Determinantal Hypersurfaces, Joint Spectra, and Representations of Coxeter Groups

M.I.Stessin
University at Albany

April, 2019

Based on joint works with Z. Cuckovic, T. Peebles, A. Tchernev, and J.Weyman

Let A_{1}, \ldots, A_{n} be $k \times k$ matrices. The set

$$
\sigma\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}\right)=\left\{\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \in \mathbb{C P}^{\mathrm{n}-1}: \operatorname{det}\left(\mathrm{x}_{1} \mathrm{~A}_{1}+\ldots+\mathrm{x}_{n} \mathrm{~A}_{n}\right)=0\right\}
$$

is called the determinantal hypersurface determined by A_{1}, \ldots, A_{n}.
We always assume that at least one of A_{1}, \ldots, A_{n} is invertible, and, therefore can be taken to be the identity matrix I.

Let A_{1}, \ldots, A_{n} be $k \times k$ matrices. The set

$$
\sigma\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}\right)=\left\{\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \in \mathbb{C P}^{\mathrm{n}-1}: \operatorname{det}\left(\mathrm{x}_{1} \mathrm{~A}_{1}+\ldots+\mathrm{x}_{n} \mathrm{~A}_{n}\right)=0\right\}
$$

is called the determinantal hypersurface determined by A_{1}, \ldots, A_{n}.
We always assume that at least one of A_{1}, \ldots, A_{n} is invertible, and, therefore can be taken to be the identity matrix I.

If A_{1}, \ldots, A_{n} are operators acting on a Hilbert space X, the projective joint spectrum of A_{1}, \ldots, A_{n} introduced by Yang (2008) is

$$
\begin{array}{r}
\sigma\left(A_{1}, \ldots, A_{n}\right)=\left\{\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{C P}^{n-1}:\right. \\
\left.x_{1} A_{1}+\ldots+x_{n} A_{n} \text { is not invertible }\right\}
\end{array}
$$

Let A_{1}, \ldots, A_{n} be $k \times k$ matrices. The set

$$
\sigma\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}\right)=\left\{\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \in \mathbb{C P}^{\mathrm{n}-1}: \operatorname{det}\left(\mathrm{x}_{1} \mathrm{~A}_{1}+\ldots+\mathrm{x}_{n} \mathrm{~A}_{n}\right)=0\right\}
$$

is called the determinantal hypersurface determined by A_{1}, \ldots, A_{n}.
We always assume that at least one of A_{1}, \ldots, A_{n} is invertible, and, therefore can be taken to be the identity matrix I.

If A_{1}, \ldots, A_{n} are operators acting on a Hilbert space X, the projective joint spectrum of A_{1}, \ldots, A_{n} introduced by Yang (2008) is

$$
\begin{array}{r}
\sigma\left(A_{1}, \ldots, A_{n}\right)=\left\{\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{C} P^{n-1}:\right. \\
\left.x_{1} A_{1}+\ldots+x_{n} A_{n} \text { is not invertible }\right\}
\end{array}
$$

We will concentrate on the case when $A_{n}=I$ and denote by

$$
\sigma_{p}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}-1}\right)=\sigma\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}-1}, \mathrm{I}\right) \cap\left\{\mathrm{x}_{\mathrm{n}} \neq 0\right\} \text { (so that } \mathrm{x}_{\mathrm{n}}=-1 \text {). }
$$

Determinantal hypersurface of a tuple of matrices is an algebraic manifold in $\mathbb{C P}^{n-1}$, but if X is infinite dimensional, the joint spectrum is not necessarily an analytic set.

Determinantal hypersurface of a tuple of matrices is an algebraic manifold in $\mathbb{C P}^{n-1}$, but if X is infinite dimensional, the joint spectrum is not necessarily an analytic set.

Theorem (S., Tchernev)

Let A_{1}, \ldots, A_{n} be bounded operators on a Hilbert space X with A_{1} normal, and let $\lambda \neq 0$ be an isolated spectral point of $A_{!}$of finite multiplicity. Then, there is a neignbourhood $O \subset \mathbb{C P}$ n of
$[1 / \lambda, 0, \ldots, 0,-1]$ such that $\sigma_{p}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{n}\right) \cap O$ is an analytic set of pure codimension one.
The same is true without the assumption of normality if λ is a simple isolated spectral point.

Q. 1

Given a hypersurface $\Gamma \subset \mathbb{C P}^{n}$ when are there matrices A_{1}, \ldots, A_{n+1} such that

$$
\Gamma=\sigma\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}+1}\right) ?
$$

In the case when the answer is affirtmative, it is said that Γ has a determinatal representation.

Q. 1

Given a hypersurface $\Gamma \subset \mathbb{C P}^{p n}$ when are there matrices $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}+1}$ such that

$$
\Gamma=\sigma\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}+1}\right) ?
$$

In the case when the answer is affirtmative, it is said that Γ has a determinatal representation.

Q. 2

Given that $\Gamma \subset \mathbb{C P}^{n}$ has a determinantal representation, what does its geometry say about the relations between the matrices in the tuple?
Q. 1

Given a hypersurface $\Gamma \subset \mathbb{C P}^{p n}$ when are there matrices $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}+1}$ such that

$$
\Gamma=\sigma\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}+1}\right) ?
$$

In the case when the answer is affirtmative, it is said that Γ has a determinatal representation.

Q. 2

Given that $\Gamma \subset \mathbb{C P}^{n}$ has a determinantal representation, what does its geometry say about the relations between the matrices in the tuple?

Motzkin and Taussky (1952): Two self-adjoint matrices commute $\Longleftrightarrow \sigma\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{I}\right)$ is a union of projective lines.
Chagouel, S., Zhu (2015) extended this result to tuples of compact self-adjoint operators in a Hilbert space, and tuples of normal matrices.

If A_{1}, \ldots, A_{n} have a common invariant subspace of dimension k, then $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ contains an algebraic hypersurface of order k . Simple examples show that the converse is not true. For example, if

$$
A_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 0
\end{array}\right], A_{2}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 7 & 1 \\
1 & 1 & 1 / 2
\end{array}\right]
$$

then
$\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{C}^{2}:(\mathrm{x}+\mathrm{y}-1)\left(5 \mathrm{xy}+5 \mathrm{y}^{2}-15 \mathrm{y}-10 \mathrm{x}+2\right)=0\right\}$.
There are a line and a quadratic in the joint spectrum, but no common eigenvectors and no common two-dimensional invariant subspaces.
Q. $\mathbf{2}^{\prime}$

Find a necessary and sufficient conditions for an appearance of an algebraic hypersurface of order k in $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ to indicate that there is a k -dimensional common invariant subspace.

It turned out that the case $\mathrm{n}=2, \mathrm{k}=1$ is the most important here.

Theorem (S., Tchernev)
Let $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ be self-adjoint, $\lambda \neq 0$ be an isolated point of $\sigma\left(\mathrm{A}_{1}\right)$, and there exists $\rho>0$ such that, up to multiplicity,

$$
\begin{array}{r}
\Delta_{\rho}(1 / \lambda, 0, \ldots, 0) \cap\left\{\lambda x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=1\right\} \\
=\Delta_{\rho}(1 / \lambda, 0, \ldots, 0) \cap \sigma_{p}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{n}\right)
\end{array}
$$

where $\Delta_{\rho}(w)=\left\{z \in \mathbb{C}^{n}:\left|z_{j}-w_{j}\right|<\rho\right\}$.
The following are equivalent:
(1) The eigensubspace of A_{1} corresponding to eigenvalue λ is an eigensubspace for each of the operators A_{2}, \ldots, A_{n};
(2) There exist an $\epsilon \in \mathbb{R}, \epsilon \neq 1$, and $\rho^{\prime}>0$ such that $\mathrm{A}_{1}(\epsilon, \lambda)$ is invertible and, up to multiplicity,

$$
\begin{gathered}
\Delta_{\rho^{\prime}}(\lambda, 0, \ldots, 0) \cap\left\{(1 / \lambda) \mathrm{x}_{1}+\mathrm{a}_{2} \mathrm{x}_{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=1\right\} \\
=\Delta_{\rho^{\prime}}(\lambda, 0, \ldots, 0) \cap \sigma_{\mathrm{p}}\left(\mathrm{~A}_{1}(\epsilon, \lambda)^{-1}, \mathrm{~A}_{2}\left(\epsilon, \mathrm{a}_{2}\right), \ldots, \mathrm{A}_{\mathrm{n}}\left(\epsilon, \mathrm{a}_{\mathrm{n}}\right)\right),
\end{gathered}
$$

where $\mathrm{A}(\epsilon, \mathrm{b})=(1+\epsilon) \mathrm{A}-\mathrm{b} \epsilon \mathrm{l}$.

Corollary

Let A_{1} be a unitary involution $\left(A_{1}^{2}=I\right)$ with 1 being a spectral point of A_{1} of finite multiplicity, and let A_{2}, \ldots, A_{n} be self-adjoint. If $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ contains a part of a hyperplane passing through $(1,0 \ldots, 0)$ that lies in a neighborhood of $(1,0, \ldots, 0)$, then A_{1}, \ldots, A_{n} have a common eigenvector.

Remark: If the multiplicity is infinite, it is no longer true.

Algebraic curves in the spectrum

Let A_{1} and A_{2} be two self-adjoint operators on X and suppose that $\lambda \neq 0$ is an isolated spectral point of A_{1} of finite multiplicity. Suppose that for some neighborhood O of a point $(1 / \lambda, 0)$ the part of the joint spectrum $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ which is in O is an an algebraic curve

$$
\begin{gathered}
\sigma_{\mathrm{p}}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \cap O=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in O: \mathcal{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0\right\} \\
\mathcal{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\sum_{\mathrm{j}=0}^{\mathrm{k}} \mathrm{R}_{\mathrm{j}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{gathered}
$$

$R_{j}\left(x_{1}, x_{2}\right)$ is a homogeneous polynomial of degree $j, R_{0}=-1$.

Algebraic curves in the spectrum

Let A_{1} and A_{2} be two self-adjoint operators on X and suppose that $\lambda \neq 0$ is an isolated spectral point of A_{1} of finite multiplicity. Suppose that for some neighborhood O of a point $(1 / \lambda, 0)$ the part of the joint spectrum $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ which is in O is an an algebraic curve

$$
\begin{gathered}
\sigma_{\mathrm{p}}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \cap O=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in O: \mathcal{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0\right\} \\
\mathcal{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\sum_{\mathrm{j}=0}^{\mathrm{k}} \mathrm{R}_{\mathrm{j}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{gathered}
$$

$R_{j}\left(x_{1}, x_{2}\right)$ is a homogeneous polynomial of degree $j, R_{0}=-1$.

We assume that ($1 /$ lambda, 0) is not a singular point of $\sigma\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and that the line $\left\{\mathrm{x}_{2}=0\right\}$ is not tangent to $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ at $(1 / \lambda, 0)$, so that $\forall \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in O,\{\tau \mathrm{x}: \tau \in \mathbb{C}\} \cap \sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right) \neq \emptyset$.

Let $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in O$. Write

$$
A(x)=x_{1} A_{1}+x_{2} A_{2} .
$$

We have

$$
\begin{gathered}
\mathrm{tx}=\left(\mathrm{tx}_{1}, \mathrm{tx}_{2}\right) \in \sigma_{\mathrm{p}}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \Longleftrightarrow \sum_{\mathrm{j}=0}^{\mathrm{k}} \mathrm{t}^{\mathrm{j}} \mathrm{R}_{\mathrm{j}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0, \\
\mathrm{tx} \in \sigma_{\mathrm{p}}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \Longleftrightarrow \mu=1 / \mathrm{t} \in \sigma(\mathrm{~A}(\mathrm{x})),
\end{gathered}
$$

Let $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in O$. Write

$$
A(x)=x_{1} A_{1}+x_{2} A_{2} .
$$

We have

$$
\begin{gathered}
\mathrm{tx}=\left(\mathrm{tx}_{1}, \mathrm{tx}_{2}\right) \in \sigma_{\mathrm{p}}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \Longleftrightarrow \sum_{\mathrm{j}=0}^{\mathrm{k}} \mathrm{t}^{\mathrm{j}} \mathrm{R}_{\mathrm{j}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0, \\
\mathrm{tx} \in \sigma_{\mathrm{p}}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \Longleftrightarrow \mu=1 / \mathrm{t} \in \sigma(\mathrm{~A}(\mathrm{x})),
\end{gathered}
$$

and μ satisfies

$$
\mu^{\mathrm{k}}-\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{R}_{\mathrm{k}-\mathrm{j}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mu^{\mathrm{j}}=0
$$

If O is small enough, the last equation has a root $\mu(\mathrm{x})$ close to 1 which is an eigenvalue of $A(x)$.

If $\xi(\mathrm{x})$ is an eigenvector of $\mathrm{A}(\mathrm{x})$ with eigenvalue $\mu(\mathrm{x})$, then

$$
\begin{gathered}
\left(\mathrm{A}(\mathrm{x})^{\mathrm{k}}-\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{R}_{\mathrm{k}-\mathrm{j}}(\mathrm{x}) \mathrm{A}(\mathrm{x})^{\mathrm{j}}\right) \xi=0, \\
\left(\mathrm{~A}(\mathrm{x})^{\mathrm{k}}-\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{R}_{\mathrm{k}-\mathrm{j}}(\mathrm{x}) \mathrm{A}(\mathrm{x})^{\mathrm{j}}\right) \mathrm{P}(\mathrm{x}) \eta=0, \quad \forall \eta \in \mathrm{X},
\end{gathered}
$$

$P(x)$ is the orthogonal projection X onto the eigenspace of $A(x)$ with eigenvalue $\mu(\mathrm{x})$.

$$
\Longrightarrow\left(A(x)^{k}-\sum_{j=1}^{k} R_{k-j}(x) A(x)^{j}\right) P(x)=0 .
$$

Well-known:

$$
\mathrm{P}(\mathrm{x})=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(\mathrm{zl}-\mathrm{A}(\mathrm{x}))^{-1} \mathrm{dz}
$$

γ-a small contour around 1.

Well-known:

$$
\mathrm{P}(\mathrm{x})=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}(\mathrm{zl}-\mathrm{A}(\mathrm{x}))^{-1} \mathrm{dz}
$$

γ-a small contour around 1.

$$
\mathrm{A}(\mathrm{x})^{\mathrm{m}} \mathrm{P}(\mathrm{x})=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \mathrm{z}^{\mathrm{m}}(\mathrm{zl}-\mathrm{A}(\mathrm{x}))^{-1} \mathrm{dz}
$$

Therefore,

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}\left(z^{\mathrm{k}}-\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{R}_{\mathrm{k}-\mathrm{j}}(\mathrm{x}) \mathrm{z}^{\mathrm{j}}\right)(\mathrm{zl}-\mathrm{A}(\mathrm{x}))^{-1} \mathrm{~d} z=0
$$

Let $x=(1 / \lambda, y)$, with y being small. Then

$$
\begin{array}{r}
A(x)=(1 / \lambda) A_{1}+y A_{2}, \\
(z l-A(x))^{-1}=\left(z l-(1 / \lambda) A_{1}\right)^{-1}\left(I-y A_{2}\left(z I-(1 / \lambda) A_{1}\right)^{-1}\right)^{-1} \\
=\left(z l-(1 / \lambda) A_{1}\right)^{-1} \sum_{j=0}^{\infty} y^{j}\left[A_{2}\left(z l-(1 / \lambda) A_{1}\right)^{-1}\right]^{j},
\end{array}
$$

Let $x=(1 / \lambda, y)$, with y being small. Then

$$
\begin{array}{r}
A(x)=(1 / \lambda) A_{1}+y A_{2}, \\
(z l-A(x))^{-1}=\left(z I-(1 / \lambda) A_{1}\right)^{-1}\left(I-y A_{2}\left(z I-(1 / \lambda) A_{1}\right)^{-1}\right)^{-1} \\
=\left(z I-(1 / \lambda) A_{1}\right)^{-1} \sum_{j=0}^{\infty} y^{j}\left[A_{2}\left(z I-(1 / \lambda) A_{1}\right)^{-1}\right]^{j} \\
\Rightarrow \sum_{j=0}^{\infty} y^{j} \frac{1}{2 \pi i} \int_{\gamma}\left(z^{k}-\sum_{j=1}^{k} R_{k-j}(1 / \lambda, y) z^{j}\right)\left(z I-(1 / \lambda) A_{1}\right)^{-1} S^{j} d z,
\end{array}
$$

where $S=\left[A_{2}\left(z I-(1 / \lambda) A_{1}\right]\right.$.

A rearrangement of terms gives

$$
\sum_{j=0}^{\infty} \frac{\mathrm{y}^{\mathrm{j}}}{2 \pi \mathrm{i}} \int_{\gamma} \Psi_{\mathrm{j}}(\mathrm{z}) \mathrm{dz}=0
$$

where $\Psi_{j}(z)$ are operator-valued meromorphic functions of z obtained from the equation above.

A rearrangement of terms gives

$$
\sum_{j=0}^{\infty} \frac{\mathrm{y}^{\mathrm{j}}}{2 \pi \mathrm{i}} \int_{\gamma} \Psi_{\mathrm{j}}(\mathrm{z}) \mathrm{dz}=0
$$

where $\Psi_{j}(z)$ are operator-valued meromorphic functions of z obtained from the equation above.
Thus,

$$
\begin{equation*}
\left.\operatorname{Rez}\left(\Psi_{j}\right)\right|_{z=1}=0, j=0,1, \ldots \tag{2}
\end{equation*}
$$

(This relation for $\mathrm{j}=0$ is not informative).

A rearrangement of terms gives

$$
\sum_{j=0}^{\infty} \frac{\mathrm{y}^{\mathrm{j}}}{2 \pi \mathrm{i}} \int_{\gamma} \Psi_{\mathrm{j}}(\mathrm{z}) \mathrm{dz}=0
$$

where $\Psi_{j}(z)$ are operator-valued meromorphic functions of z obtained from the equation above.
Thus,

$$
\begin{equation*}
\left.\operatorname{Rez}\left(\Psi_{j}\right)\right|_{z=1}=0, j=0,1, \ldots \tag{2}
\end{equation*}
$$

(This relation for $\mathrm{j}=0$ is not informative).
Remark It is possible to show that conditions of the last relation imply that all Ψ_{j} are holomorphic and that these conditions are necessary and sufficient for the curve $\mathcal{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0$ to be in the spectrum.

For this talk we will need relations (2) only for $\mathrm{j}=1,2$.

Recall that we denoted by P the projection onto the λ-eigenspace of A_{1}. Now we introduce the following operator $T\left(A_{1}\right)$.
1). In the case of matrices, let $\lambda=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{s}}$ be distinct eigenvalues of A_{1} and $P=P_{1}, P_{2}, \ldots, P_{s}$ be the corresponding projections. Then

$$
\mathrm{T}\left(\mathrm{~A}_{1}\right)=\mathrm{T}=\sum_{\mathrm{j}=2}^{\mathrm{s}} \frac{\lambda}{\lambda_{\mathrm{j}}-\lambda} \mathrm{P}_{\mathrm{j}} .
$$

Recall that we denoted by P the projection onto the λ-eigenspace of A_{1}. Now we introduce the following operator $T\left(A_{1}\right)$.
1). In the case of matrices, let $\lambda=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{s}}$ be distinct eigenvalues of A_{1} and $P=P_{1}, P_{2}, \ldots, P_{s}$ be the corresponding projections. Then

$$
\mathrm{T}\left(\mathrm{~A}_{1}\right)=\mathrm{T}=\sum_{\mathrm{j}=2}^{\mathrm{s}} \frac{\lambda}{\lambda_{\mathrm{j}}-\lambda} \mathrm{P}_{\mathrm{j}} .
$$

2). For general self-adjoint operators

$$
\mathrm{T}=\int_{\sigma\left(\mathrm{A}_{1}\right) \backslash\{\lambda\}} \frac{\lambda}{\mathrm{z}-\lambda} \mathrm{dE}(\mathrm{z})
$$

where

$$
\mathrm{A}_{1}=\int_{\sigma\left(\mathrm{A}_{1}\right)} \mathrm{zdE}(\mathrm{z})
$$

is the spectral resolution of A_{1}.

Theorem (S., Tchernev)

Suppose that A_{1} and A_{2} are self-adjoint, that $\lambda \neq 0$ is an isolated spectral point of A_{1} of finite multiplicity such that

- $(1 / \lambda, 0)$ belongs to only one component of $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and in a neighborhood of $(1 / \lambda, 0)$ the proper joint spectrum $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is given by $\mathcal{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0$;
- $\left.\frac{\partial \mathcal{R}}{\partial x_{1}}\right|_{(1 / \lambda, 0)} \neq 0$, so that locally $\{\mathcal{P}=0\}$ defines x_{1} as an implicit function of $x_{2}, x_{1}=x_{1}\left(x_{2}\right), x_{1}(0)=1 / \lambda$.
Then

$$
\begin{align*}
\mathrm{PA}_{2} \mathrm{P} & =-\mathrm{x}_{1}^{\prime}(0) \mathrm{P} \tag{3}\\
\mathrm{PA}_{2} \mathrm{TA}_{2} \mathrm{P} & =-\frac{\mathrm{x}_{1}^{\prime \prime}(0)}{2} \mathrm{P} . \tag{4}
\end{align*}
$$

This result is used to prove Theorem about common eigenvalues for tuples.

Another application of this result is to the case when the unit circle is in the spectrum.

Theorem (Cuckovic, S., Tchernev)

Let $\mathrm{A}_{1}, \mathrm{~A}_{2}$ be self-adjoint operators on an N -dimensional Hilbert space X, and suppose that A_{1} is invertible and that $\left\|A_{2}\right\|=1$.

Further suppose that the "complex unit circle" $\left\{(x, y) \in \mathbb{C}^{2}: x^{2}+y^{2}=1\right\}$ is a reduced component of both $\sigma_{p}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$ and $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}^{-1}, \mathrm{~A}_{2}\right)$, of multiplicity n , and that the points $(\pm 1,0)$ do not belong to any other component of either $\sigma_{p}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$ or $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}^{-1}, \mathrm{~A}_{2}\right)$, and that the points $(0, \pm 1)$ do not belong to any other component of $\sigma_{p}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$.

Theorem (Continued)

Then:

1. A_{1} and A_{2} have a common $2 n$-dimensional invariant subspace L;
2. The pair of restrictions $\left.A_{1}\right|_{L}$ and $\left.A_{2}\right|_{L}$ is unitary equivalent to the following pair of $2 n \times 2 n$ involutions C_{1} and C_{2}, each block-diagonal with n equal 2×2 blocks along the diagonal:

$$
\mathrm{C}_{1}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & -1
\end{array}\right], \mathrm{C}_{2}=\left[\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

3. The group generated by C_{1} and C_{2} represents the Coxeter group B_{2}.

Corollary

If in the previous Theorem A_{1} is an involution and the "circle" is in the spectrum with $(\pm 1,0),(0, \pm 1)$ not being singular points of the spectrum, then the conclusions of the above Theorem hold.

Unitary Matrices

Lemma

Let A_{1} and A_{2} be bounded self-adjoint involutions on a Hilbert space X that is $A_{1}^{2}=A_{2}^{2}=I$. Then:

1) The set $\sigma_{p}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$ is the union of all the "complex ellipses"

$$
\mathcal{E}_{\alpha}=\left\{\mathrm{x}^{2}+\alpha \mathrm{x} \mathrm{y}+\mathrm{y}^{2}=1\right\} \text { with } \alpha \in \sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right) .
$$

Unitary Matrices

Lemma

Let A_{1} and A_{2} be bounded self-adjoint involutions on a Hilbert space X that is $A_{1}^{2}=A_{2}^{2}=I$. Then:

1) The set $\sigma_{p}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$ is the union of all the "complex ellipses"

$$
\mathcal{E}_{\alpha}=\left\{\mathrm{x}^{2}+\alpha \mathrm{x} \mathrm{y}+\mathrm{y}^{2}=1\right\} \text { with } \alpha \in \sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right) .
$$

2) When $\sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right)$ is a finite set then each connected component of $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right) \backslash\{(\pm 1,0)(0, \pm 1)\}$ is either $L \backslash\{(\pm 1,0)(0, \pm 1)\}$ with L one of the lines $x \pm y= \pm 1$, or $\mathcal{E}_{\alpha} \backslash\{(\pm 1,0)(0, \pm 1)\}$ for some $\alpha \in \sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right)$.

Unitary Matrices

Lemma

Let A_{1} and A_{2} be bounded self-adjoint involutions on a Hilbert space X that is $A_{1}^{2}=A_{2}^{2}=I$. Then:

1) The set $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is the union of all the "complex ellipses" $\mathcal{E}_{\alpha}=\left\{\mathrm{x}^{2}+\alpha \mathrm{x} \mathrm{y}+\mathrm{y}^{2}=1\right\}$ with $\alpha \in \sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right)$.
2) When $\sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right)$ is a finite set then each connected component of $\sigma_{p}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \backslash\{(\pm 1,0)(0, \pm 1)\}$ is either $L \backslash\{(\pm 1,0)(0, \pm 1)\}$ with L one of the lines $x \pm y= \pm 1$, or $\mathcal{E}_{\alpha} \backslash\{(\pm 1,0)(0, \pm 1)\}$ for some $\alpha \in \sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right)$.
3) When X is finite dimensional each reduced component of $\sigma_{p}\left(A_{1}, A_{2}\right)$ is either a line of the form $x \pm y= \pm 1$, or a "complex ellipse" \mathcal{E}_{α} with $\alpha \in \sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right) \backslash\{-2,2\}$.

Proof If $(\mathrm{x}, \mathrm{y}) \in \sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$, then

$$
\begin{aligned}
\left(x A_{1}+y A_{2}\right)^{2} & -I=\left(x A_{1}+y A_{2}-I\right)\left(x A_{1}+y A_{2}+I\right) \\
& =\left(x^{2}+y^{2}-1\right) I+x y\left(A_{1} A_{2}+A_{2} A_{1}\right) .
\end{aligned}
$$

is not invertible.

Proof If $(\mathrm{x}, \mathrm{y}) \in \sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$, then

$$
\begin{aligned}
\left(x A_{1}+y A_{2}\right)^{2} & -I=\left(x A_{1}+y A_{2}-I\right)\left(x A_{1}+y A_{2}+I\right) \\
& =\left(x^{2}+y^{2}-1\right) I+x y\left(A_{1} A_{2}+A_{2} A_{1}\right) .
\end{aligned}
$$

is not invertible.
If $(x, y) \neq(\pm 1,0)$ or $(0, \pm 1)$, then

$$
\frac{1-\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{xy}} \in \sigma\left(\mathrm{~A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right) .
$$

Proof If $(x, y) \in \sigma_{p}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$, then

$$
\begin{aligned}
\left(x A_{1}+y A_{2}\right)^{2} & -I=\left(x A_{1}+y A_{2}-I\right)\left(x A_{1}+y A_{2}+I\right) \\
& =\left(x^{2}+y^{2}-1\right) I+x y\left(A_{1} A_{2}+A_{2} A_{1}\right) .
\end{aligned}
$$

is not invertible.
If $(x, y) \neq(\pm 1,0)$ or $(0, \pm 1)$, then

$$
\frac{1-\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{xy}} \in \sigma\left(\mathrm{~A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right)
$$

Since $\left\|A_{j}\right\|=1$,

$$
\alpha=\left|\frac{1-x^{2}-y^{2}}{x y}\right| \leq 2
$$

and in the case of finite dimension 1) follows. In infinite dimensional case it is derived from the conclusion that $\sigma_{p}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \cup\left(-\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)\right)$ contains the "ellipse".

The following result is derived from the previous two:

Theorem

Let A_{1} and A_{2} be unitary self-adjoint linear operators on a finite-dimensional Hilbert space X. Then:

1) Every reduced component of $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is either a line $\{x \pm y= \pm 1\}$ or an "ellipse" $\left\{x^{2}+2 x y \cos (2 \pi \theta)+y^{2}=1\right\}$ for some $0<\theta<1 / 2$.

The following result is derived from the previous two:

Theorem

Let A_{1} and A_{2} be unitary self-adjoint linear operators on a finite-dimensional Hilbert space X. Then:

1) Every reduced component of $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is either a line $\{x \pm y= \pm 1\}$ or an "ellipse" $\left\{x^{2}+2 x y \cos (2 \pi \theta)+y^{2}=1\right\}$ for some $0<\theta<1 / 2$.
2) If a line $\{x \pm y= \pm 1\}$ is a reduced component of multiplicity r of the joint spectrum $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ then A_{1} and A_{2} have a corresponding common eigenspace of dimension r.

The following result is derived from the previous two:

Theorem

Let A_{1} and A_{2} be unitary self-adjoint linear operators on a finite-dimensional Hilbert space X. Then:

1) Every reduced component of $\sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is either a line $\{x \pm y= \pm 1\}$ or an "ellipse" $\left\{x^{2}+2 x y \cos (2 \pi \theta)+y^{2}=1\right\}$ for some $0<\theta<1 / 2$.
2) If a line $\{x \pm y= \pm 1\}$ is a reduced component of multiplicity r of the joint spectrum $\sigma_{p}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$ then A_{1} and A_{2} have a corresponding common eigenspace of dimension r.
3) If an "ellipse" $\left\{x^{2}+2 x y \cos (2 \pi \theta)+y^{2}=1\right\}$ with $0<\theta<1 / 2$ is a reduced component of the proper joint spectrum $\sigma_{p}\left(A_{1}, A_{2}\right)$ of multiplicity r, then A_{1} and A_{2} have a correponding common invariant subspace of dimension $2 r$ that is a direct sum of r two-dimensional common invariant subspaces.

Proof 1) follows from the previous result,

Proof 1) follows from the previous result,

2) - from the fact that for self-adjpoint operators a line passing through ($1 / \alpha, 0$), $|\alpha|=\left\|\mathrm{A}_{1}\right\|$, and α beeing an isolated spectral point of A_{1}, implies the existence of a common eigenspace of the same multiplicity as the one of the line, and

Proof 1) follows from the previous result,

2) - from the fact that for self-adjpoint operators a line passing through ($1 / \alpha, 0$), $|\alpha|=\left\|\mathrm{A}_{1}\right\|$, and α beeing an isolated spectral point of A_{1}, implies the existence of a common eigenspace of the same multiplicity as the one of the line, and

3) is proved by successive scaling and using the above CST result.

Proposition

Let A_{1} and A_{2} be as in the previous Theorem, and let $m \geq 2$ be an integer. The following are equivalent:
(1) $\left(A_{1} A_{2}\right)^{m}=I$,
(2) $\sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right) \subseteq\left\{\mathcal{E}_{\alpha}: \alpha=2 \cos (2 \pi \mathrm{k} / \mathrm{m}) \mid \mathrm{k}=\right.$ $0, \ldots, m-1\}$.

Proposition

Let A_{1} and A_{2} be as in the previous Theorem, and let $m \geq 2$ be an integer. The following are equivalent:
(1) $\left(A_{1} A_{2}\right)^{m}=I$,
(2) $\sigma\left(\mathrm{A}_{1} \mathrm{~A}_{2}+\mathrm{A}_{2} \mathrm{~A}_{1}\right) \subseteq\left\{\mathcal{E}_{\alpha}: \alpha=2 \cos (2 \pi \mathrm{k} / \mathrm{m}) \mid \mathrm{k}=\right.$ $0, \ldots, m-1\}$.

Proof $\quad(1) \Longrightarrow(2)$. For each $n \geq 0$ set

$$
R_{n}=(1 / 2)\left[\left(A_{1} A_{2}\right)^{n}+\left(A_{2} A_{1}\right)^{n}\right] .
$$

Then

$$
\begin{aligned}
& R_{0}=I, \\
& R_{1}=(1 / 2)\left(A_{1} A_{2}+A_{2} A_{1}\right), \quad \text { and } \\
& R_{n}=2 R_{1} R_{n-1}-R_{n-2} \quad \text { for } n \geq 2 .
\end{aligned}
$$

It follows by induction that for each $\mathrm{n} \geq 0$ we have

$$
R_{n}=T_{n}\left(R_{1}\right)
$$

where $T_{n}(z)$ are Tchebyshev's polynomials of the first kind defined by

$$
\begin{aligned}
& T_{0}(z)=1 \\
& T_{1}(z)=z, \quad \text { and } \\
& T_{n}(z)=2 z T_{n-1}(z)-T_{n-2}(z) \quad \text { for } n \geq 2
\end{aligned}
$$

It follows by induction that for each $\mathrm{n} \geq 0$ we have

$$
R_{n}=T_{n}\left(R_{1}\right)
$$

where $T_{n}(z)$ are Tchebyshev's polynomials of the first kind defined by

$$
\begin{aligned}
& T_{0}(z)=1 \\
& T_{1}(z)=z, \quad \text { and } \\
& T_{n}(z)=2 z T_{n-1}(z)-T_{n-2}(z) \quad \text { for } n \geq 2
\end{aligned}
$$

It is well known that for each real $z \in[-1,1]$ one has
$T_{n}(z)=\cos \left(n \cos ^{-1}(z)\right)$, in particular the polynomial $T_{n}(z)-1$ is of degree n and has for its set of roots the set $\{\cos (2 \pi k / n) \mid k=0, \ldots n-1\}$.

It follows by induction that for each $\mathrm{n} \geq 0$ we have

$$
R_{n}=T_{n}\left(R_{1}\right)
$$

where $T_{n}(z)$ are Tchebyshev's polynomials of the first kind defined by

$$
\begin{aligned}
& T_{0}(z)=1 \\
& T_{1}(z)=z, \quad \text { and } \\
& T_{n}(z)=2 z T_{n-1}(z)-T_{n-2}(z) \quad \text { for } n \geq 2
\end{aligned}
$$

It is well known that for each real $z \in[-1,1]$ one has
$T_{n}(z)=\cos \left(n \cos ^{-1}(z)\right)$, in particular the polynomial $T_{n}(z)-1$ is of degree n and has for its set of roots the set $\{\cos (2 \pi \mathrm{k} / \mathrm{n}) \mid \mathrm{k}=0, \ldots \mathrm{n}-1\}$.
Now, suppose $\left(A_{1} A_{2}\right)^{m}=I$. Thus $\left(A_{2} A_{1}\right)^{m}=I$ as well, hence $\mathrm{R}_{\mathrm{m}}=\mathrm{T}_{\mathrm{m}}\left(\mathrm{R}_{1}\right)=\mathrm{I}$. Since $\sigma\left(\mathrm{R}_{\mathrm{m}}\right)=\mathrm{T}_{\mathrm{m}}\left(\sigma\left(\mathrm{R}_{1}\right)\right)$, we must have $\mathrm{T}_{\mathrm{m}}(\alpha)=1$ for each $\alpha \in \sigma\left(\mathrm{R}_{1}\right)$. Therefore
$\sigma\left(\mathrm{R}_{1}\right) \subseteq\{\cos (2 \pi \mathrm{k} / \mathrm{m}) \mid \mathrm{k}=0, \ldots, \mathrm{~m}-1\}$, which implies (2) as desired.

Application to representations of Coxeter groups

Definiton For $\mathrm{N} \times \mathrm{N}$ matrices $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ the proper joint spectrum in the divisor form, $\sigma_{p}^{d}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{n}\right)$ is defined as the zero-divisor of the polynomial $\operatorname{det}\left(x_{1} A_{1}+\ldots+x_{n} A_{n}-I\right)$.

Application to representations of Coxeter groups

Definiton For $\mathrm{N} \times \mathrm{N}$ matrices $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ the proper joint spectrum in the divisor form, $\sigma_{p}^{d}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{n}\right)$ is defined as the zero-divisor of the polynomial $\operatorname{det}\left(x_{1} A_{1}+\ldots+x_{n} A_{n}-I\right)$.

The multiplicity ascribed to a point $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \sigma_{\mathrm{p}}^{\mathrm{d}}\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}\right)$ is equal to the rank of the projection

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma}\left(\mathrm{zl}-\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{j}} \mathrm{~A}_{\mathrm{j}}\right)^{-1} \mathrm{dz}
$$

(γ is asmall contour around 1).

Recall that a Coxeter group is a finitely generated group with generators g_{1}, \ldots, g_{n} satisfying the relations

$$
g_{j}^{2}=1, j=1, \ldots, n ;\left(g_{i} g_{j}\right)^{m_{i j}}=1,2 \leq m_{i j} \leq \infty \text { for } i \neq j
$$

If $m_{i j}=2 g_{i}$ and g_{j} commute.

Recall that a Coxeter group is a finitely generated group with generators g_{1}, \ldots, g_{n} satisfying the relations

$$
g_{j}^{2}=1, j=1, \ldots, n ;\left(g_{i} g_{j}\right)^{m_{i j}}=1,2 \leq m_{i j} \leq \infty \text { for } i \neq j
$$

If $m_{i j}=2 g_{i}$ and g_{j} commute.
A Coxeter group is defined by the Coxeter matrix

$$
M=\left(m_{i j}\right), m_{i i}=1,
$$

that is symmetric (obviously $\mathrm{m}_{\mathrm{ij}}=\mathrm{m}_{\mathrm{ji}}$)

A traditional way of presentation of a Coxeter group is through its Coxeter diagram, which is a graph constructed by the following rules:

- the vertices of the graph are the generator subscripts;
- vertices i and j form an edge if and only if $m_{i j} \geq 3$;
- an edge is labeled with the value m_{ij} whenever this value is 4 or greater.

A traditional way of presentation of a Coxeter group is through its Coxeter diagram, which is a graph constructed by the following rules:

- the vertices of the graph are the generator subscripts;
- vertices i and j form an edge if and only if $m_{i j} \geq 3$;
- an edge is labeled with the value m_{ij} whenever this value is 4 or greater.
In particular, two generators commute if and only if they are not connected by an edge. The disjoint union of Coxeter diagrams yields a direct product of Coxeter groups, and a Coxeter group is connected if its diagram is a connected graph.

The finite connected Coxeter groups consist of the one-parameter families A_{n}, B_{n}, D_{n}, and $I(n)$, and the six exceptional groups E_{6}, $\mathrm{E}_{7}, \mathrm{E}_{8}, \mathrm{~F}_{4}, \mathrm{H}_{3}$, and H_{4}. They were classified by Coxeter.

The finite connected Coxeter groups consist of the one-parameter families A_{n}, B_{n}, D_{n}, and $I(n)$, and the six exceptional groups E_{6}, $E_{7}, E_{8}, F_{4}, H_{3}$, and H_{4}. They were classified by Coxeter. The Coxeter diagrams for the groups A_{n}, B_{n}, D_{n+1}, and $I(n)$ that we study here are as follows:

$\mathrm{I}(\mathrm{n})$ is called Dihedral group.

A linear representation of a group G is a homomorphism $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{X})$ of G into group of invertible linear operators acting on a Hilbert space X.

A linear representation of a group G is a homomorphism $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{X})$ of G into group of invertible linear operators acting on a Hilbert space X .

Two representations $\rho_{1}, \rho_{2}: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{X})$ are equivalent \Longleftrightarrow $\exists \mathrm{C} \in \mathrm{GL}(\mathrm{X}): \quad \rho_{1}(\mathrm{~g})=\mathrm{C} \rho_{2}(\mathrm{~g}) \mathrm{C}^{-1} \quad \forall \mathrm{~g} \in \mathrm{G}$.

A linear representation of a group G is a homomorphism $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{X})$ of G into group of invertible linear operators acting on a Hilbert space X .

Two representations $\rho_{1}, \rho_{2}: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{X})$ are equivalent \Longleftrightarrow $\exists \mathrm{C} \in \mathrm{GL}(\mathrm{X}): \quad \rho_{1}(\mathrm{~g})=\mathrm{C} \rho_{2}(\mathrm{~g}) \mathrm{C}^{-1} \quad \forall \mathrm{~g} \in \mathrm{G}$.

We will be talking of finite dimensional representations.

A linear representation of a group G is a homomorphism $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{X})$ of G into group of invertible linear operators acting on a Hilbert space X .

Two representations $\rho_{1}, \rho_{2}: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{X})$ are equivalent \Longleftrightarrow $\exists \mathrm{C} \in \mathrm{GL}(\mathrm{X}): \quad \rho_{1}(\mathrm{~g})=\mathrm{C} \rho_{2}(\mathrm{~g}) \mathrm{C}^{-1} \quad \forall \mathrm{~g} \in \mathrm{G}$.

We will be talking of finite dimensional representations.

Known:

Every linear representation of a finite group
is equivalent to a unitary representation.

Corollary

Two linear representations of the Dihedral group I(n), ρ_{1} and ρ_{2}, are equivalent if and only if

$$
\sigma_{\mathrm{p}}^{\mathrm{d}}\left(\rho_{1}\left(\mathrm{~g}_{1}\right), \rho_{1}\left(\mathrm{~g}_{2}\right)\right)=\sigma_{\mathrm{p}}^{\mathrm{d}}\left(\rho_{2}\left(\mathrm{~g}_{1}\right), \rho_{2}\left(\mathrm{~g}_{2}\right)\right)
$$

where $\mathrm{g}_{1}, \mathrm{~g}_{2}$ are the Coxeter generators of $\mathrm{I}(\mathrm{n})$.

Another Corollary to the above theorem is the follow result.

Theorem (Cuckovic, S, Tchernev)

Let $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ be $\mathrm{k} \times \mathrm{k}$ self-adjoint unitary matrices, and let G be the subgroup of $G L_{k}$ generated by these matrices. Suppose that for $\mathrm{i} \neq \mathrm{j}$ the joint spectra

$$
\sigma_{\mathrm{p}}\left(\mathrm{U}_{\mathrm{i}}, \mathrm{U}_{\mathrm{j}}\right)=u_{\mathrm{s}=1}^{\mathrm{rij}_{\mathrm{ij}}} \mathcal{E}_{\alpha_{\mathrm{s}}^{\mathrm{ij}}}, \alpha_{\mathrm{s}}^{\mathrm{ij}}=2 \pi \frac{\mathrm{l}_{\mathrm{s}}^{\mathrm{ij}}}{\mathrm{p}_{\mathrm{s}}^{\mathrm{ij}}},
$$

where $l_{s}^{i j}, p_{s}^{i j}$ are mutually prime ($p_{S}^{i j}=1$ if $l_{S}^{i j}=0$). Denote by

$$
m_{i j}= \begin{cases}2 & \text { if } l_{s}^{i j}=0 \forall s \\ \text { the least common multiple of }\left\{p_{s}^{i j}\right\} & \text { if } 3 l_{s}^{i j} \neq 0 .\end{cases}
$$

Then G is isomorphic to a quotient group of the Coxeter group with the Coxeter matrix (m_{ij}).

We saw that the joint spectrum in the divisor form of the Coxeter generators determines a representation of a Dihedral group up to an equivalence.
Q. Are there any other finitely generated groups with the same property: there is a group of generators such that the joint spectrum in the divisor form of these generators determine a representation up to an equivalence?

Theorem (Cuckovic, S., Tchernev)

Suppose G is a finite Coxeter group of type either A, or B, or D, and let g_{1}, \ldots, g_{n} be the Coxeter generators of G. If for two finite dimensional linear representations ρ_{1} and ρ_{2} of G we have

$$
\sigma_{p}^{d}\left(\rho_{1}\left(g_{1}\right), \ldots, \rho_{1}\left(g_{n}\right)\right)=\sigma_{p}^{d}\left(\rho_{2}\left(g_{1}\right), \ldots, \rho_{2}\left(g_{n}\right)\right)
$$

then the representations ρ_{1} and ρ_{2} are equivalent.

Comments for the proof.

Write $A_{i}=\rho_{1}\left(g_{i}\right), B_{i}=\rho_{2}\left(g_{i}\right), i=1, \ldots, n$. Fix $x \in \mathbb{C}^{n}$. Then for $\lambda \in \mathbb{C}, \lambda \mathrm{x} \in \sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right) \Longleftrightarrow \frac{1}{\lambda} \in \sigma(\mathrm{~A}(\mathrm{x})), \mathrm{A}(\mathrm{x})=\sum \mathrm{x}_{\mathrm{j}} \mathrm{A}_{\mathrm{j}}$.

Comments for the proof.

Write $A_{i}=\rho_{1}\left(g_{i}\right), B_{i}=\rho_{2}\left(g_{i}\right), i=1, \ldots, n$. Fix $x \in \mathbb{C}^{n}$. Then for $\lambda \in \mathbb{C}, \lambda \mathrm{x} \in \sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right) \Longleftrightarrow \frac{1}{\lambda} \in \sigma(\mathrm{~A}(\mathrm{x})), \mathrm{A}(\mathrm{x})=\sum \mathrm{x}_{\mathrm{j}} \mathrm{A}_{\mathrm{j}}$.

Thus,

$$
\begin{equation*}
\sigma_{\mathrm{p}}^{\mathrm{d}}\left(\mathrm{~A}_{1}, \ldots \mathrm{~A}_{\mathrm{n}}\right)=\sigma_{\mathrm{p}}^{\mathrm{d}}\left(\mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}\right) \Rightarrow \sigma(\mathrm{A}(\mathrm{x}))=\sigma(\mathrm{B}(\mathrm{x})) \tag{5}
\end{equation*}
$$

$\forall x \in \mathbb{C}^{n}$ counting multiplicities.

Comments for the proof.

Write $A_{i}=\rho_{1}\left(g_{i}\right), B_{i}=\rho_{2}\left(g_{i}\right), i=1, \ldots, n$. Fix $x \in \mathbb{C}^{n}$. Then for $\lambda \in \mathbb{C}, \lambda \mathrm{x} \in \sigma_{\mathrm{p}}\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right) \Longleftrightarrow \frac{1}{\lambda} \in \sigma(\mathrm{~A}(\mathrm{x})), \mathrm{A}(\mathrm{x})=\sum \mathrm{x}_{\mathrm{j}} \mathrm{A}_{\mathrm{j}}$.

Thus,

$$
\begin{equation*}
\sigma_{\mathrm{p}}^{\mathrm{d}}\left(\mathrm{~A}_{1}, \ldots \mathrm{~A}_{\mathrm{n}}\right)=\sigma_{\mathrm{p}}^{\mathrm{d}}\left(\mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}\right) \Rightarrow \sigma(\mathrm{A}(\mathrm{x}))=\sigma(\mathrm{B}(\mathrm{x})) \tag{5}
\end{equation*}
$$

$\forall x \in \mathbb{C}^{n}$ counting multiplicities.
$\Longrightarrow \sum \mathrm{x}_{\mathrm{j}} \operatorname{Trace}\left(\mathrm{A}_{\mathrm{j}}\right)=\operatorname{Trace}(\mathrm{A}(\mathrm{x}))=\operatorname{Trace}(\mathrm{B}(\mathrm{x}))=\sum \mathrm{x}_{\mathrm{j}} \operatorname{Trace}\left(\mathrm{B}_{\mathrm{j}}\right)$
$\Longrightarrow \operatorname{Trace}\left(A_{j}\right)=\operatorname{Trace}\left(B_{j}\right), j=1, \ldots, n$.

Let G be a group, and $\rho: \mathrm{G} \rightarrow \mathrm{GL}_{n}$ be a finite dimensional linear representation.

Definition

The character, χ_{ρ}, of a representation $\rho: \mathrm{G} \rightarrow \mathrm{GL}_{\mathrm{K}}$ is the function

$$
\chi_{\rho}(\mathrm{g})=\operatorname{Trace}(\rho(\mathrm{g})), \mathrm{g} \in \mathrm{G} .
$$

Let G be a group, and $\rho: \mathrm{G} \rightarrow \mathrm{GL}_{n}$ be a finite dimensional linear representation.

Definition

The character, χ_{ρ}, of a representation $\rho: \mathrm{G} \rightarrow \mathrm{GL}_{\mathrm{K}}$ is the function

$$
\chi_{\rho}(\mathrm{g})=\operatorname{Trace}(\rho(\mathrm{g})), \mathrm{g} \in \mathrm{G} .
$$

The above relation shows that if $\sigma_{p}^{d}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)=\sigma_{\mathrm{p}}^{\mathrm{d}}\left(\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}\right)$, then

$$
\begin{equation*}
\chi_{\rho_{1}}\left(\mathrm{~g}_{\mathrm{j}}\right)=\chi_{\rho_{2}}\left(\mathrm{~g}_{\mathrm{j}}\right), \mathrm{j}=1, \ldots, \mathrm{n} . \tag{6}
\end{equation*}
$$

Known:

If for two linear representations ρ_{1} and ρ_{2} of a finite group G

$$
\begin{equation*}
\chi_{\rho_{1}}(\mathrm{~g})=\chi_{\rho_{2}}(\mathrm{~g}), \quad \forall \mathrm{g} \in \mathrm{G} \tag{7}
\end{equation*}
$$

then ρ_{1} and ρ_{2} are equivalent.

Known:

If for two linear representations ρ_{1} and ρ_{2} of a finite group G

$$
\begin{equation*}
\chi_{\rho_{1}}(\mathrm{~g})=\chi_{\rho_{2}}(\mathrm{~g}), \quad \forall \mathrm{g} \in \mathrm{G} \tag{7}
\end{equation*}
$$

then ρ_{1} and ρ_{2} are equivalent.

Relation (6) means that (7) holds for words of length one.

To prove (7) for all words we remark that (5) implies that $\forall k \in \mathbb{N}, x \in \mathbb{C}^{n}$

$$
\begin{gathered}
\sigma\left(\mathrm{A}(\mathrm{x})^{\mathrm{k}}\right)=\sigma\left(\mathrm{B}(\mathrm{x})^{\mathrm{k}}\right) \Longrightarrow \operatorname{Trace}\left(\mathrm{A}(\mathrm{x})^{\mathrm{k}}\right)=\operatorname{Trace}\left(\mathrm{B}(\mathrm{x})^{\mathrm{k}}\right) \\
\mathrm{A}(\mathrm{x})^{\mathrm{k}}=\sum_{\mathrm{j}_{1}+. \mathrm{j}_{n}=\mathrm{k}} \mathrm{x}_{1}^{\mathrm{j}_{1}} \ldots \mathrm{x}_{n}^{\mathrm{j}_{n}}\left(\sum \mathrm{~A}_{\mathrm{r}_{1}} \ldots \mathrm{~A}_{\mathrm{r}_{\mathrm{k}}}\right)
\end{gathered}
$$

where the last sum is taken over all $\left(r_{1}, \ldots, r_{n}\right)$ with $r_{1}+\ldots+r_{n}=k$ and $\left(r_{1}, \ldots, r_{n}\right)$ contains $j_{1} A_{1}-s ; j_{2} A_{2}-s ;, \ldots, j_{n} A_{n}-s$. The same is true for $B(x)^{k}$.

To prove (7) for all words we remark that (5) implies that $\forall k \in \mathbb{N}, x \in \mathbb{C}^{n}$

$$
\begin{gather*}
\sigma\left(\mathrm{A}(\mathrm{x})^{\mathrm{k}}\right)=\sigma\left(\mathrm{B}(\mathrm{x})^{\mathrm{k}}\right) \Longrightarrow \operatorname{Trace}\left(\mathrm{A}(\mathrm{x})^{\mathrm{k}}\right)=\operatorname{Trace}\left(\mathrm{B}(\mathrm{x})^{\mathrm{k}}\right) \tag{8}\\
\mathrm{A}(\mathrm{x})^{\mathrm{k}}=\sum_{\mathrm{j}_{1}+. . \mathrm{j}_{n}=\mathrm{k}} \mathrm{x}_{1}^{\mathrm{j}_{1}} \ldots \mathrm{x}_{n}^{\mathrm{j}_{n}}\left(\sum \mathrm{~A}_{\left.\mathrm{r}_{1} \ldots \mathrm{~A}_{\mathrm{r}_{k}}\right)}\right.
\end{gather*}
$$

where the last sum is taken over all $\left(r_{1}, \ldots, r_{n}\right)$ with $r_{1}+\ldots+r_{n}=k$ and $\left(r_{1}, \ldots, r_{n}\right)$ contains $j_{1} A_{1}-s ; j_{2} A_{2}-s ;, \ldots, j_{n} A_{n}-s$. The same is true for $B(x)^{k}$.

Now (5) implies

$$
\begin{aligned}
\sum \operatorname{Trace}\left(\mathrm{A}_{\mathrm{r}_{1}} \ldots \mathrm{~A}_{\mathrm{r}_{k}}\right) & =\sum \operatorname{Trace}\left(\mathrm{B}_{\mathrm{r}_{1} \ldots} \ldots \mathrm{~B}_{\mathrm{r}_{\mathrm{k}}}\right) \\
\sum \chi_{\rho_{1}}\left(\mathrm{~g}_{\mathrm{r}_{1}} \ldots \mathrm{~g}_{\mathrm{r}_{n}}\right) & =\sum \chi_{\rho_{2}}\left(\mathrm{~g}_{\mathrm{r}_{1} \ldots} \ldots \mathrm{~g}_{\mathrm{r}_{n}}\right) .
\end{aligned}
$$

Characters of representations of affine Coxeter groups

$\tilde{C_{n}}$

$\tilde{B_{n}}$

$\tilde{D_{n}}$

Let us denote by $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}+1}$ Coxeter generators of $\tilde{\mathrm{C}}_{\mathrm{n}}$, so that

$$
\begin{array}{r}
c_{1}^{2}=c_{2}^{2}=\cdots=c_{n}^{2}=c_{n+1}^{2}=1, c_{j} c_{k}=c_{k} c_{j} \text { if }|j-k| \geq 2, \\
\left(c_{1} c_{2}\right)^{4}=\left(c_{n+1} c_{n}\right)^{4}=1,\left(c_{j} c_{k}\right)^{3}=1, \text { for } 2 \leq j, k \leq n .
\end{array}
$$

Let us denote by $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}+1}$ Coxeter generators of $\tilde{\mathrm{C}}_{\mathrm{n}}$, so that

$$
\begin{array}{r}
c_{1}^{2}=c_{2}^{2}=\cdots=c_{n}^{2}=c_{n+1}^{2}=1, c_{j} c_{k}=c_{k} c_{j} \text { if }|j-k| \geq 2, \\
\left(c_{1} c_{2}\right)^{4}=\left(c_{n+1} c_{n}\right)^{4}=1,\left(c_{j} c_{k}\right)^{3}=1, \text { for } 2 \leq j, k \leq n .
\end{array}
$$

Write

$$
\begin{aligned}
& t_{j}=c_{j} c_{j+1} \cdots c_{n} c_{n+1} c_{n} \cdots c_{j}, j=2, \ldots, n+1, \\
& r_{1}=c_{1} c_{2} \cdots c_{n} c_{n+1} c_{n} \cdots c_{2} \\
& r_{2}=c_{2} c_{1} c_{2} \cdots c_{n} c_{n+1} c_{n} \cdots c_{3} \\
& \vdots \\
& \vdots \\
& r_{n-2}=c_{n-2} c_{n-3} \cdots c_{2} c_{1} c_{2} \cdots c_{n+1} c_{n} c_{n-1} \\
& r_{n-1}=c_{n-1} c_{n-2} \cdots c_{2} c_{1} c_{2} c_{3} \cdots c_{n+1} c_{n} \\
& r_{n}=c_{n} c_{n-1} \cdots c_{2} c_{1} c_{2} \cdots c_{n+1}
\end{aligned}
$$

Proposition

$N:=<r_{1}, r_{2}, \ldots, r_{n}>$ is an abelian normal subgroup of $\tilde{C_{n}}$ and
$\tilde{C_{n}}=B_{n} \rtimes N$

Theorem (Peebles, S., Tchernev Weyman)

Let ρ_{1}, ρ_{2} be two finite dimensional linear representations of $\tilde{\mathrm{C}}_{\mathrm{n}}$. If

$$
\begin{array}{r}
\sigma_{p}^{d}\left(\rho_{1}\left(\mathrm{c}_{2}\right), \rho_{1}\left(\mathrm{c}_{3}\right), \ldots, \rho_{1}\left(\mathrm{c}_{n}\right), \rho_{1}\left(\mathrm{c}_{\mathrm{n}+1}\right), \rho\left(\mathrm{t}_{2}\right), \ldots, \rho\left(\mathrm{t}_{n}\right),\right. \\
\left.\rho_{1}\left(\mathrm{r}_{1}\right), \ldots, \rho_{1}\left(\mathrm{r}_{\mathrm{n}}\right), \rho_{1}\left(\mathrm{r}_{1}^{-1}\right), \ldots, \rho_{1}\left(\mathrm{r}_{\mathrm{n}}^{-1}\right)\right) \\
=\sigma_{\mathrm{p}}^{\mathrm{d}}\left(\rho_{2}\left(\mathrm{c}_{2}\right), \rho_{2}\left(\mathrm{c}_{3}\right), \ldots, \rho_{2}\left(\mathrm{c}_{n}\right), \rho_{2}\left(\mathrm{c}_{\mathrm{n}+1}\right), \rho_{2}\left(\mathrm{t}_{2}\right), \ldots \rho_{2}\left(\mathrm{t}_{\mathrm{n}}\right)\right. \\
\left.\rho_{2}\left(\mathrm{r}_{1}\right), \ldots, \rho_{2}\left(\mathrm{r}_{\mathrm{n}}\right), \rho_{2}\left(\mathrm{r}_{1}^{-1}\right), \ldots, \rho_{2}\left(\mathrm{r}_{\mathrm{n}}^{-1}\right)\right),
\end{array}
$$

then $\chi_{\rho_{1}}=\chi_{\rho_{2}}$.

Some open questions

Q. 1 Does the joint spectrum σ_{p}^{d} of other than Coxeter sets of generators determine a representation up to an equaivalence?

Some open questions

Q. 1 Does the joint spectrum σ_{p}^{d} of other than Coxeter sets of generators determine a representation up to an equaivalence?
Q. 2 Does every finite group has a set of generators different from the whole group whose joint spectrum determines a representation up to an equivalence?

Some open questions

Q. 1 Does the joint spectrum σ_{p}^{d} of other than Coxeter sets of generators determine a representation up to an equaivalence?
Q. 2 Does every finite group has a set of generators different from the whole group whose joint spectrum determines a representation up to an equivalence?
Q. 3 Is a representation of a non-special finite Coxeter group is irreducible if and only if the joint spectrum of the Coxeter generators is irreducible?

Some open questions

Q. 1 Does the joint spectrum σ_{p}^{d} of other than Coxeter sets of generators determine a representation up to an equaivalence?
Q. 2 Does every finite group has a set of generators different from the whole group whose joint spectrum determines a representation up to an equivalence?
Q. 3 Is a representation of a non-special finite Coxeter group is irreducible if and only if the joint spectrum of the Coxeter generators is irreducible?
Q. 4 We saw that an appearance of a "complex ellipse" in the joint spectrum of two matrices indicates the existence of a two-dimensional invariant subspace. Are there other surfaces $\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\}$ such that if they appear in the joint spectrum of tuple of n matrices, these matrices have common invariant subspace of dimension equal to the degree of P ?

THANK YOU!

