}=t^{2}=1>$
For a fixed $\theta \in[0,2 \pi)$, consider two-dimensional representation ρ_{θ} given by

$$
\rho_{\theta}(a)=\left[\begin{array}{cc}
0 & e^{i \theta} \\
e^{-i \theta} & 0
\end{array}\right], \quad \rho_{\theta}(t)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Known: every irreducible repr. of D_{∞} is either one dimensional or two dimensional.

Halmos: Every irreducbile 2-dim. repr. of D_{∞} is of the form ρ_{θ} for some $\theta \in(0, \pi)$.

Fact: $P\left(A_{\rho_{\theta}}\right)=\left\{z \in \mathbb{C}^{3}: z_{0}^{2}-z_{1}^{2}-z_{2}^{2}-2 z_{1} z_{2} \cos \theta=0\right\}$.
Theorem (Grigorchuk, Y., 2017)
If $\lambda: D_{\infty} \longrightarrow U\left(I^{2}\left(D_{\infty}\right)\right)$ is the left regular representation, then

$$
P\left(A_{\lambda}\right)=\bigcup_{0 \leq \theta<2 \pi} P\left(A_{\rho_{\theta}}\right) .
$$

Proof

The left regular representation of D_{∞} is equivalent to the following representation λ of D_{∞} on $L^{2}\left(\mathbb{T}, \frac{d \theta}{2 \pi}\right) \oplus L^{2}\left(\mathbb{T}, \frac{d \theta}{2 \pi}\right)$:

$$
\lambda(a)=\left[\begin{array}{cc}
0 & T \\
T^{*} & 0
\end{array}\right], \quad \lambda(t)=\left[\begin{array}{cc}
0 & I_{0} \\
I_{0} & 0
\end{array}\right]
$$

where T is the bilateral shift operator $L^{2}(\mathbb{T})$, i.e.,

$$
\begin{gathered}
T f\left(e^{i \theta}\right)=e^{i \theta} f\left(e^{i \theta}\right) . \text { If we let } T=\int_{0}^{2 \pi} e^{i \theta} d E\left(e^{i \theta}\right) . \text { Then } \\
\lambda(a)=\int_{0}^{2 \pi}\left[\begin{array}{cc}
0 & e^{i \theta} \\
e^{-i \theta} & 0
\end{array}\right] d E\left(e^{i \theta}\right)=\int_{0}^{2 \pi} \rho_{\theta}(a) d E\left(e^{i \theta}\right) ; \\
\lambda(t)=\int_{0}^{2 \pi}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] d E\left(e^{i \theta}\right)=\int_{0}^{2 \pi} \rho_{\theta}(t) d E\left(e^{i \theta}\right)
\end{gathered}
$$

Group of intermediate growth

Let $S=\left\{g_{1}, \ldots, g_{n}\right\}$ be a symmetric generating set of group G.
Word length: $|x|=\min \left\{k \mid x=x_{1} x_{2} \cdots x_{k}, x_{j} \in S\right\},|e|=0$.
Set $B_{r}(G)=\{x \in G \| x \mid \leq r\}, \quad r \geq 0$.

Group of intermediate growth

Let $S=\left\{g_{1}, \ldots, g_{n}\right\}$ be a symmetric generating set of group G.
Word length: $|x|=\min \left\{k \mid x=x_{1} x_{2} \cdots x_{k}, x_{j} \in S\right\},|e|=0$.
Set $B_{r}(G)=\{x \in G \| x \mid \leq r\}, \quad r \geq 0$.

- G has polynomial growth if $\left|B_{r}\right| \leq \alpha r^{\beta}$ for some fixed $\alpha, \beta>0$.
- G has exponential growth if $\left|B_{r}\right| \geq \alpha \beta^{r}$ for some fixed $\alpha>0, \beta>1$.
- Milnor's question (60s): Is there a group of intermediate growth.

Group of intermediate growth

Let $S=\left\{g_{1}, \ldots, g_{n}\right\}$ be a symmetric generating set of group G.
Word length: $|x|=\min \left\{k \mid x=x_{1} x_{2} \cdots x_{k}, x_{j} \in S\right\},|e|=0$.
Set $B_{r}(G)=\{x \in G \| x \mid \leq r\}, \quad r \geq 0$.

- G has polynomial growth if $\left|B_{r}\right| \leq \alpha r^{\beta}$ for some fixed $\alpha, \beta>0$.
- G has exponential growth if $\left|B_{r}\right| \geq \alpha \beta^{r}$ for some fixed $\alpha>0, \beta>1$.
- Milnor's question (60s): Is there a group of intermediate growth.

Grigorchuk (80, 84): Yes! $\mathcal{G}=\langle a, b, c, d>$, where

$$
\begin{aligned}
& a^{2}=b^{2}=c^{2}=d^{2}=b c d=1 \\
& \sigma^{k}\left((a d)^{4}\right)=\sigma^{k}\left((a d a c a c)^{4}\right)=1, k=0,1,2, \cdots
\end{aligned}
$$

where $\sigma: a \rightarrow a c a, b \rightarrow d, c \rightarrow b, d \rightarrow c$ is a substitution. $\left(e^{\sqrt{r}} \prec \mid\left(B_{r}(\mathcal{G}) \mid \prec e^{0.991}\right)\right.$.

Theorem (Grigorchuk, Y., 2017)
Let $\rho: \mathcal{G} \rightarrow L^{2}(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M=\frac{1}{4}(\rho(a)+\rho(b)+\rho(c)+\rho(d))$ be the Markov operator of \mathcal{G}. Then $\sigma(M)=\left[-\frac{1}{2}, 0\right] \cup\left[\frac{1}{2}, 1\right]$.

Theorem (Grigorchuk, Y., 2017)
Let $\rho: \mathcal{G} \rightarrow L^{2}(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M=\frac{1}{4}(\rho(a)+\rho(b)+\rho(c)+\rho(d))$ be the Markov operator of \mathcal{G}. Then $\sigma(M)=\left[-\frac{1}{2}, 0\right] \cup\left[\frac{1}{2}, 1\right]$.

Pf.

1. Set $u=\frac{b+c+d-1}{2} \in \mathbb{C}[\mathcal{G}]$ and observe $u^{2}=1$.

Theorem (Grigorchuk, Y., 2017)
Let $\rho: \mathcal{G} \rightarrow L^{2}(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M=\frac{1}{4}(\rho(a)+\rho(b)+\rho(c)+\rho(d))$ be the Markov operator of \mathcal{G}. Then $\sigma(M)=\left[-\frac{1}{2}, 0\right] \cup\left[\frac{1}{2}, 1\right]$.

Pf.

1. Set $u=\frac{b+c+d-1}{2} \in \mathbb{C}[\mathcal{G}]$ and observe $u^{2}=1$.
2. Prove that $\langle a, u\rangle$ is isomorphic to D_{∞}.

Theorem (Grigorchuk, Y., 2017)

Let $\rho: \mathcal{G} \rightarrow L^{2}(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M=\frac{1}{4}(\rho(a)+\rho(b)+\rho(c)+\rho(d))$ be the Markov operator of \mathcal{G}. Then $\sigma(M)=\left[-\frac{1}{2}, 0\right] \cup\left[\frac{1}{2}, 1\right]$.

Pf.

1. Set $u=\frac{b+c+d-1}{2} \in \mathbb{C}[\mathcal{G}]$ and observe $u^{2}=1$.
2. Prove that $\langle a, u\rangle$ is isomorphic to D_{∞}.
3. Prove that Koopman repr. and the regular repr. of D_{∞} are weakly equivalent.

Theorem (Grigorchuk, Y., 2017)

Let $\rho: \mathcal{G} \rightarrow L^{2}(T)$ be the Koopman repr., where T is the rooted binary tree, and let $M=\frac{1}{4}(\rho(a)+\rho(b)+\rho(c)+\rho(d))$ be the Markov operator of \mathcal{G}. Then $\sigma(M)=\left[-\frac{1}{2}, 0\right] \cup\left[\frac{1}{2}, 1\right]$.

Pf.

1. Set $u=\frac{b+c+d-1}{2} \in \mathbb{C}[\mathcal{G}]$ and observe $u^{2}=1$.
2. Prove that $\langle a, u\rangle$ is isomorphic to D_{∞}.
3. Prove that Koopman repr. and the regular repr. of D_{∞} are weakly equivalent.
4. Write $M-\alpha I=\left(\frac{1}{4}-\alpha\right) I+\frac{1}{4} \rho(a)+\frac{1}{2} \rho(u)$ and use the projective spectrum of D_{∞}.

Hermitian metric on $P^{c}(A)$ (with Douglas), preliminary
\mathcal{B} : unital C^{*}-alg., $A_{1}, \ldots, A_{n} \in \mathcal{B}, \phi \in \mathcal{B}^{*}$.
$\omega_{A}(z):=A^{-1}(z) d A(z)=\sum_{j} A^{-1}(z) A_{j} d z_{j}, z \in P^{c}(A)$.
Fundamental form: $\Omega_{A}(z)=-\omega_{A}^{*} \wedge \omega_{A}$.

Hermitian metric on $P^{c}(A)$ (with Douglas), preliminary

\mathcal{B} : unital C^{*}-alg., $A_{1}, \ldots, A_{n} \in \mathcal{B}, \phi \in \mathcal{B}^{*}$.
$\omega_{A}(z):=A^{-1}(z) d A(z)=\sum_{j} A^{-1}(z) A_{j} d z_{j}, z \in P^{c}(A)$.
Fundamental form: $\Omega_{A}(z)=-\omega_{A}^{*} \wedge \omega_{A}$.

$$
\begin{aligned}
\phi\left(\Omega_{A}(z)\right) & =-\phi\left(\omega_{A}^{*} \wedge \omega_{A}\right) \\
& =\phi\left[A_{k}^{*}\left(A^{-1}(z)\right)^{*} A^{-1}(z) A_{j}\right] d z_{j} \wedge d \bar{z}_{k} \\
& :=g_{j k}(z) d z_{j} \wedge d \bar{z}_{k}, \quad z \in P^{c}(A) .
\end{aligned}
$$

Observe: When $g_{\phi}(z):=\left(g_{j k}(z)\right)$ is positive definite on $P^{c}(A)$, it defines an inner product on the holomorphic tangent bundle of $P^{c}(A)$ through $\left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial z_{k}}\right)_{z}=g_{j k}(z)$.

Theorem

Let ϕ be a state on $\mathcal{B}\left(\phi\left(a^{*} a\right) \geq 0, \phi(I)=1\right)$. Then $\phi\left(\Omega_{A}\right)$
defines a Hermitian metric on $P^{C}(A)$ if and only if ϕ is faithful on $\operatorname{span}\left\{A_{1}, \ldots, A_{n}\right\}$.

Theorem
If $\mathcal{B}=M_{k}(\mathbb{C})$, then $\operatorname{Tr}\left(\left(\Omega_{A}\right)\right.$ defines a complete metric on $P^{c}(A)$ for every tuple of matrices.

Theorem
If $\mathcal{B}=M_{k}(\mathbb{C})$, then $\operatorname{Tr}\left(\left(\Omega_{A}\right)\right.$ defines a complete metric on $P^{c}(A)$ for every tuple of matrices.
$G=<g_{1}, \ldots, g_{n} \mid \cdots>$: finitely generated group. Let $C_{r}^{*}(G)$ be the reduced C^{*}-subalg. in $B\left(\ell^{2}(G)\right)$. Define linear functional $\phi(a)=<a \delta_{e}, \delta_{e}>$. Then ϕ is a faithful tracial state on $C_{r}^{*}(G)$.
Corollary
Let $A_{\lambda}(z)=z_{0} I+z_{1} \lambda\left(g_{1}\right)+\cdots+z_{n} \lambda\left(g_{n}\right)$. Then $\phi\left(\Omega_{A_{\lambda}}\right)$ defines a G-invariant Hermitian metric on $P^{c}\left(A_{\lambda}\right)$.

Theorem
If $\mathcal{B}=M_{k}(\mathbb{C})$, then $\operatorname{Tr}\left(\left(\Omega_{A}\right)\right.$ defines a complete metric on $P^{c}(A)$ for every tuple of matrices.
$G=<g_{1}, \ldots, g_{n} \mid \cdots>$: finitely generated group. Let $C_{r}^{*}(G)$ be the reduced C^{*}-subalg. in $B\left(\ell^{2}(G)\right)$. Define linear functional $\phi(a)=<a \delta_{e}, \delta_{e}>$. Then ϕ is a faithful tracial state on $C_{r}^{*}(G)$.

Corollary

Let $A_{\lambda}(z)=z_{0} I+z_{1} \lambda\left(g_{1}\right)+\cdots+z_{n} \lambda\left(g_{n}\right)$. Then $\phi\left(\Omega_{A_{\lambda}}\right)$ defines a G-invariant Hermitian metric on $P^{c}\left(A_{\lambda}\right)$.

Theorem (Goldberg, Y., 2018)
Consider D_{∞} and set $A_{*}(z)=I+z_{1} \lambda(a)+z_{2} \lambda(t)$. Then the metric defined by $\phi\left(\Omega_{A_{*}}\right)$ is imcomplete, and the completion $\left[P^{c}\left(A_{*}\right)\right]=\mathbb{C}^{2} \backslash\{(\pm 1,0),(0, \pm 1)\}$.

Theorem
If $\mathcal{B}=M_{k}(\mathbb{C})$, then $\operatorname{Tr}\left(\left(\Omega_{A}\right)\right.$ defines a complete metric on $P^{c}(A)$ for every tuple of matrices.
$G=<g_{1}, \ldots, g_{n} \mid \cdots>$: finitely generated group. Let $C_{r}^{*}(G)$ be the reduced C^{*}-subalg. in $B\left(\ell^{2}(G)\right)$. Define linear functional $\phi(a)=<a \delta_{e}, \delta_{e}>$. Then ϕ is a faithful tracial state on $C_{r}^{*}(G)$.

Corollary

Let $A_{\lambda}(z)=z_{0} I+z_{1} \lambda\left(g_{1}\right)+\cdots+z_{n} \lambda\left(g_{n}\right)$. Then $\phi\left(\Omega_{A_{\lambda}}\right)$ defines a G-invariant Hermitian metric on $P^{c}\left(A_{\lambda}\right)$.

Theorem (Goldberg, Y., 2018)
Consider D_{∞} and set $A_{*}(z)=I+z_{1} \lambda(a)+z_{2} \lambda(t)$. Then the metric defined by $\phi\left(\Omega_{A_{*}}\right)$ is imcomplete, and the completion $\left[P^{c}\left(A_{*}\right)\right]=\mathbb{C}^{2} \backslash\{(\pm 1,0),(0, \pm 1)\}$.
Note: $\sigma(\lambda(a))=\sigma(\lambda(t))=\{ \pm 1\}$.

Def.

- The metric on $P^{c}(A)$ defined by $\phi\left(\Omega_{A}(z)\right)$ is said to be Kähler if $d \phi\left(\Omega_{A}(z)\right)=0$.
- The metric on $P^{c}(A)$ defined by $\phi\left(\Omega_{A}(z)\right)$ is said to be flat if

$$
\frac{\partial^{2}}{\partial z_{j} \partial \bar{z}_{k}} \log \operatorname{det} g_{\phi}(z)=0, \quad \forall z \in P^{c}(A), \forall j, k
$$

Def.

- The metric on $P^{c}(A)$ defined by $\phi\left(\Omega_{A}(z)\right)$ is said to be Kähler if $d \phi\left(\Omega_{A}(z)\right)=0$.
- The metric on $P^{c}(A)$ defined by $\phi\left(\Omega_{A}(z)\right)$ is said to be flat if

$$
\frac{\partial^{2}}{\partial z_{j} \partial \bar{z}_{k}} \log \operatorname{det} g_{\phi}(z)=0, \quad \forall z \in P^{c}(A), \forall j, k
$$

Theorem
Let $A_{0}=I, A_{1}, \ldots, A_{n}$ be elements in a C^{*}-alg. \mathcal{B} with a faithful tracial state ϕ. Then $\phi\left(\Omega_{A}(z)\right)$ defines a Kähler metric on $P^{c}(A)$ if and only if A_{1}, \ldots, A_{n} commute.

Def.

- The metric on $P^{c}(A)$ defined by $\phi\left(\Omega_{A}(z)\right)$ is said to be Kähler if $d \phi\left(\Omega_{A}(z)\right)=0$.
- The metric on $P^{c}(A)$ defined by $\phi\left(\Omega_{A}(z)\right)$ is said to be flat if

$$
\frac{\partial^{2}}{\partial z_{j} \partial \overline{z_{k}}} \log \operatorname{det} g_{\phi}(z)=0, \quad \forall z \in P^{c}(A), \forall j, k
$$

Theorem
Let $A_{0}=I, A_{1}, \ldots, A_{n}$ be elements in a C^{*}-alg. \mathcal{B} with a faithful tracial state ϕ. Then $\phi\left(\Omega_{A}(z)\right)$ defines a Kähler metric on $P^{c}(A)$ if and only if A_{1}, \ldots, A_{n} commute.

Example. If A_{1}, \ldots, A_{n} is a basis of $M_{k}(\mathbb{C})\left(n=k^{2}\right)$, then $\operatorname{Tr}\left(\Omega_{A}\right)$ defines a complete, non-Kähler, flat and $G L_{k}$-invariant metric on $P^{c}(A) \cong G L_{k}$.

A connection with complex dynamics

Def. A unitary representation (π, \mathcal{H}) is self-similar if there exists a $d \in \mathbb{N}$ and a unitary map $W: \mathcal{H} \rightarrow \mathcal{H}^{d}$ such that for all $g \in G$ every entry in the $d \times d$ block matrix $W \pi(g) W^{*}$ is either 0 or of the form $\pi(x)$ for some $x \in G$. Observe that in this case exactly one entry in every row or column of $W \pi(g) W^{*}$ is nonzero.

A connection with complex dynamics

Def. A unitary representation (π, \mathcal{H}) is self-similar if there exists a $d \in \mathbb{N}$ and a unitary map $W: \mathcal{H} \rightarrow \mathcal{H}^{d}$ such that for all $g \in G$ every entry in the $d \times d$ block matrix $W \pi(g) W^{*}$ is either 0 or of the form $\pi(x)$ for some $x \in G$. Observe that in this case exactly one entry in every row or column of $W \pi(g) W^{*}$ is nonzero.

Facts:

- The Koopman repr. ρ of D_{∞} is self-similar. In fact,

$$
\rho(a) \cong\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \rho(t) \cong\left[\begin{array}{cc}
\rho(a) & 0 \\
0 & \rho(t)
\end{array}\right]
$$

hence

$$
A_{\rho}(z)=z_{0}+z_{1} \rho(a)+z_{2} \rho(t) \cong\left[\begin{array}{cc}
z_{0}+z_{2} \rho(a) & z_{1} \\
z_{1} & z_{0}+z_{2} \rho(t)
\end{array}\right] .
$$

- ρ is weakly equivalent to λ, hence $P\left(A_{\rho}\right)=P\left(A_{\lambda}\right)$.

When $z_{0} \neq \pm z_{2}, A_{\rho}(z)$ is invertible if and only if $z_{0}+z_{2} t-z_{1}^{2}\left(z_{0}-z_{2} a\right)\left(z_{0}^{2}-z_{2}^{2}\right)^{-1}$ is invertible. Define

$$
F\left(z_{0}, z_{1}, z_{2}\right)=\left(z_{0}\left(z_{0}^{2}-z_{1}^{2}-z_{2}^{2}\right), z_{1}^{2} z_{2}, z_{2}\left(z_{0}^{2}-z_{2}^{2}\right)\right)
$$

When $z_{0} \neq \pm z_{2}, A_{\rho}(z)$ is invertible if and only if $z_{0}+z_{2} t-z_{1}^{2}\left(z_{0}-z_{2} a\right)\left(z_{0}^{2}-z_{2}^{2}\right)^{-1}$ is invertible. Define

$$
F\left(z_{0}, z_{1}, z_{2}\right)=\left(z_{0}\left(z_{0}^{2}-z_{1}^{2}-z_{2}^{2}\right), z_{1}^{2} z_{2}, z_{2}\left(z_{0}^{2}-z_{2}^{2}\right)\right)
$$

Lem: $F: P\left(A_{\lambda}\right) \rightarrow P\left(A_{\lambda}\right)$.
Consider $F: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$. Denote the n-th iteration of F by F^{n}.

When $z_{0} \neq \pm z_{2}, A_{\rho}(z)$ is invertible if and only if $z_{0}+z_{2} t-z_{1}^{2}\left(z_{0}-z_{2} a\right)\left(z_{0}^{2}-z_{2}^{2}\right)^{-1}$ is invertible. Define

$$
F\left(z_{0}, z_{1}, z_{2}\right)=\left(z_{0}\left(z_{0}^{2}-z_{1}^{2}-z_{2}^{2}\right), z_{1}^{2} z_{2}, z_{2}\left(z_{0}^{2}-z_{2}^{2}\right)\right)
$$

Lem: $F: P\left(A_{\lambda}\right) \rightarrow P\left(A_{\lambda}\right)$.
Consider $F: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$. Denote the n-th iteration of F by F^{n}.

Def.

- Indeterminacy sets: $I_{n}=\left\{z \in \mathbb{P}^{2} \mid F^{n}(z)=(0,0,0)\right\}, n \geq 1$.
- Extended indeterminacy set: $E=\overline{\cup_{n \geq 1} I_{n}}$.
- Fatou point: z has a nbd. V_{z} such that $\left\{F^{n}\right\}$ is a normal family on V_{z}.
- Fatou set $\mathcal{F}(F)$: the set of Fatou points for F.
- Julia set $\mathcal{J}(F): \mathbb{P}^{2} \backslash \mathcal{F}(F)$.

Let $T(x)=2 x^{2}-1, x \in \widehat{\mathbb{C}}$ (Chebyshev poly.).
$\tau(z)=\frac{z_{0}^{2}-z_{1}^{2}-z_{2}^{2}}{2 z_{1} z_{2}}: \mathbb{P}^{2} \rightarrow \hat{\mathbb{C}}$. Note: $z \in p\left(A_{\lambda}\right)$ iff $\tau(z) \notin[-1,1]$.
Fact: $\mathcal{J}(T)=[-1,1]$.

Let $T(x)=2 x^{2}-1, x \in \widehat{\mathbb{C}}$ (Chebyshev poly.).
$\tau(z)=\frac{z_{0}^{2}-z_{1}^{2}-z_{2}^{2}}{2 z_{1} z_{2}}: \mathbb{P}^{2} \rightarrow \hat{\mathbb{C}}$. Note: $z \in p\left(A_{\lambda}\right)$ iff $\tau(z) \notin[-1,1]$.
Fact: $\mathcal{J}(T)=[-1,1]$.

Theorem (Grigorchuk, Y., 2017)
The following diagram commutes:

the Julia set

For $z \in p^{c}\left(A_{\lambda}\right)$, define
$f_{n}(z)=\frac{1}{2 \tau(z)}+\frac{1}{2^{2} T(\tau(z)) \tau(z)}+\cdots \frac{1}{2^{n-1} T^{n-1}(\tau(z)) \cdots T(\tau(z)) \tau(z)}$.

the Julia set

For $z \in p^{c}\left(A_{\lambda}\right)$, define
$f_{n}(z)=\frac{1}{2 \tau(z)}+\frac{1}{2^{2} T(\tau(z)) \tau(z)}+\cdots \frac{1}{2^{n-1} T^{n-1}(\tau(z)) \cdots T(\tau(z)) \tau(z)}$.
Lemma (Goldberg, Y.)
(a) $\left\{f_{n}\right\}$ converges normally (to f) on $p^{c}\left(A_{\lambda}\right)$.
(b) $I_{n+1} \subset\left\{z_{2}= \pm z_{0}+z_{1} f_{n}(z)\right\}$.
(c) $\lim _{n} F^{n}(z)=\left[z_{0}: 0: z_{2}+z_{1} f(z)\right], \quad z \in p^{c}(A) \backslash E$

the Julia set

For $z \in p^{c}\left(A_{\lambda}\right)$, define
$f_{n}(z)=\frac{1}{2 \tau(z)}+\frac{1}{2^{2} T(\tau(z)) \tau(z)}+\cdots \frac{1}{2^{n-1} T^{n-1}(\tau(z)) \cdots T(\tau(z)) \tau(z)}$.
Lemma (Goldberg, Y.)
(a) $\left\{f_{n}\right\}$ converges normally (to f) on $p^{c}\left(A_{\lambda}\right)$.
(b) $I_{n+1} \subset\left\{z_{2}= \pm z_{0}+z_{1} f_{n}(z)\right\}$.
(c) $\lim _{n} F^{n}(z)=\left[z_{0}: 0: z_{2}+z_{1} f(z)\right], \quad z \in p^{c}(A) \backslash E$

Theorem (Goldberg, Y.)
Consider the map $F: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ derived from the self-similarity of the Koopman repr. of D_{∞}. Then $\mathcal{J}(F)=p\left(A_{\lambda}\right) \cup E$.

Definition

Consider operator-valued 1-form $\omega_{A}(z)=-(A-z)^{-1} d z$. For $x \in \mathcal{H}$ with $\|x\|=1$, let ϕ_{x} be the vector state on \mathcal{B} such that $\phi_{x}(A)=<A x, x>, \quad A \in \mathcal{B}$.

Define metric g_{x} through

$$
g_{x}(z) d z \wedge d \bar{z}=\phi_{x}\left(\omega_{A}^{*}(z) \wedge \omega_{A}(z)\right)=\left\|(A-z)^{-1} x\right\|^{2} d z \wedge d \bar{z}
$$

Definition

Consider operator-valued 1-form $\omega_{A}(z)=-(A-z)^{-1} d z$. For $x \in \mathcal{H}$ with $\|x\|=1$, let ϕ_{x} be the vector state on \mathcal{B} such that $\phi_{x}(A)=<A x, x>, \quad A \in \mathcal{B}$.

Define metric g_{x} through

$$
g_{x}(z) d z \wedge d \bar{z}=\phi_{x}\left(\omega_{A}^{*}(z) \wedge \omega_{A}(z)\right)=\left\|(A-z)^{-1} x\right\|^{2} d z \wedge d \bar{z}
$$

Notes:

1. g_{x} defines a non-Euclidean metric on $\rho(A)$ that may have singularities at $\sigma(A)$.
2. g_{x} depends on A and x.

- If $A(z)=A-z l$, then $\omega_{A}(z)=-(A-z l)^{-1} d z$.
- Maurer-Cartan form $g^{-1} d g$.
- For a linear functional ϕ on \mathcal{B}, $\phi\left(\omega_{A}(z)\right)=\sum_{j=1}^{n} \phi\left(A^{-1}(z) A_{j}\right) d z_{j}$ is a holomorphic 1-form on $P^{c}(A)$. For a k-linear functional F,
$\kappa(F):=F\left(\omega_{A}(z), \omega_{A}(z), \ldots, \omega(z)\right)$ is a holomorphic k-form on $P^{c}(A)$.

Definition. A k-linear functional F on \mathcal{B} is said to be invariant if

$$
F\left(a_{1}, a_{2},, \ldots, a_{k}\right)=F\left(g a_{1} g^{-1}, g a_{2} g^{-1}, \ldots, g a_{k} g^{-1}\right)
$$

for all $a_{1}, a_{2},, \ldots, a_{k}$ in \mathcal{B} and every invertible $g \in \mathcal{B}$.

Definition. A k-linear functional F on \mathcal{B} is said to be invariant if

$$
F\left(a_{1}, a_{2},, \ldots, a_{k}\right)=F\left(g a_{1} g^{-1}, g a_{2} g^{-1}, \ldots, g a_{k} g^{-1}\right)
$$

for all $a_{1}, a_{2},, \ldots, a_{k}$ in \mathcal{B} and every invertible $g \in \mathcal{B}$.

Proposition

If the k-linear functional F is invariant, then
$\phi\left(\omega_{A}(z), \omega_{A}(z), \ldots, \omega_{A}(z)\right)$ is closed.

Hochschild q-cochain: $(q+1)$-linear functionals ϕ on \mathcal{B}. ϕ is a cyclic cocycle if for all elements $a_{0}, a_{1}, \ldots, a_{q}$ in \mathcal{B},
(1) $\phi\left(a_{0}, a_{1}, \ldots, a_{q}\right)=(-1)^{q} \phi\left(a_{q}, a_{0}, \ldots, a_{q-1}\right)$, and (2) $(b \phi):=\sum_{j=0}^{q}(-1)^{j} \phi\left(a_{0}, \ldots, a_{j} a_{j+1}, \ldots, a_{q+1}\right)+$ $(-1)^{q+1} \phi\left(a_{q+1} a_{0}, a_{1}, \ldots, a_{q}\right)=0$,
$H C^{q}(\mathcal{B})$: the space of q-cyclic cocycles.

Hochschild q-cochain: $(q+1)$-linear functionals ϕ on \mathcal{B}.
ϕ is a cyclic cocycle if for all elements $a_{0}, a_{1}, \ldots, a_{q}$ in \mathcal{B},
(1) $\phi\left(a_{0}, a_{1}, \ldots, a_{q}\right)=(-1)^{q} \phi\left(a_{q}, a_{0}, \ldots, a_{q-1}\right)$, and
(2) $(b \phi):=\sum_{j=0}^{q}(-1)^{j} \phi\left(a_{0}, \ldots, a_{j} a_{j+1}, \ldots, a_{q+1}\right)+$
$(-1)^{q+1} \phi\left(a_{q+1} a_{0}, a_{1}, \ldots, a_{q}\right)=0$,
$H C^{q}(\mathcal{B})$: the space of q-cyclic cocycles.

Proposition

(Cade and Y., 2012) Let \mathcal{B} be a topological algebra and ϕ be a continuous cyclic q-cocycle on \mathcal{B}. Then for any tuple A, $\kappa(\phi):=\phi\left(\omega_{A}(z), \omega_{A}(z), \ldots, \omega_{A}(z)\right)$ is a closed holomorphic $q+1$ form on $P^{c}(A)$. In fact,

$$
\frac{q}{q+1} \kappa(b \phi)=-d \kappa(\phi)
$$

Examples

- Let $\mathcal{B}=M_{k}(\mathbb{C})$. Then Jacobi's formula: $\operatorname{Tr}\left(\omega_{A}(z)\right)=d \log \operatorname{det} A(z), \quad z \in P^{c}(A)$.

Examples

- Let $\mathcal{B}=M_{k}(\mathbb{C})$. Then Jacobi's formula: $\operatorname{Tr}\left(\omega_{A}(z)\right)=d \log \operatorname{det} A(z), \quad z \in P^{c}(A)$.
- If \mathcal{B} is a topological algebra with a continuous trace tr, then for q even

$$
\phi\left(a_{0}, a_{1}, a_{2}, \ldots, a_{q}\right):=\operatorname{tr}\left(a_{0} a_{1} a_{2} \cdots a_{q}\right)
$$

is a cyclic q-cocycle, and $\operatorname{tr}\left(\omega^{q+1} A(z)\right)$ is closed.

Examples

- Let $\mathcal{B}=M_{k}(\mathbb{C})$. Then Jacobi's formula: $\operatorname{Tr}\left(\omega_{A}(z)\right)=d \log \operatorname{det} A(z), \quad z \in P^{c}(A)$.
- If \mathcal{B} is a topological algebra with a continuous trace tr, then for q even

$$
\phi\left(a_{0}, a_{1}, a_{2}, \ldots, a_{q}\right):=\operatorname{tr}\left(a_{0} a_{1} a_{2} \cdots a_{q}\right)
$$

is a cyclic q-cocycle, and $\operatorname{tr}\left(\omega^{q+1} A(z)\right)$ is closed.

- $\operatorname{tr}\left(\omega^{3} A(z)\right)$: Chern-Simons forms.

Examples

- Let $\mathcal{B}=M_{k}(\mathbb{C})$. Then Jacobi's formula:

$$
\operatorname{Tr}\left(\omega_{A}(z)\right)=d \log \operatorname{det} A(z), \quad z \in P^{c}(A)
$$

- If \mathcal{B} is a topological algebra with a continuous trace tr, then for q even

$$
\phi\left(a_{0}, a_{1}, a_{2}, \ldots, a_{q}\right):=\operatorname{tr}\left(a_{0} a_{1} a_{2} \cdots a_{q}\right)
$$

is a cyclic q-cocycle, and $\operatorname{tr}\left(\omega^{q+1} A(z)\right)$ is closed.

- $\operatorname{tr}\left(\omega^{3} A(z)\right)$: Chern-Simons forms.

Proposition

(Cade and $Y ., 2009$) If A is a 4-tuple in a Banachl algebra with a continuous trace $t r$, then $\operatorname{tr}\left(\omega_{A}^{3}\right)=\phi(z) S(z)$, where $S(z)=z_{1} d z_{2} d z_{3} d z_{4}-z_{2} d z_{1} d z_{3} d z_{4}+z_{3} d z_{1} d z_{2} d z_{4}-z_{4} d z_{1} d z_{2} d z_{3}$, and $\phi(z)$ is a holomorphic function on $P^{c}(A)$.
(A higher order form of Jacobi's formula!)

On $M_{2}(\mathbb{C})$

Let $A_{1}=I$ and A_{2}, A_{3}, A_{4} be the Pauli matrices.

$$
A(z)=\sum_{k=1}^{4} z_{k} A_{k}, \quad \text { and } \quad \omega_{A}(z)=A^{-1}(z) d A(z)
$$

Then

1) $P(A)=\left\{z \in \mathbb{C}^{4}: z_{1}^{2}-z_{2}^{2}-z_{3}^{2}-z_{4}^{2}=0\right\}$.
2) $P^{c}(A) \cong G L(2, \mathbb{C})$.
3) $\operatorname{Tr}\left(\omega_{A}^{3}(z)\right)=12 i D^{-2} S(z)$, where $D=z_{1}^{2}-z_{2}^{2}-z_{3}^{2}-z_{4}^{2}$.
4) $S U(2, \mathbb{C})) \cong S^{3}=\left\{\left(x_{1}, i x_{2}, i x_{3}, i x_{4}\right): x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}$, and $\left.\operatorname{Tr}\left(\omega_{A}^{3}(z)\right)\right|_{M}=-12 S(x)$ is the standard 3-form on S^{3}.
