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Abelian operator algebras are well-understood:
• von Neumann algebras: L∞ spaces
• C∗-algebras: C0(X) for l.c. Hausdorff spaces X.

The study of non-abelian operator algebras is facilitated by
examination of abelian subalgebras. In particular:
• Cartan von Neumann subalgebras (Feldman-Moore ’77),
• Diagonal C∗-subalgebras (Kumjian, ’86),
• Cartan C∗-subalgebras (Renault, ’08): correspond to étale,

2nd countable, locally compact Hausdorff, topologically
principal twisted groupoids,
• Γ-Cartan C∗-subalgebras (Brown-Fuller-Pitts-R, ‘18):

Introduced to generalize Renault’s results. Method inspired
by work of Ara-Bosa-Hazrat-Sims on Steinberg algebras.
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Recall: A C∗-algebra is a norm-closed *-subalgebra of B(H).
A maximal abelian C*-subalgebra B ⊆ A is Cartan (Renault) if
• There is a faithful conditional expectation A → B,
• B contains an approximate unit of A, and
• The normalizers of B in A generate A.

Example. Let E be a directed graph with E∗ = {finite paths}.
C∗(E) := C∗({tα |α ∈ E∗}) = span{tαt∗β | s(α) = s(β)}

with the tα partial isometries satisfying Cuntz-Krieger relations.
• The diagonal subalgebra D := span{tαt∗α |α ∈ E∗} is Cartan

iff E has no cycles without entry.
• Nagy-R (’12): In any case, the cycline subalgebraM⊇ D is

Cartan. (M appears in uniqueness theorems.)
• Brown-Nagy-R-Sims-Williams (’16): The cycline subalgebra

of a (higher-rank) k-graph is not necessarily Cartan.
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A C∗-algebra A is topologically graded by a group Γ if there are
linearly independent subspaces At satisfying the following.
• A = span{At | t ∈ Γ},
• ∀s, t ∈ Γ, AtAs ⊆ At+s, A∗t = A−t, and
• there is a conditional expectation of A onto A0.

Exel: Every topological Γ-grading on a C∗-algebra A is induced
by a strongly continuous action of Γ̂ on A.

Conversely, a strongly continuous action Γ̂×A → A gives rise
to a topological Γ-grading on A. In particular,

At = {a ∈ A | ∀ω ∈ Γ̂ ω · a = 〈t, ω〉a}.

Remark: We have A0 = AΓ̂, the fixed point algebra.
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Definition (Brown-Fuller-Pitts-R, ’18)
Suppose A = span{At | t ∈ Γ} is topologically graded by Γ. We
say a C∗-subalgebra D ⊆ A is Γ-Cartan if
• D contains an approximate unit for A,
• the normalizers of D form a dense subset in A, and
• D ⊆ A0 is Cartan.

Kumjian (‘86): Diagonal pairs correspond to twisted principal
groupoids.

Renault (’08): Cartan pairs correspond to twisted topologically
principal groupoids.

BFPR (‘18): Γ-Cartan pairs correspond to Γ-graded
Γ-topologically principal twisted groupoids.
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A groupoid is a small category G in which every morphism has
an inverse. Denote by G(0) the objects (unit space of identity
morphisms), and range and source maps r, s : G→ G(0).

The isotropy subgroupoid Iso(G) = {g ∈ G | r(g) = s(g)} plays
a significant role in the analysis of groupoid C∗-algebras.

A groupoid is principal if G(0) = Iso(G) (no nontrivial loops).

A topological groupoid is a groupoid endowed with a topology
with respect to which inversion and composition are continuous.
When r and s are local homeomorphisms, we say G is étale.

A groupoid is topologically principal if the points in G(0) with
trivial isotropy form a dense set in Iso(G).
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Example: the path groupoid GE of a directed graph E

E∗ := space of (finite) paths; `(α) := length of α
E∞ := space of one-sided infinite paths (no source)

GE = {( r
αy, `(α)− `(β),

s
βy) | y ∈ E∞, α, β ∈ E∗}

(x,m, y)−1 = (y,−m,x) (x,m, y)(y, n, z) = (x,m+ n, z)

Topology: generated by the cylinder sets

Z(α, β) = {(αy, d(α)− d(β), βy) | y ∈ E∞}

• If E has a cycle λ then GE is not principal: different tails
attached to λ∞ can result in the same path: λλ∞ = λ2λ∞.

• If E has a cycle λ without entry then GE is not topologically
principal: aperiodic paths cannot approximate λ∞.
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A twist is an extension of groupoids: an exact sequence

T×G(0) ι // Σ q // G such that
• q and ι are continuous groupoid homomorphisms

(homeomorphisms of the unit spaces), ι is injective.
• q−1(G(0)) = ι(T×G(0)) • Σ/T ∼= G.

The C∗-algebra C∗r (Σ;G) of the twist is a completion of

Cc(Σ;G) := {f ∈ Cc(Σ) | ∀z ∈ T ∀γ ∈ Σ f(z · γ) = zf(γ)}.

Renault (’08): Cartan pairs B ⊆ A correspond to étale, 2nd

countable, locally compact Hausdorff, topologically principal
twisted groupoids: (A,B) ∼= (C∗r (G; Σ), C0(G(0))).

Kumjian (’86): Diagonal pairs...principal groupoids.
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Graded twists We say a twist (Σ;G) is graded by a discrete
abelian group Γ if there are groupoid homomorphisms cΣ and
cG such that

T×G(0) // Σ

cΣ ��

// G

c
G

��
Γ

commutes and c−1
G (0) is topologically principal.

Rmk: such a grading induces a strongly continuous Γ̂ action on
its C∗-algebra characterized by

(ω · f)(σ) = 〈ω · cΣ(σ)〉f(σ) f ∈ Cc(Σ), ω ∈ Σ,

providing a Γ-grading on C∗r (G; Σ) with C∗r (G; Σ)0 = C∗r (G; Σ)Γ̂.
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Theorem 1 (BFPR, ‘18) If a twist (Σ;G) is Γ-graded as above,
then C0(G(0)) ⊆ C∗r (G; Σ) is Γ-Cartan.

Sketch of proof that C0(G(0)) ⊆ C∗r (G; Σ)Γ̂ is Cartan:

T×G(0) // Σ

cΣ ��

// G

c
G

��
Γ

Let G0 = c−1
G (0) and Σ0 = c−1

Σ (0).

Then T×G(0) // Σ0 // G0 is a twist, so by Renault’s
Theorem C0(G(0)) ⊆ C∗r (Σ0;G0) is Cartan.

Thus it suffices to show that C∗r (Σ0;G0) = C∗r (G; Σ)Γ̂. The
inclusion ⊆ is easy; ⊇ requires an approximation argument.
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Theorem 2 (BFPR ’18): If (A,D) is a Γ-Cartan pair then there
exists a twist

T×G(0) // Σ // G

such that (A,D) ∼= (C∗r (Σ;G), C0(G(0))).

Proof: rather elaborate. In short, we mimic the Kumjian/Renault
construction.

Applying Theorems 1 and 2 in succession we recover the
groupoid:

Theorem 3 (BFPR ’18) Let (G; Σ) be a Γ-graded twist. Then
applying Theorem 2 to the Γ-Cartan pair (C∗r (Σ;G), C0(G(0)))
recovers the same twist.
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A k-graph is a graded countable category Λ = (Λn, n ∈ Nk),
ΛmΛn = Λm+n, satisfying the Unique Factorization Property:
If λ ∈ Λm+n then there are unique µ ∈ Λm, ν ∈ Λn s.t. λ = µν.

The twisted k-graph algebra C∗(Λ,Φ) is defined by
Cuntz-Krieger relations twisted by a 2-cocycle Φ : Λ× Λ→ T.

Tk naturally acts on the algebra via z · tαt∗β = zd(α)−d(β)tαt
∗
β.

The diagonal D is Cartan in the fixed-point algebra

C∗(Λ,Φ)Tk = span{tαt∗β | d(α) = d(β)}
so we have a twist (Σ;G) such that C∗(Λ,Φ) ∼= C∗r (Σ;G).

Thus we have recreated the construction of Kumjian-Pask-
Sims, who identify a continuous cocycle ξ and a groupoid
GKPS with C∗(Λ,Φ) ∼= C∗(GKPS , ξ): i.e., G ∼= GKPS and
Σ ∼= T×ξ GKPS .
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Thank you all for attending.
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