Group action induced Cartan pairs

Sarah Reznikoff Kansas State University

Joint work with Jonathan Brown, Adam Fuller, and David Pitts Supported by the Simons Foundation Collaboration Grant #316952, DRP and by the American Institute of Mathematics SQuaREs program

> BIRS Workshop 19w5137 Banff Centre 3 April, 2019

Outline Why subalgebras?

Outline

- I. Introduction: outline, general motivation
- II. Basic Notions: Cartan subalgebras, groupoids
- III. Theorems and application

Outline Why subalgebras?

Abelian operator algebras are well-understood:

- von Neumann algebras: L^{∞} spaces
- C^* -algebras: $C_0(X)$ for l.c. Hausdorff spaces X.

The study of non-abelian operator algebras is facilitated by examination of abelian subalgebras. In particular:

- Cartan von Neumann subalgebras (Feldman-Moore '77),
- Diagonal C*-subalgebras (Kumjian, '86),
- Cartan *C**-subalgebras (Renault, '08): correspond to étale, 2nd countable, locally compact Hausdorff, topologically principal twisted groupoids,
- **Γ-Cartan** *C****-subalgebras** (Brown-Fuller-Pitts-R, '18): Introduced to generalize Renault's results. Method inspired by work of Ara-Bosa-Hazrat-Sims on Steinberg algebras.

Cartan subalgebras Γ-Cartan subalgebras Groupoids Twists

Recall: A C^* -algebra is a norm-closed *-subalgebra of $\mathcal{B}(H)$.

A maximal abelian C*-subalgebra $\mathcal{B} \subseteq \mathcal{A}$ is **Cartan** (Renault) if

- There is a faithful conditional expectation $\mathcal{A} \rightarrow \mathcal{B},$
- ${\mathcal B}$ contains an approximate unit of ${\mathcal A},$ and
- The normalizers of \mathcal{B} in \mathcal{A} generate \mathcal{A} .

Example. Let *E* be a directed graph with $E^* = \{$ finite paths $\}$.

 $C^*(E):=C^*(\{t_\alpha\,|\,\alpha\in E^*\})=\overline{\operatorname{span}}\{t_\alpha t_\beta^*\,|\,s(\alpha)=s(\beta)\}$

with the t_{α} partial isometries satisfying Cuntz-Krieger relations.

- The diagonal subalgebra $\mathcal{D} := \overline{\operatorname{span}}\{t_{\alpha}t_{\alpha}^* \mid \alpha \in E^*\}$ is Cartan iff E has no cycles without entry.
- Nagy-R ('12): In any case, the cycline subalgebra M ⊇ D is Cartan. (M appears in uniqueness theorems.)
- Brown-Nagy-R-Sims-Williams ('16): The cycline subalgebra of a (higher-rank) *k*-graph is not necessarily Cartan.

A C^* -algebra \mathcal{A} is *topologically graded* by a group Γ if there are linearly independent subspaces \mathcal{A}_t satisfying the following.

•
$$\mathcal{A} = \overline{\operatorname{span}} \{ \mathcal{A}_t \, | \, t \in \Gamma \},\$$

•
$$\forall s, t \in \Gamma$$
, $\mathcal{A}_t \mathcal{A}_s \subseteq \mathcal{A}_{t+s}$, $\mathcal{A}_t^* = \mathcal{A}_{-t}$, and

• there is a conditional expectation of \mathcal{A} onto \mathcal{A}_0 .

Exel: Every topological Γ -grading on a C^* -algebra \mathcal{A} is induced by a strongly continuous action of $\hat{\Gamma}$ on \mathcal{A} .

Conversely, a strongly continuous action $\hat{\Gamma} \times \mathcal{A} \to \mathcal{A}$ gives rise to a topological Γ -grading on \mathcal{A} . In particular,

$$\mathcal{A}_t = \{ a \in \mathcal{A} \, | \, \forall \omega \in \hat{\Gamma} \, \omega \cdot a = \langle t, \omega \rangle a \}.$$

Remark: We have $A_0 = A^{\hat{\Gamma}}$, the fixed point algebra.

Cartan subalgebras **Γ-Cartan subalgebras** Groupoids Twists

Definition (Brown-Fuller-Pitts-R, '18)

Suppose $\mathcal{A} = \overline{\operatorname{span}} \{ \mathcal{A}_t \, | \, t \in \Gamma \}$ is topologically graded by Γ . We say a C^* -subalgebra $\mathcal{D} \subseteq \mathcal{A}$ is Γ -Cartan if

- $\bullet \ \mathcal{D}$ contains an approximate unit for $\mathcal{A},$
- \bullet the normalizers of ${\mathcal D}$ form a dense subset in ${\mathcal A},$ and
- $\mathcal{D} \subseteq \mathcal{A}_0$ is Cartan.

Kumjian ('86): Diagonal pairs correspond to twisted principal groupoids.

Renault ('08): Cartan pairs correspond to twisted topologically principal groupoids.

BFPR ('18): Γ -Cartan pairs correspond to Γ -graded Γ -topologically principal twisted groupoids.

A **groupoid** is a small category *G* in which every morphism has an inverse. Denote by $G^{(0)}$ the objects (unit space of identity morphisms), and range and source maps $r, s: G \to G^{(0)}$.

The *isotropy subgroupoid* $Iso(G) = \{g \in G | r(g) = s(g)\}$ plays a significant role in the analysis of groupoid C^* -algebras.

A groupoid is *principal* if $G^{(0)} = Iso(G)$ (no nontrivial loops).

A *topological groupoid* is a groupoid endowed with a topology with respect to which inversion and composition are continuous. When r and s are local homeomorphisms, we say G is *étale*.

A groupoid is *topologically principal* if the points in $G^{(0)}$ with trivial isotropy form a dense set in Iso(G).

Example: the path groupoid G_E of a directed graph E

$$\begin{split} E^* &:= \text{ space of (finite) paths; } \quad \ell(\alpha) := \text{ length of } \alpha \\ E^\infty &:= \text{ space of one-sided infinite paths (no source)} \\ G_E &= \{ (\stackrel{r}{\alpha y}, \ \ell(\alpha) - \ell(\beta), \ \stackrel{s}{\beta y}) \mid y \in E^\infty, \ \alpha, \beta \in E^* \} \\ (x, m, y)^{-1} &= (y, -m, x) \quad (x, m, y)(y, n, z) = (x, m + n, z) \end{split}$$

Topology: generated by the cylinder sets

$$Z(\alpha,\beta) = \{(\alpha y, d(\alpha) - d(\beta), \beta y) \, | \, y \in E^{\infty}\}$$

• If *E* has a cycle λ then G_E is not principal: different tails attached to λ^{∞} can result in the same path: $\lambda\lambda^{\infty} = \lambda^2\lambda^{\infty}$.

• If *E* has a cycle λ without entry then G_E is not topologically principal: aperiodic paths cannot approximate λ^{∞} .

A twist is an extension of groupoids: an exact sequence

 $\mathbb{T} \times G^{(0)} \xrightarrow{\iota} \Sigma \xrightarrow{q} G \quad \text{such that}$

q and *ι* are continuous groupoid homomorphisms (homeomorphisms of the unit spaces), *ι* is injective.

•
$$q^{-1}(G^{(0)}) = \iota(\mathbb{T} \times G^{(0)}) \quad \bullet \Sigma/\mathbb{T} \cong G.$$

The C^* -algebra $C^*_r(\Sigma; G)$ of the twist is a completion of

 $C_c(\Sigma;G) := \{ f \in C_c(\Sigma) \, | \, \forall z \in \mathbb{T} \ \forall \gamma \in \Sigma \ f(z \cdot \gamma) = \overline{z}f(\gamma) \}.$

Renault ('08): Cartan pairs $\mathcal{B} \subseteq \mathcal{A}$ correspond to étale, 2^{nd} countable, locally compact Hausdorff, topologically principal twisted groupoids: $(\mathcal{A}, \mathcal{B}) \cong (C_r^*(\mathcal{G}; \Sigma), C_0(\mathcal{G}^{(0)})).$

Kumjian ('86): Diagonal pairs...principal groupoids.

Our results Application Closing

Graded twists We say a twist $(\Sigma; G)$ is graded by a discrete abelian group Γ if there are groupoid homomorphisms c_{Σ} and c_{G} such that

commutes and $c_G^{-1}(0)$ is topologically principal.

Rmk: such a grading induces a strongly continuous $\hat{\Gamma}$ action on its C^* -algebra characterized by

$$(\omega \cdot f)(\sigma) = \langle \omega \cdot c_{\Sigma}(\sigma) \rangle f(\sigma) \quad f \in C_c(\Sigma), \, \omega \in \Sigma,$$

providing a Γ -grading on $C_r^*(G; \Sigma)$ with $C_r^*(G; \Sigma)_0 = C_r^*(G; \Sigma)^{\hat{\Gamma}}$.

Introduction Our results Basic Notions Application Theorems Closing

Theorem 1 (BFPR, '18) If a twist $(\Sigma; G)$ is Γ -graded as above, then $C_0(G^{(0)}) \subseteq C_r^*(G; \Sigma)$ is Γ -Cartan.

Sketch of proof that $C_0(G^{(0)}) \subseteq C_r^*(G; \Sigma)^{\hat{\Gamma}}$ is Cartan:

Let $G_0 = c_G^{-1}(0)$ and $\Sigma_0 = c_{\Sigma}^{-1}(0)$.

Then $\mathbb{T} \times G^{(0)} \longrightarrow \Sigma_0 \longrightarrow G_0$ is a twist, so by Renault's Theorem $C_0(G^{(0)}) \subseteq C_r^*(\Sigma_0; G_0)$ is Cartan.

Thus it suffices to show that $C_r^*(\Sigma_0; G_0) = C_r^*(G; \Sigma)^{\hat{\Gamma}}$. The inclusion \subseteq is easy; \supseteq requires an approximation argument.

Theorem 2 (BFPR '18): If $(\mathcal{A}, \mathcal{D})$ is a Γ -Cartan pair then there exists a twist

$$\mathbb{T} \times G^{(0)} \longrightarrow \Sigma \longrightarrow G$$

such that $(\mathcal{A}, \mathcal{D}) \cong (C_r^*(\Sigma; G), C_0(G^{(0)})).$

Proof: rather elaborate. In short, we mimic the Kumjian/Renault construction.

Applying Theorems 1 and 2 in succession we recover the groupoid:

Theorem 3 (BFPR '18) Let $(G; \Sigma)$ be a Γ-graded twist. Then applying Theorem 2 to the Γ-Cartan pair $(C_r^*(\Sigma; G), C_0(G^{(0)}))$ recovers the same twist. Introduction Our results Basic Notions Application Theorems Closing

A *k*-graph is a graded countable category $\Lambda = (\Lambda^n, n \in \mathbb{N}^k)$, $\Lambda^m \Lambda^n = \Lambda^{m+n}$, satisfying the *Unique Factorization Property*: If $\lambda \in \Lambda^{m+n}$ then there are unique $\mu \in \Lambda^m$, $\nu \in \Lambda^n$ s.t. $\lambda = \mu \nu$.

The twisted *k*-graph algebra $C^*(\Lambda, \Phi)$ is defined by Cuntz-Krieger relations twisted by a 2-cocycle $\Phi : \Lambda \times \Lambda \to \mathbb{T}$.

 \mathbb{T}^k naturally acts on the algebra via $z \cdot t_{\alpha} t_{\beta}^* = z^{d(\alpha) - d(\beta)} t_{\alpha} t_{\beta}^*$. The diagonal \mathcal{D} is Cartan in the fixed-point algebra

$$C^*(\Lambda, \Phi)^{\mathbb{T}^k} = \overline{\operatorname{span}}\{t_\alpha t_\beta^* \mid d(\alpha) = d(\beta)\}$$

so we have a twist $(\Sigma; G)$ such that $C^*(\Lambda, \Phi) \cong C^*_r(\Sigma; G)$.

Thus we have recreated the construction of Kumjian-Pask-Sims, who identify a continuous cocycle ξ and a groupoid G_{KPS} with $C^*(\Lambda, \Phi) \cong C^*(G_{KPS}, \xi)$: i.e., $G \cong G_{KPS}$ and $\Sigma \cong \mathbb{T} \times_{\xi} G_{KPS}$.

Our results Application Closing

Thank you all for attending.

Our results Application Closing

Bibliography I

P. Ara, J. Bosa, R. Hazrat, and A. Sims Reconstruction of graded groupoids from graded Steinberg algebras, preprint 2016. (arXiv:1601.02872v1 [math.RA]).

J. Brown, L. Clark, and A. an Huef Diagonal-preserving ring *-isomorphisms of Leavitt path algebras, preprint 2015. (arXiv:1510.05309v3 [math.RA]).

 J.H. Brown, G. Nagy, and S. Reznikoff
 A generalized Cuntz-Krieger uniqueness theorem for higher-rank graphs.
 J. Funct. Anal. 266 (2014), 2590-2609.

Our results Application Closing

Bibliography II

- J.H. Brown, G. Nagy, S. Reznikoff, A. Sims, and D. Williams
 Cartan subalgebras in C*-Algebras of Hausdorff étale groupoids.
 Integral Equations and Operator Theory
- N. Brownlowe, T. Carlsen, and M. Whittaker
 Graph algebras and orbit equivalence.
 Ergodic Theory Dynam. Systems 37 (2017), 389–417.

Our results Application Closing

Bibliography III

- T. Carlsen, E. Ruiz, and A. Sims Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C*-algebras and Leavitt path algebras, Proc. Amer. Math. Soc. 145 (2017), 1581–1592.
- T. Carlsen, E. Ruiz, A. Sims, and M. Tomforde Reconstruction of groupoids and C*-rigidity of dynamical systems,

preprint 2017, (arXiv:1711.01052v1 [math.OA]).

R. Exel

Amenability for Fell Bundles,

J. Reine Angew. Math., 492 (1997), 41-73. MR 1488064

Our results Application Closing

Bibliography IV

- A. Kumjian
 On C*-diagonals,
 Can. J. Math., 38 (1986), 969–1008.
- A. Kumjian and D. Pask Higher rank graph C*-algebras, New York J. Math. 6 (2000), 1–20.
- A. Kumjian, D. Pask, I. Raeburn, and J. Renault Graphs, Groupoids, and Cuntz-Krieger Algebras, J. Funct. Anal. 144 (1997), 505–541.
- A. Kumjian, D. Pask, and A. Sims Homology for higher-rank graphs and twisted C*-algebras, J. Funct. Anal. 263 (2012), 1539–1574.

Our results Application Closing

Bibliography V

- A. Kumjian, D. Pask, and A. Sims
 On twisted higher-rank graph C*-algebras,
 Trans. Amer. Math. Soc. 367 (2015), 5177–5216.
- G. Nagy and S. Reznikoff *Abelian core of graph algebras J. Lond. Math. Soc.* (2) **85** (2012), no. 3, 889–908.

J. Renault,

*A groupoid approach to C***-algebras*, Lecture Notes in Mathematics, vol. 793, Springer-Verlag, New York, 1980.

Our results Application Closing

Bibliography VI

J. Renault,

Cartan subalgebras in C*-algebras, Irish Math. Soc. Bulletin **61** (2008), 29–63.

B. Steinberg,

A groupoid approach to inverse semigroup algebras, Adv. Math. **223** (2010), 689–727.