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Wold decompositions Toeplitz operators with pluriharmonic symbol

Classical Wold decomposition

H2(D) = H( 1
1−zw ) Hardy space

M∗z Mz = 1H2(D) Hardy space shift

Up to unitaries and multiplicity there are no other isometries:

Theorem (Wold decomposition)

Let T ∈ L(H). Then T∗T = 1H iff

T = T0 ⊕ T1 ∈ L(H0 ⊕ H1)

with

T0 = T |H0 unitary and

T1 = T |H1 ∼= Mz ∈ L(H2(D,D)) for some Hilbert space D.

In this case:
H0 =

⋂
k≥0

T k H and H1 =
∨
k≥0

T k (H 	 ImT )

Call T pure if H0 = {0}. Define W (T ) = H 	 ImT (Wandering subspace)
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Generalized Bergman spaces

Let Hm(D) be the functional Hilbert space with kernel

K = Km : D× D→ C,Km(z,w) =
1

(1− zw)m
.

Then

H1(D) = H2(D) is the Hardy space,

H2(D) = L2
a(D) is the Bergman space and

H2+m(D) = L2
a(D, (1− |z|2)mdλ) are the weighted Bergman spaces.

Question: Is there an algebraic operator identity characterizing:

Bergman shifts (with multiplicity) ⊕ ‘nice operators’ ?
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General scheme

Let ck be the coefficients determined by

(1− zw)m =
∑

k

ck (zw)k (m = 1 : c0 = 1 = −c1)

Define σT (X) = TXT∗

1
K (T ) =

∑
k ckσ

k
T (1H ) (

m=1
= 1H − TT∗)

∆T =
∑

k (−ck+1)σk
T (1H ) (

m=1
= 1H )

Theorem (Wold decomposition: m = 1)

Let T ∈ L(H) be left invertible. Then

(T∗T )−1 = ∆T

if and only if T = T0 ⊕ T1 ∈ L(H0 ⊕ H1) with

T0 = T |H0 invertible with 1
K (T0) = 0 (invertible coisometry)

T1 = T |H1 ∼= Mz ∈ L(H(K )⊗D) for some D.
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Bergman-type Wold decompositions

Let Hm(D) be the functional Hilbert space with kernel

K (z,w) =
1

(1− zw)m

Call T ∈ L(H) an m-coisometry if 1
K (T ) = 0.

Theorem (Giselsson-Olofsson ’12)

Let T ∈ L(H) be left invertible. Then

(T∗T )−1 = ∆T

if and only if T = T0 ⊕ T1 ∈ L(H0 ⊕ H1) with

T0 = T |H0 invertible m-coisometry

T1 = T |H1 ∼= Mz ∈ L(H(K )⊗D) for some D.

Invertible m-coisometry = unitary for m = 1, 2, but not for m ≥ 3 (Agler-Stankus 1995)
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Ball case

Let T ∈ L(H)n be commuting. Regard T as a row operator

T : Hn → H, (xi ) 7→
∑

1≤i≤n

Ti xi

and write T∗ : H → Hn, x 7→ (T∗i x) for its adjoint. Suppose that

Im T =
n∑

i=1

Ti H ⊂ H is closed

⇒ T∗T : Im T∗ → Im T∗ is invertible

Define L = (T∗T )−1T∗ ∈ L(H,Hn) and

P : B 1
‖L‖

(0)→ L(H),P(z) = (T − z)L(1− zL)−1

Lemma

P : B 1
‖L‖

(0)→ L(H) is analytic with P(z)2 = P(z) and Im P(z) ⊂ Im(T − z),

Im(1H − P(z)) = W (T ).
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Regularity replaces left invertibility

T ∈ L(H)n
com is called regular if for |z| small enough

H = Im(T − z)⊕W (T ) algebraic direct sum of closed subspaces,

or equivalently, if Im T is closed and Im(T − z) ∩W (T ) = {0}.

Lemma

T regular ⇒ Im P(z) = Im(T − z) for all |z| < 1/‖L‖

Examples of regular tuples: T ∈ L(H)n
com with

Im T ⊂ H closed and Hn−1(T ,H) = {0}
Im T = H

dim H/ Im(T − z) = N <∞ for |z| < ε.
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Multivariable Shimorin model

Let T ∈ L(H)n be regular. Define Ω = B1/‖L‖(0)

Theorem (n = 1 : Shimorin 2001)

The mapping V : H → O(Ω,W (T )),

(Vx)(z) = (1H − P(z))x = PW (T )(1H − zL)−1x

is continuous linear with VTi = Mzi V and

ker V =
⋂

k∈N

∑
|α|=k

TαH =
⋂

z∈Ω

Im(T − z).

Theorem

H = VH ⊂ O(Ω,W (T )) is a functional Hilbert space with kernel

K (z,w) = PW (T )(1H − zL)−1(1H − L∗w∗)−1|W (T )

and
T/ ker V ∼= Mz ∈ L(H)n

Call T analytic if ker V = {0}.
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Generalized Bergman spaces on the unit ball

Let Hm(B) be the functional Hilbert space with kernel

Km(z,w) =
1

(1− 〈z,w〉)m

Then

Hm(B) = {
∑
α∈Nn

fαzα ∈ O(B); ‖f‖2 =
∑
α∈Nn

|fα|2

ρm(α)
<∞}

and

H1(B) = Drury-Arveson space

Hn(B) = {f ∈ O(B); sup
0<r<1

∫
S

|f (rξ)|2dξ <∞} Hardy space

Hn+1(B) = L2
a(B,D) = {f ∈ O(B);

∫
B

|f |2dz <∞} Bergman space

Hn+1+k (B) = {f ∈ O(B);

∫
B

|f |2(1− |z|2)k dz <∞}
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General scheme

Let ck be the coefficients determined by

(1− 〈z,w〉)m =
∑

k

ck 〈z,w〉k

For T ∈ L(H)n
com define (σT (X) =

∑
1≤i≤n Ti XT∗i )

1
K (T ) =

∑
k ckσ

k
T (1H ),

∆T =
∑

k (−ck+1)σk
T (1H )

The Bergman shifts Mz = (Mz1 , . . . ,Mzn ) ∈ L(H(Km))n are regular with

(M∗z Mz )−1 = (⊕∆Mz )| Im M∗z

∆Mz (
∑

fk ) =
∑ ak+1

ak
fk is a diagonal operator wrt the homogeneous expansion.
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Wold decomposition on the unit ball

Call T ∈ L(H)n an m-coisometry if 1
Km

(T ) = 0.

Theorem

Let T ∈ L(H)n be a regular . Then

(T∗T )−1 = (⊕∆T )| Im T∗

if and only if T = T0 ⊕ T1 ∈ L(H0 ⊕ H1)n with

T0 = T |H0 is an m-coisometry

T1 = T |H1 ∼= Mz ∈ L(H(Km)⊗D)n

In this case
H0 =

⋂
k≥0

(
∑
|α|=k

TαH) and H1 =
∨
α

TαW (T )

Call T analytic if H0 = {0}.
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In this case
H0 =

⋂
k≥0

(
∑
|α|=k

TαH) and H1 =
∨
α

TαW (T )

Call T analytic if H0 = {0}.
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Pure case

Theorem

Let T ∈ L(H)n be a regular commuting tuple with

(T∗T )−1 = (⊕∆T )| Im T∗

Equivalent are:

T is analytic

T is C·0 (⇔ SOT− limk σ
k
T (1H ) = 0)

T ∼= Mz ∈ L(H(Km)⊗D)n

Special case: (almost Richter-Sundberg 2010) If m = 1, then ∆T = 1H and

T ∈ L(H)n is regular and Hn T→ H is a partial isometry

if and only if T = T0 ⊕ T1 ∈ L(H0 ⊕ H1)n with

T0 spherical coisometry

T1 ∼= Mz ∈ L(H(K1)⊗D)n (Drury-Arveson shift)
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Brown-Halmos theorem

Brown-Halmos ’63: For T ∈ L(H2(D))

T = Tf with f ∈ L∞(T) ⇔ M∗z TMz = T

Englis ’92: No such characterization on L2
a(D)!

Louhichi-Olofsson ’ 08: On Hm(D) define

M′z = Mz (M∗z Mz )−1 (
m=1
= Mz ) Cauchy dual of Mz

Then for T ∈ L(Hm(D))

T = Tf with f ∈ h∞(D) = {f : D→ C; f bounded harmonic}

if and only if

M′∗z TM′z =

m−1∑
k=0

(−ck+1)σk
Mz

(T ) (
m=1
= T )
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Toeplitz operators with pluriharmonic symbols

Define: Ph∞(B) = {f : B→ C; f bounded pluriharmonic } and

Tf = Tg + T∗h for f = g + h ∈ Ph∞(B) with g, h ∈ O(B)

Theorem (Langendörfer-E. ’19)

For T ∈ L(Hm(B)) equivalent are:

T = Tf with f ∈ Ph∞(B)

M′∗z TM′z = PIm M∗z (⊕∆Mz (T )) PIm M∗z

T̃ : B→ C, z 7→ 〈Tkz , kz〉 is pluriharmonic

In this case: f = T̃ and ‖f‖∞ ≤ ‖T‖e (equality for m ≥ n).

On the Drury-Arveson space H1(B): ∆Mz (T ) = T and M′z = Mz

T = Tf with f ∈ Ph∞(B) ⇔ M∗z TMz = PIm M∗z (⊕T ) PIm M∗z
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Thank you! That’s all.
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