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Notation and Frobenius operator.

I k = Fq finite field with q elements, char(k) = p, q = pf .

I k = fixed algebraic closure of k .

I C = smooth projective geometrically irreducible curve over k .

I C = C ⊗k k (base change).

Frobenius operator Φ = Φk : (q = #k)
induced by the qth power map on k .

Φ acts on C = C ⊗k k as ΦC/k ⊗ 1 (geometric Frobenius)
where ΦC/k is the k-morphism C → C that is the identity map on
the underlying topological space and is the qth power map on OC .

 Φ acts on C (k) by raising the coordinates of any point to the
qth power.

Frauke Bleher Cup products and Frobenius operators



Spectrum of Φ determines zeta function of C .

Z (C , t) := exp

( ∞∑
m=1

(#C (Fqm))
tm

m

)
where #C (Fqm) = #(points of C with coordinates in Fqm).

Note: Z (C , t) determines #C (Fqm) for m ≥ 1:

#C (Fqm) =
1

(m − 1)!

dm

dtm
logZ (C , t)

∣∣∣
t=0

.

Example: C = P1 over k = Fq.
 #C (Fqm) = 1 + qm.

 logZ (C , t) =
∞∑

m=1

(1 + qm)
tm

m
= −log(1− t)− log(1− qt).

 Z (P1, t) =
1

(1− t)(1− qt)
.
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Connection to spectrum of Φ: ` = odd prime, ` 6
∣∣ q.

By the Grothendieck-Lefschetz trace formula, we have

#C (Fqm) =
2∑

r=0

(−1)r Tr
(
Φm | Hr (C ,Q`)

)
.

We obtain:

logZ (C , t) =
∞∑

m=1

(#C (Fqm))
tm

m

=
2∑

r=0

(−1)r
∞∑

m=1

Tr
(
Φm | Hr (C ,Q`)

) tm
m

=
2∑

r=0

(−1)r+1 log
(
det
(
1− Φt | Hr (C ,Q`)

))
.

Therefore, Z (C , t) =
2∏

r=0

det
(
1− Φt | Hr (C ,Q`)

)(−1)r+1

.
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Z (C , t) =
2∏

r=0

det
(
1− Φt | Hr (C ,Q`)

)(−1)r+1

=
P1(C , t)

P0(C , t)P2(C , t)
where Pr (C , t) = det

(
1− Φt | Hr (C ,Q`)

)
.

`-adic cohomology:

Hr (C ,Q`)
def
= Hr (C ,Z`)⊗Z` Q`

def
= lim

←−
n

Hr (C ,Z/`nZ)︸ ︷︷ ︸
étale cohomology

⊗Z`Q`.

Note:
I H0(C ,Q`) = Q` and Φ acts as identity  P0(C , t) = 1− t.
I H2(C ,Q`) = Q` and Φ acts as multiplication by deg(Φ) = q
 P2(C , t) = 1− qt.

I H1(C ,Q`) = (Q`)
2g , where g = genus(C ), on which Φ acts

 P1(C , t) =
∏2g

i=1(1− ωi t) where {ωi}2gi=1 are the
eigenvalues of Φ acting on H1(C ,Q`).
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Introducing more operators.
Let G be a finite group of k-automorphisms of C .

 G acts on C , and the actions of σ ∈ G and Φ on C commute!

One can show:

Z (C , t) = Z (C/G , t) ·
∏
ρ

L(C , ρ, t)dimDρVρ

where
I ρ ranges over all non-trivial irreducible representations of G

over Q`, with underlying Q`-vector space Vρ,
I Dρ = EndQ`G (Vρ), and
I L(C , ρ, t) = det

(
1− Φt | H1(C ,Q`)

ρ
)

where

H1(C ,Q`)
ρ =

(
H1(C ,Q`)⊗Q` Vρ

∗)G
= HomQ`G (Vρ,H

1(C ,Q`)).
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More on `-adic and étale cohomology: k = Fq.
Let ` be an odd prime number with ` 6

∣∣ q. Recall:

Hr (C ,Q`)︸ ︷︷ ︸
`-adic cohom.

= Hr (C ,Z`)⊗Z` Q` = lim
←−
n

Hr (C ,Z/`nZ)︸ ︷︷ ︸
étale cohom.

⊗Z`Q`.

Let X ∈ {C ,C}, and let x be a geometric point on X , corresp. to
an algebraic closure k(X ) of the function field k(X ). Let k(X )sep

be the separable closure of k(X ) inside k(X ).

The étale fundamental group π1(X , x) is the quotient group of
Gal(k(X )sep/k(X )) modulo the subgroup generated by all inertia
groups associated to closed points of X . In other words, π1(X , x) is
the profinite group that is the inverse limit of the Galois groups of
all finite Galois covers of X that are flat and unramified (i.e. étale).

For all r ≥ 0, we have

Hr (X ,Z/`nZ)︸ ︷︷ ︸
étale cohomology

∼= Hr (π1(X , x),Z/`nZ)︸ ︷︷ ︸
profinite group cohomology

.
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Elliptic curves.
From now on, I will make the following assumptions:
I C is an elliptic curve over k = Fq.

I C = C ⊗k k (base change to fixed algebraic closure k).

I ` = odd prime number, q ≡ 1 mod `  µ` ⊆ k∗.

`-adic Tate module T`(C ):

T`(C ) = lim
←−
n

C [`n](k) (C [`n](k) = `n torsion points of C over k)

= lim
←−
n

((Z/`nZ)⊕ (Z/`nZ)) = Z` ⊕ Z`.

Note: H1(C ,Z`) = HomZ`(T`(C ),Z`) = Z`-dual of T`(C ).

Φ induces an automorphism of T`(C ) given by raising the
coordinates of each point to the qth power (geometric Frobenius).
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Frobenius derivative.
Assumption: C [`](k) = C [`2](k) ∼= Z/`Z⊕ Z/`Z.

Proposition: (B-Chinburg)

There exists an automorphism A of T`(C ) such that Φ = 1 + `A.

Corollary:

We can define a derivative of Φ on C [`](k) by

dΦ(λ) = (Φ− 1)

(
1

`
λ

)
= Aλ

for λ ∈ C [`](k), where 1
`λ is any `th root of λ in C [`2](k). This

definition is independent of the choice of 1
`λ.

The resulting map dΦ : C [`](k)→ C [`](k) is an automorphism.

Goal: Use dΦ and its inverse (dΦ)−1 to study triple cup products.
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Triple cup products.

We consider the triple cup product of étale cohomology groups

F : H1(C ,Z/`Z)×H1(C , µ`)×H1(C , µ`)→ H3(C , µ⊗2` ).

Significance of F :

I useful to get an explicit description of certain profinite groups
(`-adic completions of the étale fundamental group of C )
as quotients of pro-free groups modulo relations;

I potentially useful for cryptographic applications
(on restricting to triples of cyclic groups of order `, we get a
trilinear map - if it is “cryptographic” it would be a big step
forward in security of intellectual property).
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Description of certain étale cohomology groups for C .
Assumption: C [`](k) = C [`2](k) ∼= Z/`Z⊕ Z/`Z.

I Div(C ) = divisor group of C ⊇ Div0(C ) (degree 0 divisors).

I Pic(C ) = Picard group = Div(C )/PrinDiv(C ) ⊇ Pic0(C ).

I There is an exact sequence of groups

1→ k∗ → k(C )∗
div−−→ Div0(C )

sum−−→ C (k)→ 0

 Pic0(C ) = C (k).

I Define D(C ) := {a ∈ k(C )∗ | div(a) ∈ `Div0(C )}.

One can show:

I H1(C ,Z/`Z) = Hom(Pic(C ),Z/`Z).

I H1(C , µ`) = D(C )/(k(C )∗)`.

I H2(C , µ`) = Pic(C )/`Pic(C )  H2(C , µ⊗2` ) = Pic(C )⊗Z µ`.

I H3(C , µ`) = Z/`Z  H3(C , µ⊗2` ) = µ`.
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Results on cup products.
H1(C ,Z/`Z) × H1(C , µ`) × H1(C , µ`)

F // H3(C , µ⊗2` )

Hom(Pic(C),Z/`Z) D(C)/(k(C)∗)` D(C)/(k(C)∗)` µ`

Theorem: (B-Chinburg)

Let a ∈ k∗ ⊂ D(C ) and b ∈ D(C ) with non-trivial classes
[a], [b] ∈ H1(C , µ`) = D(C )/(k(C )∗)`. Let B = div(b)/` with
class [B] ∈ Pic0(C )[`] = C [`](k). Under the cup product

H1(C , µ`)×H1(C , µ`)
∪−→ H2(C , µ⊗2` ) = Pic(C )⊗Z µ`

we have [a] ∪ [b] = (dΦ)−1[B]⊗ a(q−1)/`.

Corollary:

Let t ∈ H1(C ,Z/`Z) = Hom(Pic(C ),Z/`Z). With a, b,B as in
the theorem, the triple cup product F gives

[t] ∪ [a] ∪ [b] = a
t((dΦ)−1[B]) · (q − 1)/`

.
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Consequence.
This result shows that [t]∪ [a]∪ [b] depends only on the restriction
of t to Pic0(C ) = C (k). Since C (k) has no points of order `2,
restriction defines isomorphisms

Hom(Pic0(C ),Z/`Z) = Hom(C (k),Z/`Z) = Hom(C [`](k),Z/`Z).

We can specify an element t̃ ∈ Hom(C [`](k),Z/`Z) by giving two
points Q1,Q2 ∈ C [`](k) with non-trivial Weil pairing. One lets t̃
be the unique homomorphism with t̃(Q1) = 0 and t̃(Q2) = 1.

Weil pairing: This is the non-degenerate cup product pairing

〈 , 〉Weil : H1(C , µ`) × H1(C , µ`)
∪ // H2(C , µ⊗2` )

C [`](k) C [`](k) µ`

where, by our assumptions, C [`](k) = C [`](k).

Miller’s algorithm computes the Weil pairing in polynomial time.
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Question.

As before, let a ∈ k∗ ⊂ D(C ), b ∈ D(C ) such that the classes
[a], [b] ∈ H1(C , µ`) = D(C )/(k(C )∗)` are non-trivial.
Let B = div(b)/` with [B] ∈ Pic0(C )[`] = C [`](k).
Let t ∈ H1(C ,Z/`) = Hom(Pic(C ),Z/`Z) with restriction
t̃ ∈ Hom(C [`](k),Z/`Z) given by two points Q1,Q2 ∈ C [`](k)
with non-trivial Weil pairing such that t̃(Q1) = 0 and t̃(Q2) = 1.

A basic question is whether there is a polynomial time algorithm
for computing the triple cup product

[t] ∪ [a] ∪ [b] = a
t̃((dΦ)−1[B]) · (q − 1)/`

.

One can certainly do this if one can compute t̃((dΦ)−1[B]) quickly.

We do not know if an algorithm for computing the triple cup
product quickly would lead to one for computing t̃((dΦ)−1[B])
quickly.
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