Noncommutative Choquet theory

Kenneth R. Davidson

University of Waterloo

BIRS April 2019
joint work with Matthew Kennedy

An operator system is a unital self-adjoint subspace of bounded operators on a Hilbert space $H: 1 \in A=A^{*} \subset \mathcal{B}(H)$. It has an order and norm structure induced from $\mathcal{B}(H)$. Moreover $\mathcal{M}_{n}(A) \subset \mathcal{M}_{n}(\mathcal{B}(H)) \simeq \mathcal{B}\left(H^{(n)}\right)$, and this induces a norm and order structure.

An operator system is a unital self-adjoint subspace of bounded operators on a Hilbert space $H: 1 \in A=A^{*} \subset \mathcal{B}(H)$. It has an order and norm structure induced from $\mathcal{B}(H)$. Moreover $\mathcal{M}_{n}(A) \subset \mathcal{M}_{n}(\mathcal{B}(H)) \simeq \mathcal{B}\left(H^{(n)}\right)$, and this induces a norm and order structure.

A map $\varphi: A \rightarrow \mathcal{B}(K)$ induces maps $\varphi_{n}: \mathcal{M}_{n}(A) \rightarrow \mathcal{B}\left(K^{(n)}\right)$ coordinatewise. Say φ is completely positive if φ_{n} is positive for $n \geq 1$. If φ is unital and completely positive (u.c.p.), then $\|\varphi\|_{c b}=\sup \left\|\varphi_{n}\right\|=1$.

An operator system is a unital self-adjoint subspace of bounded operators on a Hilbert space $H: 1 \in A=A^{*} \subset \mathcal{B}(H)$.
It has an order and norm structure induced from $\mathcal{B}(H)$. Moreover $\mathcal{M}_{n}(A) \subset \mathcal{M}_{n}(\mathcal{B}(H)) \simeq \mathcal{B}\left(H^{(n)}\right)$, and this induces a norm and order structure.

A map $\varphi: A \rightarrow \mathcal{B}(K)$ induces maps $\varphi_{n}: \mathcal{M}_{n}(A) \rightarrow \mathcal{B}\left(K^{(n)}\right)$ coordinatewise. Say φ is completely positive if φ_{n} is positive for $n \geq 1$. If φ is unital and completely positive (u.c.p.), then $\|\varphi\|_{c b}=\sup \left\|\varphi_{n}\right\|=1$.
(Arveson 1969) Every u.c.p. map $\varphi: A \rightarrow \mathcal{B}(K)$ extends to a u.c.p. map of $\mathrm{C}^{*}(A)$ into $\mathcal{B}(K)$.
(Stinespring 1955) A u.c.p. map φ of a C^{*}-algebra has the form $\varphi(a)=\alpha^{*} \pi(a) \alpha$ where π is a $*$-repn. and α is an isometry.

An operator system is a unital self-adjoint subspace of bounded operators on a Hilbert space $H: 1 \in A=A^{*} \subset \mathcal{B}(H)$.
It has an order and norm structure induced from $\mathcal{B}(H)$. Moreover $\mathcal{M}_{n}(A) \subset \mathcal{M}_{n}(\mathcal{B}(H)) \simeq \mathcal{B}\left(H^{(n)}\right)$, and this induces a norm and order structure.

A map $\varphi: A \rightarrow \mathcal{B}(K)$ induces maps $\varphi_{n}: \mathcal{M}_{n}(A) \rightarrow \mathcal{B}\left(K^{(n)}\right)$ coordinatewise. Say φ is completely positive if φ_{n} is positive for $n \geq 1$. If φ is unital and completely positive (u.c.p.), then $\|\varphi\|_{c b}=\sup \left\|\varphi_{n}\right\|=1$.
(Arveson 1969) Every u.c.p. map $\varphi: A \rightarrow \mathcal{B}(K)$ extends to a u.c.p. map of $\mathrm{C}^{*}(A)$ into $\mathcal{B}(K)$.
(Stinespring 1955) A u.c.p. map φ of a C^{*}-algebra has the form $\varphi(a)=\alpha^{*} \pi(a) \alpha$ where π is a $*$-repn. and α is an isometry.

If π is a representation of $\mathrm{C}^{*}(A)$ such that $\left.\pi\right|_{A}$ has a unique u.c.p. extension to $\mathrm{C}^{*}(A)$, say π has the unique extension property. If π is also irreducible, then π is a boundary representation.

Classical:

$$
\begin{gathered}
1 \in A=A^{*} \subset \mathrm{C}(X) \text { function system. } \\
K=S(A)=\{f: A \rightarrow \mathbb{C}: f \geq 0, f(1)=1\} \quad \text { state space. }
\end{gathered}
$$

Classical:

$$
\begin{gathered}
1 \in A=A^{*} \subset \mathrm{C}(X) \text { function system. } \\
K=S(A)=\{f: A \rightarrow \mathbb{C}: f \geq 0, f(1)=1\} \quad \text { state space. }
\end{gathered}
$$

NC Theory:

$$
\begin{gathered}
1 \in A=A^{*} \subset \mathcal{B}(H) \text { operator system } \\
\Gamma=S(A)=\coprod_{1 \leq n \leq \kappa} \operatorname{UCP}\left(A, \mathcal{B}\left(H_{n}\right)\right)
\end{gathered}
$$

where $\operatorname{dim} H_{n}=n$, and $\kappa \geq \aleph_{0}$ is a cardinal large enough for all cyclic representations of $\mathrm{C}^{*}(A)$.

Classical:

$$
\begin{gathered}
1 \in A=A^{*} \subset \mathrm{C}(X) \text { function system. } \\
K=S(A)=\{f: A \rightarrow \mathbb{C}: f \geq 0, f(1)=1\} \quad \text { state space. }
\end{gathered}
$$

NC Theory:

$$
\begin{gathered}
1 \in A=A^{*} \subset \mathcal{B}(H) \text { operator system } \\
\Gamma=S(A)=\coprod_{1 \leq n \leq \kappa} \operatorname{UCP}\left(A, \mathcal{B}\left(H_{n}\right)\right)
\end{gathered}
$$

where $\operatorname{dim} H_{n}=n$, and $\kappa \geq \aleph_{0}$ is a cardinal large enough for all cyclic representations of $\mathrm{C}^{*}(A)$.

$$
\mathcal{M}=\coprod_{1 \leq n \leq \kappa} \mathcal{M}_{n} \quad \text { where } \mathcal{M}_{n}=\mathcal{B}\left(H_{n}\right) .
$$

Classical: K is convex, weak-* compact.
Γ is nc convex: i.e. closed under direct sums and compressions.

$$
\begin{gathered}
x \in \Gamma_{n}, y \in \Gamma_{m} \Longrightarrow x \oplus y \in \Gamma_{n+m} \\
x \in \Gamma_{n}, \alpha \in \mathcal{M}_{n m} \text { isometry } \Longrightarrow \alpha^{*} x \alpha \in \Gamma_{m}
\end{gathered}
$$

Classical: K is convex, weak-* compact.
Γ is nc convex: i.e. closed under direct sums and compressions.

$$
\begin{gathered}
x \in \Gamma_{n}, y \in \Gamma_{m} \Longrightarrow x \oplus y \in \Gamma_{n+m} \\
x \in \Gamma_{n}, \alpha \in \mathcal{M}_{n m} \text { isometry } \Longrightarrow \alpha^{*} x \alpha \in \Gamma_{m}
\end{gathered}
$$

Equivalently,

$$
x_{i} \in \Gamma_{i}, \alpha_{i} \in \mathcal{M}_{n_{i}, n}, \sum_{i} \alpha_{i}^{*} \alpha_{i}=1_{n} \Longrightarrow \sum \alpha_{i}^{*} x_{i} \alpha_{i} \in \Gamma
$$

Classical: K is convex, weak-* compact.
Γ is nc convex: i.e. closed under direct sums and compressions.

$$
\begin{gathered}
x \in \Gamma_{n}, y \in \Gamma_{m} \Longrightarrow x \oplus y \in \Gamma_{n+m} \\
x \in \Gamma_{n}, \alpha \in \mathcal{M}_{n m} \text { isometry } \Longrightarrow \alpha^{*} x \alpha \in \Gamma_{m}
\end{gathered}
$$

Equivalently,

$$
x_{i} \in \Gamma_{i}, \alpha_{i} \in \mathcal{M}_{n_{i}, n}, \sum_{i} \alpha_{i}^{*} \alpha_{i}=1_{n} \Longrightarrow \sum \alpha_{i}^{*} x_{i} \alpha_{i} \in \Gamma
$$

Each Γ_{n} is compact in the point-weak-* topology.

Classical: K is convex, weak-* compact.
Γ is nc convex: i.e. closed under direct sums and compressions.

$$
\begin{gathered}
x \in \Gamma_{n}, y \in \Gamma_{m} \Longrightarrow x \oplus y \in \Gamma_{n+m} \\
x \in \Gamma_{n}, \alpha \in \mathcal{M}_{n m} \text { isometry } \Longrightarrow \alpha^{*} x \alpha \in \Gamma_{m}
\end{gathered}
$$

Equivalently,

$$
x_{i} \in \Gamma_{i}, \alpha_{i} \in \mathcal{M}_{n_{i}, n}, \sum_{i} \alpha_{i}^{*} \alpha_{i}=1_{n} \Longrightarrow \sum \alpha_{i}^{*} x_{i} \alpha_{i} \in \Gamma
$$

Each Γ_{n} is compact in the point-weak-* topology.
Remark: Γ is determined by $\coprod_{n<\infty} \Gamma_{n}$ but need higher levels.

Classical: $\mathrm{A}(K)$ affine functions on K. (Kadison 1951) $A \simeq \mathrm{~A}(K)$.

Classical: $\mathrm{A}(K)$ affine functions on K. (Kadison 1951) $A \simeq \mathrm{~A}(K)$.
$\theta: \Gamma \rightarrow \Delta$ is nc affine if
(1) $\theta\left(\Gamma_{n}\right) \subset \Delta_{n}$
(2) $\theta\left(\sum \oplus x_{i}\right)=\sum \oplus \theta\left(x_{i}\right)$
(3) $\theta\left(\alpha^{*} x \alpha\right)=\alpha^{*} \theta(x) \alpha$ for α isometry.
$A(\Gamma)$ is the set of continuous nc affine functions $\theta: \Gamma \rightarrow \mathcal{M}$.

Classical: $\mathrm{A}(K)$ affine functions on K. (Kadison 1951) $A \simeq \mathrm{~A}(K)$.
$\theta: \Gamma \rightarrow \Delta$ is nc affine if
(1) $\theta\left(\Gamma_{n}\right) \subset \Delta_{n}$
(2) $\theta\left(\sum \oplus x_{i}\right)=\sum \oplus \theta\left(x_{i}\right)$
(3) $\theta\left(\alpha^{*} x \alpha\right)=\alpha^{*} \theta(x) \alpha$ for α isometry.
$\mathrm{A}(\Gamma)$ is the set of continuous nc affine functions $\theta: \Gamma \rightarrow \mathcal{M}$.

Theorem
$A \simeq A(\Gamma)$ via $a \rightarrow \hat{a}, \hat{a}(x)=x(a)$.

Classical: $f \in \mathrm{C}(K)$

nc function: $f: \Gamma \rightarrow \mathcal{M}$ is graded, respects \oplus, \mathcal{U}-equivariant:
(1) $f\left(\Gamma_{n}\right) \subset \mathcal{M}_{n}$
(2) $f\left(\sum \oplus x_{i}\right)=\sum \oplus f\left(x_{i}\right)$
(3) $f\left(u x u^{*}\right)=u f(x) u^{*}$ for $x \in \Gamma_{n}, u \in \mathcal{M}_{n}$ unitary.

Classical: $f \in \mathrm{C}(K)$

nc function: $f: \Gamma \rightarrow \mathcal{M}$ is graded, respects \oplus, \mathcal{U}-equivariant:
(1) $f\left(\Gamma_{n}\right) \subset \mathcal{M}_{n}$
(2) $f\left(\sum \oplus x_{i}\right)=\sum \oplus f\left(x_{i}\right)$
(3) $f\left(u x u^{*}\right)=u f(x) u^{*}$ for $x \in \Gamma_{n}, u \in \mathcal{M}_{n}$ unitary.
$\mathrm{C}(\Gamma)$ continuous nc functions. $\mathrm{B}(\Gamma)$ bounded nc functions.

Classical: $f \in \mathrm{C}(K)$

nc function: $f: \Gamma \rightarrow \mathcal{M}$ is graded, respects \oplus, \mathcal{U}-equivariant:
(1) $f\left(\Gamma_{n}\right) \subset \mathcal{M}_{n}$
(2) $f\left(\sum \oplus x_{i}\right)=\sum \oplus f\left(x_{i}\right)$
(3) $f\left(u x u^{*}\right)=u f(x) u^{*}$ for $x \in \Gamma_{n}, u \in \mathcal{M}_{n}$ unitary.
$\mathrm{C}(\Gamma)$ continuous nc functions. $\mathrm{B}(\Gamma)$ bounded nc functions.
Theorem (TAKesaki-Bichteler 1969)
C^{*}-algebra C, then $C \simeq \mathrm{C}(\operatorname{Rep}(C, H))$ and $C^{* *} \simeq \mathrm{~B}(\operatorname{Rep}(C, H))$.

Classical: $f \in \mathrm{C}(K)$

nc function: $f: \Gamma \rightarrow \mathcal{M}$ is graded, respects \oplus, \mathcal{U}-equivariant:
(1) $f\left(\Gamma_{n}\right) \subset \mathcal{M}_{n}$
(2) $f\left(\sum \oplus x_{i}\right)=\sum \oplus f\left(x_{i}\right)$
(3) $f\left(u x u^{*}\right)=u f(x) u^{*}$ for $x \in \Gamma_{n}, u \in \mathcal{M}_{n}$ unitary.
$\mathrm{C}(\Gamma)$ continuous nc functions. $\mathrm{B}(\Gamma)$ bounded nc functions.
Theorem (TAKesaki-Bichteler 1969)
C^{*}-algebra C, then $C \simeq \mathrm{C}(\operatorname{Rep}(C, H))$ and $C^{* *} \simeq \mathrm{~B}(\operatorname{Rep}(C, H))$.
$\mathrm{C}_{\max }^{*}(A)$ of Kirchberg-Wassermann 1998: universal C^{*}-algebra s.t. every u.c.p. map $x \in \Gamma$ extends to a $*$-repn. δ_{x} of $\mathrm{C}_{\max }^{*}(A)$.

Theorem

$\mathrm{C}_{\max }^{*}(A) \simeq \mathrm{C}(\Gamma)$.

Classical: $x \in K$ has representing measures $\mu \in M(K)_{1}^{+}$:

$$
\mu(a)=a(x) \quad \text { for } \quad a \in \mathrm{~A}(K) .
$$

and x is the barycenter of μ.

Classical: $x \in K$ has representing measures $\mu \in M(K)_{1}^{+}$:

$$
\mu(a)=a(x) \quad \text { for } \quad a \in \mathrm{~A}(K)
$$

and x is the barycenter of μ.
A representing map for $x \in \Gamma_{n}$ is $\mu \in \operatorname{UCP}\left(\mathrm{C}(\Gamma), \mathcal{M}_{n}(\mathcal{M})\right)$ such that $\left.\mu\right|_{\mathrm{A}(\Gamma)}=x$; and x is the barycenter of μ. By Stinespring, $\mu=\alpha^{*} \delta_{y} \alpha$ for $y \in \Gamma_{m}$ and isometry $\alpha \in \mathcal{M}_{m n}$. Say (y, α) represents x and y dilates x.

Classical: $x \in K$ has representing measures $\mu \in M(K)_{1}^{+}$:

$$
\mu(a)=a(x) \quad \text { for } \quad a \in \mathrm{~A}(K)
$$

and x is the barycenter of μ.
A representing map for $x \in \Gamma_{n}$ is $\mu \in \operatorname{UCP}\left(\mathrm{C}(\Gamma), \mathcal{M}_{n}(\mathcal{M})\right)$ such that $\left.\mu\right|_{\mathrm{A}(\Gamma)}=x$; and x is the barycenter of μ. By Stinespring, $\mu=\alpha^{*} \delta_{y} \alpha$ for $y \in \Gamma_{m}$ and isometry $\alpha \in \mathcal{M}_{m n}$. Say (y, α) represents x and y dilates x.
x has unique representing map iff δ_{x} is only u.c.p.extension of x. x is maximal if (y, α) represents $x \Longrightarrow y=x \oplus z$.

Classical: $x \in K$ has representing measures $\mu \in M(K)_{1}^{+}$:

$$
\mu(a)=a(x) \quad \text { for } \quad a \in \mathrm{~A}(K) .
$$

and x is the barycenter of μ.
A representing map for $x \in \Gamma_{n}$ is $\mu \in \operatorname{UCP}\left(\mathrm{C}(\Gamma), \mathcal{M}_{n}(\mathcal{M})\right)$ such that $\left.\mu\right|_{\mathrm{A}(\Gamma)}=x$; and x is the barycenter of μ.
By Stinespring, $\mu=\alpha^{*} \delta_{y} \alpha$ for $y \in \Gamma_{m}$ and isometry $\alpha \in \mathcal{M}_{m n}$. Say (y, α) represents x and y dilates x.
x has unique representing map iff δ_{x} is only u.c.p.extension of x. x is maximal if (y, α) represents $x \Longrightarrow y=x \oplus z$.

Proposition

x had unique representing map iff x is maximal.

Theorem (Dritschel-McCullough 2005)

$x \in \Gamma$ has a maximal dilation y.

Classical: Extreme points ∂K of K.

$x \in \Gamma$ is pure if $x=\sum \alpha_{i}^{*} x_{i} \alpha_{i} \Longrightarrow \alpha_{i}^{*} x_{i} \alpha_{i} \in \mathbb{R} x$. x is extreme if it is pure and maximal (boundary representations). $n c_{\mathrm{e}} \mathrm{xt}(\Gamma):=\partial \Gamma$

Classical: Extreme points ∂K of K.

$x \in \Gamma$ is pure if $x=\sum \alpha_{i}^{*} x_{i} \alpha_{i} \Longrightarrow \alpha_{i}^{*} x_{i} \alpha_{i} \in \mathbb{R} x$.
x is extreme if it is pure and maximal (boundary representations).
$n c_{\mathrm{e}} \mathrm{xt}(\Gamma):=\partial \Gamma$
NC Krein-Milman theorem inspired by Webster-Winkler 1999.

Theorem

Γ is the closed nc convex hull of $\partial \Gamma$.

Classical: Extreme points ∂K of K.
$x \in \Gamma$ is pure if $x=\sum \alpha_{i}^{*} x_{i} \alpha_{i} \Longrightarrow \alpha_{i}^{*} x_{i} \alpha_{i} \in \mathbb{R} x$.
x is extreme if it is pure and maximal (boundary representations). $n \mathrm{nc}_{\mathrm{e}} \mathrm{xt}(\Gamma):=\partial \Gamma$

NC Krein-Milman theorem inspired by Webster-Winkler 1999.

Theorem

Γ is the closed nc convex hull of $\partial \Gamma$.

Milman converse.

Theorem

(1) If $X \subset \Gamma$ closed
(2) $x \in X_{n}$ and isometry $\alpha \in \mathcal{M}_{m n}$ implies that $\alpha^{*} x \alpha \in X$
(3) and $\overline{\operatorname{ncconv}(X)}=\Gamma$
then $X \supset \partial \Gamma$.

Classical: $f \in \mathrm{C}(K)$ convex.
If $f \in \mathrm{C}(K)$, the convex (lower) envelope is

$$
\check{f}=\sup \{a \in \mathrm{~A}(K): a \leq f\}=\bigcap_{a \leq f} \operatorname{Epi}(a) .
$$

Classical: $f \in \mathrm{C}(K)$ convex.
If $f \in \mathrm{C}(K)$, the convex (lower) envelope is

$$
\check{f}=\sup \{a \in \mathrm{~A}(K): a \leq f\}=\bigcap_{a \leq f} \operatorname{Epi}(a) .
$$

A multivalued s.a. nc function is upward directed: if $F: \Gamma \rightarrow \mathcal{M}_{n}(\mathcal{M})$, then $F(x)=F(x)+\mathcal{M}_{n}\left(\mathcal{M}_{p}\right)^{+}$for $x \in \Gamma_{p}$.

Classical: $f \in \mathrm{C}(K)$ convex.
If $f \in \mathrm{C}(K)$, the convex (lower) envelope is

$$
\check{f}=\sup \{a \in \mathrm{~A}(K): a \leq f\}=\bigcap_{a \leq f} \operatorname{Epi}(a) .
$$

A multivalued s.a. nc function is upward directed: if $F: \Gamma \rightarrow \mathcal{M}_{n}(\mathcal{M})$, then $F(x)=F(x)+\mathcal{M}_{n}\left(\mathcal{M}_{p}\right)^{+}$for $x \in \Gamma_{p}$.
F is nc convex and l.s.c. if $\operatorname{Graph}(F)$ is nc convex and closed.
The nc convex envelope of $F: \Gamma \rightarrow \mathcal{M}_{n}(\mathcal{M})$ is defined for $x \in \Gamma_{p}$ by

$$
\bar{F}(x)=\bigcap_{m} \bigcap_{a \leq 1_{m} \otimes F}\left\{\alpha \in\left(\mathcal{M}_{n}\left(\mathcal{M}_{p}\right)\right)_{s a}: a(x) \leq 1_{m} \otimes \alpha\right\} .
$$

\bar{F} is nc convex, l.s.c. and $\bar{F} \leq F$.

Classical: $\check{f}(x)=\inf _{\mu \sim x} \mu(f)$, and inf is attained.

Classical: $\check{f}(x)=\inf _{\mu \sim x} \mu(f)$, and inf is attained.
The following is trivial classically, but difficult here.
Theorem
If F is convex, then $\bar{F}=F$.

Classical: $\check{f}(x)=\inf _{\mu \sim x} \mu(f)$, and inf is attained.
The following is trivial classically, but difficult here.

Theorem

If F is convex, then $\bar{F}=F$.

This relates the convex envelope to representing maps.
Theorem
If $f \in \mathcal{M}_{n}(\mathrm{C}(\Gamma))$ and $x \in \Gamma_{p}$,

$$
\bar{f}(x)=\bigcup_{\mu \sim x}[\mu(f), \infty)
$$

Classical: Choquet order: $\mu \prec_{c} \nu$ if $\mu(f) \leq \nu(f)$ for all f convex. Relates measures with same barycenter x.

Classical: Choquet order: $\mu \prec_{c} \nu$ if $\mu(f) \leq \nu(f)$ for all f convex. Relates measures with same barycenter x.

Nc Choquet order: $\mu \prec_{c} \nu$ if $\mu(f) \leq \nu(f)$ for all f nc convex.

Classical: Choquet order: $\mu \prec_{c} \nu$ if $\mu(f) \leq \nu(f)$ for all f convex. Relates measures with same barycenter x.

Nc Choquet order: $\mu \prec_{c} \nu$ if $\mu(f) \leq \nu(f)$ for all f nc convex.
Dilation order: $\mu \prec_{d} \nu$ if
(1) (x, α) represents μ
(2) (y, β) represents ν, and
(3) \exists_{γ} s.t. $x=\gamma^{*} y \gamma$ and $\beta=\gamma \alpha$.

Classical: Choquet order: $\mu \prec_{c} \nu$ if $\mu(f) \leq \nu(f)$ for all f convex. Relates measures with same barycenter x.

Nc Choquet order: $\mu \prec_{c} \nu$ if $\mu(f) \leq \nu(f)$ for all f nc convex.
Dilation order: $\mu \prec_{d} \nu$ if
(1) (x, α) represents μ
(2) (y, β) represents ν, and
(3) \exists_{γ} s.t. $x=\gamma^{*} y \gamma$ and $\beta=\gamma \alpha$.

This relates the dilation order with convex envelopes.
Theorem
$\mu(\bar{f})=\bigcap_{\mu \prec_{d} \nu}[\nu(f), \infty)$.

Classical: Choquet order: $\mu \prec_{c} \nu$ if $\mu(f) \leq \nu(f)$ for all f convex. Relates measures with same barycenter x.

Nc Choquet order: $\mu \prec_{c} \nu$ if $\mu(f) \leq \nu(f)$ for all f nc convex.
Dilation order: $\mu \prec_{d} \nu$ if
(1) (x, α) represents μ
(2) (y, β) represents ν, and
(3) \exists_{γ} s.t. $x=\gamma^{*} y \gamma$ and $\beta=\gamma \alpha$.

This relates the dilation order with convex envelopes.
Theorem
$\mu(\bar{f})=\bigcap_{\mu \prec_{d} \nu}[\nu(f), \infty)$.
This is crucial.

Theorem

$\mu \prec_{c} \nu$ if and only if $\mu \prec_{d} \nu$.

Classical: (Choquet 1956) If K is metrizable, each $x \in K$ has a representing measure supported on ∂K.
(Bishop-de Leeuw 1959) Every $x \in K$ has a representing measure pseudo-supported on ∂K, i.e. $\mu(f)=0$ if f is a Baire function with $\left.f\right|_{\partial K}=0$.

Classical: (Choquet 1956) If K is metrizable, each $x \in K$ has a representing measure supported on ∂K.
(Bishop-de Leeuw 1959) Every $x \in K$ has a representing measure pseudo-supported on ∂K, i.e. $\mu(f)=0$ if f is a Baire function with $\left.f\right|_{\partial K}=0$.

The Baire-Pedersen algebra $\mathfrak{B}(\Gamma)$ is the monotone completion of $\mathrm{C}(\Gamma)$ in $\mathrm{B}(\Gamma)$.

Theorem (nc Bishop-de Leeuw)

If $x \in \Gamma$, then there is a dilation maximal μ representing x.
If $f \in \mathfrak{B}(\Gamma)$ with $\left.f\right|_{\partial \gamma}=0$, then $\mu(f)=0$.

Classical: (Choquet 1956) If K is metrizable, each $x \in K$ has a representing measure supported on ∂K.
(Bishop-de Leeuw 1959) Every $x \in K$ has a representing measure pseudo-supported on ∂K, i.e. $\mu(f)=0$ if f is a Baire function with $\left.f\right|_{\partial K}=0$.

The Baire-Pedersen algebra $\mathfrak{B}(\Gamma)$ is the monotone completion of $\mathrm{C}(\Gamma)$ in $\mathrm{B}(\Gamma)$.

Theorem (nc Bishop-de Leeuw)

If $x \in \Gamma$, then there is a dilation maximal μ representing x.
If $f \in \mathfrak{B}(\Gamma)$ with $\left.f\right|_{\partial \gamma}=0$, then $\mu(f)=0$.

Theorem (nc Choquet)

If A is separable and $x \in \Gamma$, there is an nc probability measure on $\partial \Gamma$ that represents x.

The end.

