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Review of Part I
Joint Spectrum

Let A0, . . . ,An be bounded linear operators on a Hilbert space
V . Their joint spectrum is the closed set in projective space

σ(A0, . . . ,An) ={
[x0 : · · · : xn] ∈ CPn : x0A0 + · · ·+ xnAn not invertible

}
.

When V is finite dimensional, the joint spectrum is given by the
vanishing of the determinant

D(x0, . . . , xn) = det [x0A0 + · · ·+ xnAn]

thus it has the additional structure of an algebraic subscheme
of CPn.
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Review of Part I
Determinantal Hypersurfaces

More generally, given linear operators A0, . . . ,An on a
finite-dimensional vector space V over any field F, the
determinant

D(x0, . . . , xn) = det [x0A0 + · · ·+ xnAn]

is a homogeneous polynomial in x0, . . . , xn of degree dim V .

The ideal generated by this polynomial defines an algebraic
closed subscheme of projective space FPn called a
determinantal hypersurface, and we also denote it by

σ(A0, . . . ,An)

.
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Review of Part I
Coxeter groups

A Coxeter group is a finitely generated group G on generators
g1, . . . ,gn defined by the following relations:

(gigj)
mij = 1, i , j = 1, . . . ,n,

where mii = 1 and mij ∈ N ∪ {∞}, with mij ≥ 2 when i 6= j . It is
easy to see that to avoid redundancy we must have mij = mji ,
and that mij = 2 means gi and gj commute.
The set of generators {g1, . . . ,gn} is called a Coxeter set of
generators, and the mijs are called the Coxeter exponents.
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Review of Part I
Coxeter groups

A traditional way of presentation of a Coxeter group is through
its Coxeter diagram, which is a graph constructed by the
following rules:

I the vertices of the graph are the generator subscripts;
I vertices i and j form an edge if and only if mij ≥ 3;
I an edge is labeled with the value mij whenever this value is

4 or greater.
In particular, two generators commute if and only if they are not
connected by an edge.
The disjoint union of Coxeter diagrams yields a direct product of
Coxeter groups, and a Coxeter group is connected if its
diagram is a connected graph.
The finite connected Coxeter groups consist of the
one-parameter families An, Bn, Dn, and I(n), and the six
exceptional groups E6, E7, E8, F4, H3, and H4.
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Review of Part I
Coxeter groups

The Coxeter diagrams for the groups An,Bn,Dn+1, and I(n) are
as follows:

An :
1 2

. . .
n − 1 n

Bn :
1

4

2
. . .

n − 1 n

Dn+1 :
1 2

. . .
n − 1

n

n + 1

I(n) :
1

n

2
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Review of Part I
Group representations

Let G be a group, and let ρ : G −→ GL(V ) be a representation
of G, that is, a homomorphism from G to the group of invertible
linear operators on the vector space V .

Two representation ρ1 and ρ2 are equivalent if ρ2 = δρ1δ
−1 for

some δ ∈ GL(V ).

When V is a Hilbert space we require that GL(V ) be the group
of bounded invertible linear operators. In that case we call ρ
unitary provided that its image consists of unitary operators.
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Review of Part I
Character and determinant

When V is a finite-dimensional Hilbert space, the character of
ρ is the function

χρ : G −→ C

given by χρ(g) = Tr ρ(g).

Let T = {g1, . . . ,gn} be a generating set for G. We set

D(T , ρ) = σ
(
I, ρ(g1), . . . , ρ(gn)

)
and refer to this set as the joint spectrum of T on ρ. When V
is finite dimensional this is a determinantal hypersurface, and
we call it the determinant of T on ρ
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Review of Part I
The left regular representation

Let F be a field. The group G acts on the group ring F[G] by
multiplication on the left. The resulting homomorphism

ρ : G −→ GL
(
F[G]

)
is the left regular representation of G (over F).

Over C we have more structure. The group ring C[G] has inner
product 〈∑

g∈G

agg,
∑
g∈G

bgg
〉

=
∑
g∈G

ag b̄g

and corresponding induced norm∥∥∥∑agg
∥∥∥ =

∑
|ag |2.

We write C[G]∨ for the Hilbert space obtained by completing
with respect to this norm. (If G is finite then C[G]∨ = C[G].)
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Review of Part I
The left regular representation

Left multiplication by g ∈ G on C[G] induces a bounded
invertible unitary linear operator ρ(g) on C[G]∨, and the
resulting map

ρ : G→ GL
(
C[G]∨

)
is a faithful unitary representation of G also called the left
regular representation of G.

If T is a generating set for G and ρ is the left regular
representation of G we write just D(T ) instead of D(T , ρ). We
call D(T ) the determinant of T on G.
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The main results
“The determinant determines the group”

Theorem (Cuckovic, Stessin, T.)
Let G be a Coxeter group with Coxeter generating set
T = {g1, . . . ,gn}. Let G′ be a group, and let T ′ = {g′1, . . . ,g′n}
be a generating set for G′.

1. If D(T ) ⊇ D(T ′) as subsets of CPn, then there is an
epimorphism of groups f : G −→ G′ such that f (gi) = g′i for
each 1 ≤ i ≤ n. In particular, if G is finite then so is G′.

2. If G is finite and D(T ) = D(T ′) as subschemes of CPn,
then the homomorphism f from part (1) is an isomorphism.
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The main results
“The determinant determines the representation”

Theorem (Cuckovic, Stessin, T.)
Let G be a Coxeter group and T = {g1, . . . ,gn} be a set of
Coxeter generators. Suppose G is of type either I (dihedral
group), or A, or B, or D.

If for two finite dimensional complex linear representations ρ1
and ρ2 of G we have

D(T , ρ1) = D(T , ρ2)

as subschemes of CPn, then the representations ρ1 and ρ2 are
equivalent.

A. Tchernev Spectra and Coxeter groups



The main results
“The determinant determines the representation”

Theorem (Cuckovic, Stessin, T.)
Let G be a Coxeter group and T = {g1, . . . ,gn} be a set of
Coxeter generators. Suppose G is of type either I (dihedral
group), or A, or B, or D.

If for two finite dimensional complex linear representations ρ1
and ρ2 of G we have

D(T , ρ1) = D(T , ρ2)

as subschemes of CPn, then the representations ρ1 and ρ2 are
equivalent.

A. Tchernev Spectra and Coxeter groups



The main results
“The determinant determines the representation”

Theorem (Cuckovic, Stessin, T.)
Let G be a Coxeter group and T = {g1, . . . ,gn} be a set of
Coxeter generators. Suppose G is of type either I (dihedral
group), or A, or B, or D.

If for two finite dimensional complex linear representations ρ1
and ρ2 of G we have

D(T , ρ1) = D(T , ρ2)

as subschemes of CPn,

then the representations ρ1 and ρ2 are
equivalent.

A. Tchernev Spectra and Coxeter groups



The main results
“The determinant determines the representation”

Theorem (Cuckovic, Stessin, T.)
Let G be a Coxeter group and T = {g1, . . . ,gn} be a set of
Coxeter generators. Suppose G is of type either I (dihedral
group), or A, or B, or D.

If for two finite dimensional complex linear representations ρ1
and ρ2 of G we have

D(T , ρ1) = D(T , ρ2)

as subschemes of CPn, then the representations ρ1 and ρ2 are
equivalent.

A. Tchernev Spectra and Coxeter groups



The main results
“The determinant determines the character”

Let G be a Coxeter group of type C̃n, and {g1, . . . ,gn+1} be a
set of Coxeter generators. This means that

(gigj)
mij = 1,

where
mii = 1,
mjk = 2 for k − j ≥ 2,
m12 = mn,n+1 = 4,

mi,i+1 = 3 for i = 2, . . . ,n − 1, and
mij = mji for all i , j .

1

44

2
. . .

n n + 1
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Let

r1 = g1g2 . . . gngn+1gn . . . g2 and t1 = r1g1.

For j = 2, . . . ,n set

tj = gj−1tj−1gj−1 and rj = gj rj−1gj .

It is not hard to check that N = 〈r1, . . . , rn〉 is an abelian normal
subgroup of G and G = Bn n N.
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Theorem (Peebles, Stessin, T., Weyman)
With G and the elements gi , ti , and ri as in the previous slide, let

T = {g2, . . . ,gn+1, t2, . . . , tn, r1, . . . , rn, r−1
1 , . . . , r−1

n }.

If for two finite dimensional complex linear unitary
representations ρ1 and ρ2 of G we have

D(T , ρ1) = D(T , ρ2)

as subschemes of CPn, then the representations ρ1 and ρ2
have equal characters.
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“Irreducible representations have irreducible determinant”

Let e1, . . . ,en be the standard basis vectors of Cn. The
symmetric group Sn acts on Cn by permuting the vectors ei .
The subspace V spanned by the set {e2 − e1, . . . ,en − en−1} is
invariant, and the resulting homomorphism ρ : Sn −→ GL(V ) is
called the reflection representation of Sn. It is well known that
this is irreducible, i.e. that V does not contain nontrivial proper
invariant subspaces.

Theorem (Schiffler, Stessin, T., Weyman)
Let ρ be the reflection representation of the symmetric group
Sn. Let T = {(1,2), (2,3), . . . , (n − 1,n)} be the usual set of
Coxeter generators for Sn.
Then the determinant D(T , ρ) is a reduced irreducible closed
subscheme of CPn−1.
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Let G = {1,g1, . . .gn} be a finite group.

Let T = {g1, . . . ,gn} = G \ {1}.
Dedekind was interested in factoring the defining polynomial for
the determinantal hypersurface D(T ) and asked Frobenius.
Frobenius called this defining polynomial the group
determinant, and showed in a series of papers that appeared
in 1896, in our language, that the irreducible components of
D(T ) are precisely the determinants D(T , ρ) of the irreducible
representations ρ of G, and the multiplicity of each component
equals the dimension of the corresponding irreducible
representation.
In the process Frobenius created the theory of group
characters, and modern representation theory emerged.
Almost hundred years later, it was shown by Formanek and
Sibley in 1991 that the group determinant determines the
isomorphism class of the group as well.
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The road ahead
A guiding principle

The results discussed so far naturally lead to the following:

Conjecture
Let G be a finite group, and let T be a fixed generating set for
G. Let ρ1 and ρ2 be finite dimensional complex representations
of G.

1. The subscheme D(T ) of CP|T | determines G.
2. If D(T , ρ1) = D(T , ρ2) as subschemes of CP|T | then ρ1 is

equivalent to ρ2.
3. If ρ1 is irreducible, then D(T , ρ1) is reduced and irreducible.
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The road ahead
Related questions

1. The singular locus of D(T , ρ) emerges as a very interesting
invariant of a finite dimensional representation ρ.

2. If G is finitely generated, but not necessarily finite, does
Conjecture 2 hold within the class of unitary
representations?

3. If G is finitely generated, but not necessarily finite, does
Conjecture 3 hold?

4. If G is finite, does Conjecture 3 hold in the modular case?
5. In the modular case, what is the relationship between

D(T , ρ) and other modular invariants such as the Brauer
character and support varieties.

6. Examples for small irreducible representations (hooks) of
Sn show that in some cases one can realize the
determinant of a representation as a specialization of a
cluster variable. It would be very interesting to uncover the
mechanism behind this phenomenon.
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