Cup products and Frobenius operators

Frauke Bleher joint with Ted Chinburg

BIRS workshop "Multivariable Spectral Theory and Representation Theory"

April 1, 2019

Notation and Frobenius operator.

- $k=\mathbb{F}_{q}$ finite field with q elements, $\operatorname{char}(k)=p, q=p^{f}$.
- $\bar{k}=$ fixed algebraic closure of k.
- $C=$ smooth projective geometrically irreducible curve over k.
- $\bar{C}=C \otimes_{k} \bar{k}$ (base change).

Frobenius operator $\Phi=\Phi_{k}: \quad(q=\# k)$
induced by the q th power map on \bar{k}.
Φ acts on $\bar{C}=C \otimes_{k} \bar{k}$ as $\Phi_{C / k} \otimes 1$ (geometric Frobenius) where $\Phi_{C / k}$ is the k-morphism $C \rightarrow C$ that is the identity map on the underlying topological space and is the q th power map on \mathcal{O}_{C}.
$\rightsquigarrow \Phi$ acts on $\bar{C}(\bar{k})$ by raising the coordinates of any point to the q th power.

Spectrum of Φ determines zeta function of C.

$$
Z(C, t):=\exp \left(\sum_{m=1}^{\infty}\left(\# C\left(\mathbb{F}_{q^{m}}\right)\right) \frac{t^{m}}{m}\right)
$$

where $\# C\left(\mathbb{F}_{q^{m}}\right)=\#$ (points of C with coordinates in $\left.\mathbb{F}_{q^{m}}\right)$.
Note: $Z(C, t)$ determines $\# C\left(\mathbb{F}_{q^{m}}\right)$ for $m \geq 1$:

$$
\# C\left(\mathbb{F}_{q^{m}}\right)=\left.\frac{1}{(m-1)!} \frac{d^{m}}{d t^{m}} \log Z(C, t)\right|_{t=0} .
$$

Example: $C=\mathbb{P}^{1}$ over $k=\mathbb{F}_{q}$.
$\rightsquigarrow \# C\left(\mathbb{F}_{q^{m}}\right)=1+q^{m}$.
$\rightsquigarrow \log Z(C, t)=\sum_{m=1}^{\infty}\left(1+q^{m}\right) \frac{t^{m}}{m}=-\log (1-t)-\log (1-q t)$.
$\rightsquigarrow Z\left(\mathbb{P}^{1}, t\right)=\frac{1}{(1-t)(1-q t)}$.

Connection to spectrum of $\Phi: \ell=$ odd prime, $\ell \backslash q$.

By the Grothendieck-Lefschetz trace formula, we have

$$
\# C\left(\mathbb{F}_{q^{m}}\right)=\sum_{r=0}^{2}(-1)^{r} \operatorname{Tr}\left(\Phi^{m} \mid H^{r}\left(\bar{C}, \mathbb{Q}_{\ell}\right)\right)
$$

We obtain:

$$
\begin{aligned}
\log Z(C, t) & =\sum_{m=1}^{\infty}\left(\# C\left(\mathbb{F}_{q^{m}}\right)\right) \frac{t^{m}}{m} \\
& =\sum_{r=0}^{2}(-1)^{r} \sum_{m=1}^{\infty} \operatorname{Tr}\left(\Phi^{m} \mid \mathrm{H}^{r}\left(\bar{C}, \mathbb{Q}_{\ell}\right)\right) \frac{t^{m}}{m} \\
& =\sum_{r=0}^{2}(-1)^{r+1} \log \left(\operatorname{det}\left(1-\Phi t \mid \mathrm{H}^{r}\left(\bar{C}, \mathbb{Q}_{\ell}\right)\right)\right) . \\
\text { Therefore, } & Z(C, t)=\prod_{r=0}^{2} \operatorname{det}\left(1-\Phi t \mid \mathrm{H}^{r}\left(\bar{C}, \mathbb{Q}_{\ell}\right)\right)^{(-1)^{r+1}} .
\end{aligned}
$$

$$
\begin{aligned}
Z(C, t) & =\prod_{r=0}^{2} \operatorname{det}\left(1-\Phi t \mid \mathrm{H}^{r}\left(\bar{C}, \mathbb{Q}_{\ell}\right)\right)^{(-1)^{r+1}} \\
& =\frac{P_{1}(C, t)}{P_{0}(C, t) P_{2}(C, t)} \quad \text { where } P_{r}(C, t)=\operatorname{det}\left(1-\Phi t \mid \mathrm{H}^{r}\left(\bar{C}, \mathbb{Q}_{\ell}\right)\right)
\end{aligned}
$$

ℓ-adic cohomology:

$$
\mathrm{H}^{r}\left(\bar{C}, \mathbb{Q}_{\ell}\right) \stackrel{\text { def }}{=} \mathrm{H}^{r}\left(\bar{C}, \mathbb{Z}_{\ell}\right) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} \stackrel{\text { def }}{=}{\underset{n}{n}}_{\lim _{\text {étale cohomology }}}^{\mathrm{H}^{r}\left(\bar{C}, \mathbb{Z} / \ell^{n} \mathbb{Z}\right)} \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}
$$

Note:

- $\mathrm{H}^{0}\left(\bar{C}, \mathbb{Q}_{\ell}\right)=\mathbb{Q}_{\ell}$ and Φ acts as identity $\rightsquigarrow P_{0}(C, t)=1-t$.
- $\mathrm{H}^{2}\left(\bar{C}, \mathbb{Q}_{\ell}\right)=\mathbb{Q}_{\ell}$ and Φ acts as multiplication by $\operatorname{deg}(\Phi)=q$ $\rightsquigarrow P_{2}(C, t)=1-q t$.
- $\mathrm{H}^{1}\left(\bar{C}, \mathbb{Q}_{\ell}\right)=\left(\mathbb{Q}_{\ell}\right)^{2 g}$, where $g=\operatorname{genus}(C)$, on which Φ acts $\rightsquigarrow P_{1}(C, t)=\prod_{i=1}^{2 g}\left(1-\omega_{i} t\right)$ where $\left\{\omega_{i}\right\}_{i=1}^{2 g}$ are the eigenvalues of Φ acting on $\mathrm{H}^{1}\left(\bar{C}, \mathbb{Q}_{\ell}\right)$.

Introducing more operators.

Let G be a finite group of k-automorphisms of C.
$\rightsquigarrow G$ acts on \bar{C}, and the actions of $\sigma \in G$ and Φ on \bar{C} commute!

One can show:

$$
Z(C, t)=Z(C / G, t) \cdot \prod_{\rho} L(C, \rho, t)^{\operatorname{dim}_{D_{\rho}} V_{\rho}}
$$

where

- ρ ranges over all non-trivial irreducible representations of G over \mathbb{Q}_{ℓ}, with underlying \mathbb{Q}_{ℓ}-vector space V_{ρ},
- $D_{\rho}=\operatorname{End}_{\mathbb{Q}_{\ell} G}\left(V_{\rho}\right)$, and
- $L(C, \rho, t)=\operatorname{det}\left(1-\Phi t \mid \mathrm{H}^{1}\left(\bar{C}, \mathbb{Q}_{\ell}\right)^{\rho}\right)$ where

$$
\begin{aligned}
\mathrm{H}^{1}\left(\bar{C}, \mathbb{Q}_{\ell}\right)^{\rho} & =\left(\mathrm{H}^{1}\left(\bar{C}, \mathbb{Q}_{\ell}\right) \otimes_{\mathbb{Q}_{\ell}} V_{\rho}^{*}\right)^{G} \\
& =\operatorname{Hom}_{\mathbb{Q}_{\ell} G}\left(V_{\rho}, \mathrm{H}^{1}\left(\bar{C}, \mathbb{Q}_{\ell}\right)\right)
\end{aligned}
$$

More on ℓ-adic and étale cohomology: $k=\mathbb{F}_{q}$.

 Let ℓ be an odd prime number with $\ell \backslash q$. Recall:

Let $X \in\{\bar{C}, C\}$, and let \bar{x} be a geometric point on X, corresp. to an algebraic closure $\overline{k(X)}$ of the function field $k(X)$. Let $k(X)^{\text {sep }}$ be the separable closure of $k(X)$ inside $\overline{k(X)}$.

The étale fundamental group $\pi_{1}(X, \bar{x})$ is the quotient group of $\operatorname{Gal}\left(k(X)^{\text {sep }} / k(X)\right)$ modulo the subgroup generated by all inertia groups associated to closed points of X. In other words, $\pi_{1}(X, \bar{x})$ is the profinite group that is the inverse limit of the Galois groups of all finite Galois covers of X that are flat and unramified (i.e. étale).

For all $r \geq 0$, we have

$$
\underbrace{\mathrm{H}^{r}\left(X, \mathbb{Z} / \ell^{n} \mathbb{Z}\right)}_{\text {étale cohomology }} \cong \underbrace{\mathrm{H}^{r}\left(\pi_{1}(X, \bar{x}), \mathbb{Z} / \ell^{n} \mathbb{Z}\right)}_{\text {profinite group cohomology }}
$$

Elliptic curves.

From now on, I will make the following assumptions:

- C is an elliptic curve over $k=\mathbb{F}_{q}$.
- $\bar{C}=C \otimes_{k} \bar{k} \quad$ (base change to fixed algebraic closure \bar{k}).
- $\ell=$ odd prime number, $q \equiv 1 \bmod \ell \rightsquigarrow \mu_{\ell} \subseteq k^{*}$.
ℓ-adic Tate module $T_{\ell}(C)$:

$$
\begin{aligned}
T_{\ell}(C) & =\underset{n}{\lim _{n}} \bar{C}\left[\ell^{n}\right](\bar{k}) \quad\left(\bar{C}\left[\ell^{n}\right](\bar{k})=\ell^{n} \text { torsion points of } \bar{C} \text { over } \bar{k}\right) \\
& =\underset{{ }_{n}}{\lim _{n}}\left(\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right) \oplus\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)\right)=\mathbb{Z}_{\ell} \oplus \mathbb{Z}_{\ell}
\end{aligned}
$$

Note: $H^{1}\left(\bar{C}, \mathbb{Z}_{\ell}\right)=\operatorname{Hom}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(C), \mathbb{Z}_{\ell}\right)=\mathbb{Z}_{\ell^{-}}$dual of $T_{\ell}(C)$.
Φ induces an automorphism of $T_{\ell}(C)$ given by raising the coordinates of each point to the q th power (geometric Frobenius).

Frobenius derivative.

Assumption: $C[\ell](k)=C\left[\ell^{2}\right](k) \cong \mathbb{Z} / \ell \mathbb{Z} \oplus \mathbb{Z} / \ell \mathbb{Z}$.

Proposition: (B-Chinburg)

There exists an automorphism A of $T_{\ell}(C)$ such that $\Phi=1+\ell A$.
Corollary:
We can define a derivative of Φ on $C[\ell](k)$ by

$$
d \Phi(\lambda)=(\Phi-1)\left(\frac{1}{\ell} \lambda\right)=A \lambda
$$

for $\lambda \in C[\ell](k)$, where $\frac{1}{\ell} \lambda$ is any ℓ th root of λ in $C\left[\ell^{2}\right](\bar{k})$. This definition is independent of the choice of $\frac{1}{\ell} \lambda$.
The resulting map $d \Phi: C[\ell](k) \rightarrow C[\ell](k)$ is an automorphism.
Goal: Use $d \Phi$ and its inverse $(d \Phi)^{-1}$ to study triple cup products.

Triple cup products.

We consider the triple cup product of étale cohomology groups

$$
F: \mathrm{H}^{1}(C, \mathbb{Z} / \ell \mathbb{Z}) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \rightarrow \mathrm{H}^{3}\left(C, \mu_{\ell}^{\otimes 2}\right)
$$

Significance of F :

- useful to get an explicit description of certain profinite groups (ℓ-adic completions of the étale fundamental group of C) as quotients of pro-free groups modulo relations;
- potentially useful for cryptographic applications (on restricting to triples of cyclic groups of order ℓ, we get a trilinear map - if it is "cryptographic" it would be a big step forward in security of intellectual property).

Description of certain étale cohomology groups for C.
Assumption: $C[\ell](k)=C\left[\ell^{2}\right](k) \cong \mathbb{Z} / \ell \mathbb{Z} \oplus \mathbb{Z} / \ell \mathbb{Z}$.

- $\operatorname{Div}(C)=$ divisor group of $C \supseteq \operatorname{Div}^{0}(C)$ (degree 0 divisors).
- $\operatorname{Pic}(C)=\operatorname{Picard} \operatorname{group}=\operatorname{Div}(C) / \operatorname{PrinDiv}(C) \supseteq \operatorname{Pic}^{0}(C)$.
- There is an exact sequence of groups

$$
\begin{aligned}
& 1 \rightarrow k^{*} \rightarrow k(C)^{*} \xrightarrow{\text { div }} \operatorname{Div}^{0}(C) \xrightarrow{\text { sum }} C(k) \rightarrow 0 \\
& \rightsquigarrow \operatorname{Pic}^{0}(C)=C(k) .
\end{aligned}
$$

- Define $D(C):=\left\{a \in k(C)^{*} \mid \operatorname{div}(a) \in \ell \operatorname{Div}^{0}(C)\right\}$.

One can show:

- $\mathrm{H}^{1}(C, \mathbb{Z} / \ell \mathbb{Z})=\operatorname{Hom}(\operatorname{Pic}(C), \mathbb{Z} / \ell \mathbb{Z})$.
- $\mathrm{H}^{1}\left(C, \mu_{\ell}\right)=D(C) /\left(k(C)^{*}\right)^{\ell}$.
- $\mathrm{H}^{2}\left(C, \mu_{\ell}\right)=\operatorname{Pic}(C) / \ell \operatorname{Pic}(C) \rightsquigarrow \mathrm{H}^{2}\left(C, \mu_{\ell}^{\otimes 2}\right)=\operatorname{Pic}(C) \otimes_{\mathbb{Z}} \mu_{\ell}$.
- $\mathrm{H}^{3}\left(C, \mu_{\ell}\right)=\mathbb{Z} / \ell \mathbb{Z} \rightsquigarrow \mathrm{H}^{3}\left(C, \mu_{\ell}^{\otimes 2}\right)=\mu_{\ell}$.

Results on cup products.

Theorem: (B-Chinburg)
Let $a \in k^{*} \subset D(C)$ and $b \in D(C)$ with non-trivial classes
$[a],[b] \in \mathrm{H}^{1}\left(C, \mu_{\ell}\right)=D(C) /\left(k(C)^{*}\right)^{\ell}$. Let $B=\operatorname{div}(b) / \ell$ with class $[B] \in \operatorname{Pic}^{0}(C)[\ell]=C[\ell](k)$. Under the cup product

$$
\mathrm{H}^{1}\left(C, \mu_{\ell}\right) \times \mathrm{H}^{1}\left(C, \mu_{\ell}\right) \xrightarrow{\cup} \mathrm{H}^{2}\left(C, \mu_{\ell}^{\otimes 2}\right)=\operatorname{Pic}(C) \otimes_{\mathbb{Z}} \mu_{\ell}
$$

we have

$$
[a] \cup[b]=(d \Phi)^{-1}[B] \otimes a^{(q-1) / \ell} .
$$

Corollary:
Let $t \in \mathrm{H}^{1}(C, \mathbb{Z} / \ell \mathbb{Z})=\operatorname{Hom}(\operatorname{Pic}(C), \mathbb{Z} / \ell \mathbb{Z})$. With a, b, B as in the theorem, the triple cup product F gives

$$
[t] \cup[a] \cup[b]=a^{t\left((d \Phi)^{-1}[B]\right) \cdot(q-1) / \ell} .
$$

Consequence.

This result shows that $[t] \cup[a] \cup[b]$ depends only on the restriction of t to $\operatorname{Pic}^{0}(C)=C(k)$. Since $C(k)$ has no points of order ℓ^{2}, restriction defines isomorphisms
$\operatorname{Hom}\left(\operatorname{Pic}^{0}(C), \mathbb{Z} / \ell \mathbb{Z}\right)=\operatorname{Hom}(C(k), \mathbb{Z} / \ell \mathbb{Z})=\operatorname{Hom}(C[\ell](k), \mathbb{Z} / \ell \mathbb{Z})$.
We can specify an element $\tilde{t} \in \operatorname{Hom}(C[\ell](k), \mathbb{Z} / \ell \mathbb{Z})$ by giving two points $Q_{1}, Q_{2} \in C[\ell](k)$ with non-trivial Weil pairing. One lets \tilde{t} be the unique homomorphism with $\tilde{t}\left(Q_{1}\right)=0$ and $\tilde{t}\left(Q_{2}\right)=1$.

Weil pairing: This is the non-degenerate cup product pairing

where, by our assumptions, $\bar{C}[\ell](\bar{k})=C[\ell](k)$.
Miller's algorithm computes the Weil pairing in polynomial time.

Question.

As before, let $a \in k^{*} \subset D(C), b \in D(C)$ such that the classes $[a],[b] \in \mathrm{H}^{1}\left(C, \mu_{\ell}\right)=D(C) /\left(k(C)^{*}\right)^{\ell}$ are non-trivial.
Let $B=\operatorname{div}(b) / \ell$ with $[B] \in \operatorname{Pic}^{0}(C)[\ell]=C[\ell](k)$.
Let $t \in \mathrm{H}^{1}(C, \mathbb{Z} / \ell)=\operatorname{Hom}(\operatorname{Pic}(C), \mathbb{Z} / \ell \mathbb{Z})$ with restriction $\tilde{t} \in \operatorname{Hom}(C[\ell](k), \mathbb{Z} / \ell \mathbb{Z})$ given by two points $Q_{1}, Q_{2} \in C[\ell](k)$ with non-trivial Weil pairing such that $\tilde{t}\left(Q_{1}\right)=0$ and $\tilde{t}\left(Q_{2}\right)=1$.

A basic question is whether there is a polynomial time algorithm for computing the triple cup product

$$
[t] \cup[a] \cup[b]=a^{\tilde{t}\left((d \Phi)^{-1}[B]\right) \cdot(q-1) / \ell} .
$$

One can certainly do this if one can compute $\tilde{t}\left((d \Phi)^{-1}[B]\right)$ quickly.
We do not know if an algorithm for computing the triple cup product quickly would lead to one for computing $\tilde{t}\left((d \Phi)^{-1}[B]\right)$ quickly.

