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An operator system is a unital self-adjoint subspace of bounded
operators on a Hilbert space H: 1 ∈ A = A∗ ⊂ B(H).
It has an order and norm structure induced from B(H).
Moreover Mn(A) ⊂Mn(B(H)) ' B(H(n)), and this induces a
norm and order structure.

A map ϕ : A→ B(K ) induces maps ϕn :Mn(A)→ B(K (n))
coordinatewise. Say ϕ is completely positive if ϕn is positive for
n ≥ 1. If ϕ is unital and completely positive (u.c.p.), then
‖ϕ‖cb = sup ‖ϕn‖ = 1.

(Arveson 1969) Every u.c.p. map ϕ : A→ B(K ) extends to a
u.c.p. map of C∗(A) into B(K ).
(Stinespring 1955) A u.c.p. map ϕ of a C*-algebra has the form
ϕ(a) = α∗π(a)α where π is a ∗-repn. and α is an isometry.

If π is a representation of C∗(A) such that π|A has a unique u.c.p.
extension to C∗(A), say π has the unique extension property. If π
is also irreducible, then π is a boundary representation.

Ken Davidson and Matt Kennedy NC Choquet theory 2 / 13



An operator system is a unital self-adjoint subspace of bounded
operators on a Hilbert space H: 1 ∈ A = A∗ ⊂ B(H).
It has an order and norm structure induced from B(H).
Moreover Mn(A) ⊂Mn(B(H)) ' B(H(n)), and this induces a
norm and order structure.

A map ϕ : A→ B(K ) induces maps ϕn :Mn(A)→ B(K (n))
coordinatewise. Say ϕ is completely positive if ϕn is positive for
n ≥ 1. If ϕ is unital and completely positive (u.c.p.), then
‖ϕ‖cb = sup ‖ϕn‖ = 1.

(Arveson 1969) Every u.c.p. map ϕ : A→ B(K ) extends to a
u.c.p. map of C∗(A) into B(K ).
(Stinespring 1955) A u.c.p. map ϕ of a C*-algebra has the form
ϕ(a) = α∗π(a)α where π is a ∗-repn. and α is an isometry.

If π is a representation of C∗(A) such that π|A has a unique u.c.p.
extension to C∗(A), say π has the unique extension property. If π
is also irreducible, then π is a boundary representation.

Ken Davidson and Matt Kennedy NC Choquet theory 2 / 13



An operator system is a unital self-adjoint subspace of bounded
operators on a Hilbert space H: 1 ∈ A = A∗ ⊂ B(H).
It has an order and norm structure induced from B(H).
Moreover Mn(A) ⊂Mn(B(H)) ' B(H(n)), and this induces a
norm and order structure.

A map ϕ : A→ B(K ) induces maps ϕn :Mn(A)→ B(K (n))
coordinatewise. Say ϕ is completely positive if ϕn is positive for
n ≥ 1. If ϕ is unital and completely positive (u.c.p.), then
‖ϕ‖cb = sup ‖ϕn‖ = 1.

(Arveson 1969) Every u.c.p. map ϕ : A→ B(K ) extends to a
u.c.p. map of C∗(A) into B(K ).
(Stinespring 1955) A u.c.p. map ϕ of a C*-algebra has the form
ϕ(a) = α∗π(a)α where π is a ∗-repn. and α is an isometry.

If π is a representation of C∗(A) such that π|A has a unique u.c.p.
extension to C∗(A), say π has the unique extension property. If π
is also irreducible, then π is a boundary representation.

Ken Davidson and Matt Kennedy NC Choquet theory 2 / 13



An operator system is a unital self-adjoint subspace of bounded
operators on a Hilbert space H: 1 ∈ A = A∗ ⊂ B(H).
It has an order and norm structure induced from B(H).
Moreover Mn(A) ⊂Mn(B(H)) ' B(H(n)), and this induces a
norm and order structure.

A map ϕ : A→ B(K ) induces maps ϕn :Mn(A)→ B(K (n))
coordinatewise. Say ϕ is completely positive if ϕn is positive for
n ≥ 1. If ϕ is unital and completely positive (u.c.p.), then
‖ϕ‖cb = sup ‖ϕn‖ = 1.

(Arveson 1969) Every u.c.p. map ϕ : A→ B(K ) extends to a
u.c.p. map of C∗(A) into B(K ).
(Stinespring 1955) A u.c.p. map ϕ of a C*-algebra has the form
ϕ(a) = α∗π(a)α where π is a ∗-repn. and α is an isometry.

If π is a representation of C∗(A) such that π|A has a unique u.c.p.
extension to C∗(A), say π has the unique extension property. If π
is also irreducible, then π is a boundary representation.

Ken Davidson and Matt Kennedy NC Choquet theory 2 / 13



Classical:

1 ∈ A = A∗ ⊂ C(X ) function system.

K = S(A) = {f : A→ C : f ≥ 0, f (1) = 1} state space.

NC Theory:
1 ∈ A = A∗ ⊂ B(H) operator system

Γ = S(A) =
∐

1≤n≤κ
UCP(A,B(Hn))

where dimHn = n, and κ ≥ ℵ0 is a cardinal large enough for all
cyclic representations of C∗(A).

M =
∐

1≤n≤κ
Mn where Mn = B(Hn).
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Classical: K is convex, weak-∗ compact.

Γ is nc convex: i.e. closed under direct sums and compressions.

x ∈ Γn, y ∈ Γm =⇒ x ⊕ y ∈ Γn+m

x ∈ Γn, α ∈Mnm isometry, =⇒ α∗xα ∈ Γm.

Equivalently,

xi ∈ Γi , αi ∈Mni ,n,
∑
i

α∗i αi = 1n =⇒
∑

α∗i xiαi ∈ Γ.

Each Γn is compact in the point-weak-∗ topology.

Remark: Γ is determined by
∐

n<∞ Γn but need higher levels.
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Classical: A(K ) affine functions on K .
(Kadison 1951) A ' A(K ).

θ : Γ→ ∆ is nc affine if

1 θ(Γn) ⊂ ∆n

2 θ(
∑
⊕xi ) =

∑
⊕θ(xi )

3 θ(α∗xα) = α∗θ(x)α for α isometry.

A(Γ) is the set of continuous nc affine functions θ : Γ→M.

Theorem

A ' A(Γ) via a→ â, â(x) = x(a).
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Classical: f ∈ C(K )

nc function: f : Γ→M is graded, respects ⊕, U-equivariant:

1 f (Γn) ⊂Mn

2 f (
∑
⊕xi ) =

∑
⊕f (xi )

3 f (uxu∗) = uf (x)u∗ for x ∈ Γn, u ∈Mn unitary.

C(Γ) continuous nc functions. B(Γ) bounded nc functions.

Theorem (Takesaki-Bichteler 1969)

C*-algebra C , then C ' C(Rep(C ,H)) and C ∗∗ ' B(Rep(C ,H)).

C∗max(A) of Kirchberg-Wassermann 1998: universal C*-algebra s.t.
every u.c.p. map x ∈ Γ extends to a ∗-repn. δx of C∗max(A).

Theorem

C∗max(A) ' C(Γ).
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Classical: x ∈ K has representing measures µ ∈ M(K )+
1 :

µ(a) = a(x) for a ∈ A(K ).

and x is the barycenter of µ.

A representing map for x ∈ Γn is µ ∈ UCP(C(Γ),Mn(M)) such
that µ|A(Γ) = x ; and x is the barycenter of µ.
By Stinespring, µ = α∗δyα for y ∈ Γm and isometry α ∈Mmn.
Say (y , α) represents x and y dilates x .

x has unique representing map iff δx is only u.c.p.extension of x .
x is maximal if (y , α) represents x =⇒ y = x ⊕ z .

Proposition

x had unique representing map iff x is maximal.

Theorem (Dritschel-McCullough 2005)

x ∈ Γ has a maximal dilation y .
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Classical: Extreme points ∂K of K .

x ∈ Γ is pure if x =
∑
α∗i xiαi =⇒ α∗i xiαi ∈ Rx .

x is extreme if it is pure and maximal (boundary representations).
ncext(Γ) := ∂Γ

NC Krein-Milman theorem inspired by Webster-Winkler 1999.

Theorem

Γ is the closed nc convex hull of ∂Γ.

Milman converse.

Theorem

1 If X ⊂ Γ closed

2 x ∈ Xn and isometry α ∈Mmn implies that α∗xα ∈ X

3 and ncconv(X ) = Γ

then X ⊃ ∂Γ.
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Classical: f ∈ C(K ) convex.
If f ∈ C(K ), the convex (lower) envelope is

f̌ = sup{a ∈ A(K ) : a ≤ f } =
⋂
a≤f

Epi(a).

A multivalued s.a. nc function is upward directed: if
F : Γ→Mn(M), then F (x) = F (x) +Mn(Mp)+ for x ∈ Γp.

F is nc convex and l.s.c. if Graph(F ) is nc convex and closed.
The nc convex envelope of F : Γ→Mn(M) is defined for x ∈ Γp

by

F (x) =
⋂
m

⋂
a≤1m⊗F

{α ∈ (Mn(Mp))sa : a(x) ≤ 1m ⊗ α}.

F is nc convex, l.s.c. and F ≤ F .
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Classical: f̌ (x) = infµ∼x µ(f ), and inf is attained.

The following is trivial classically, but difficult here.

Theorem

If F is convex, then F = F .

This relates the convex envelope to representing maps.

Theorem

If f ∈Mn(C(Γ)) and x ∈ Γp,

f (x) =
⋃
µ∼x

[µ(f ),∞).
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Classical: Choquet order: µ ≺c ν if µ(f ) ≤ ν(f ) for all f convex.
Relates measures with same barycenter x .

Nc Choquet order: µ ≺c ν if µ(f ) ≤ ν(f ) for all f nc convex.

Dilation order: µ ≺d ν if

1 (x , α) represents µ

2 (y , β) represents ν, and

3 ∃γ s.t. x = γ∗yγ and β = γα.

This relates the dilation order with convex envelopes.

Theorem

µ(f ) =
⋂
µ≺dν

[ν(f ),∞).

This is crucial.

Theorem

µ ≺c ν if and only if µ ≺d ν.
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This relates the dilation order with convex envelopes.

Theorem

µ(f ) =
⋂
µ≺dν

[ν(f ),∞).

This is crucial.

Theorem

µ ≺c ν if and only if µ ≺d ν.
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Classical: (Choquet 1956) If K is metrizable, each x ∈ K has a
representing measure supported on ∂K .
(Bishop-de Leeuw 1959) Every x ∈ K has a representing measure
pseudo-supported on ∂K , i.e. µ(f ) = 0 if f is a Baire function
with f |∂K = 0.

The Baire-Pedersen algebra B(Γ) is the monotone completion of
C(Γ) in B(Γ).

Theorem (nc Bishop-de Leeuw)

If x ∈ Γ, then there is a dilation maximal µ representing x .
If f ∈ B(Γ) with f |∂γ = 0, then µ(f ) = 0.

Theorem (nc Choquet)

If A is separable and x ∈ Γ, there is an nc probability measure on
∂Γ that represents x .
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The end.
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