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Their study over the last three decades has generated an impressive body
of research, a prominent focus being the Macdonald positivity conjecture:

This was proved by Haiman using geometry of Hilbert schemes:

Is there a combinatorial interpretation of the coefficients?



Birth of k-Schur functions

20 - 21 years ago ...
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Strengthened Macdonald positivity conjecture

Conjecture (Lapointe-Lascoux-Morse)

The atom k-Schur functions {Aλ(x; t)}λ1≤k

• form a basis for Λk = spanQ(q,t){Hµ(x; q, t)}µ1≤k , and

• are Schur positive;

• expansion of Hµ(x; q, t) ∈ Λk in this basis has coefficients in N[q, t].

The intricate construction of these functions lacked in mechanism for
proof.

Many conjecturally equivalent candidates have since been proposed, now
all informally called k-Schur functions.
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Example. k = 2,
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of Schur functions
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k-Schur candidate basis
of Λk

Schur
positive

Hµ(x; q, t)
are
k-Schur
positive

k-rectangle
property

(’98) Young tableaux and katabolism X

(’03) k-split polynomials Ã
(k)
λ X X X (q = 0) X

(’06) Strong tableaux s
(k)
λ X X X (q = 0) X

(’10) Catalan functions s
(k)
λ X X X (q = 0) X

(’12) Affine Kostka matrix X X (q = 0)

(’04) Weak tableaux (t = 1) s̄
(k)
λ X X X (q = 0) X

(’05) Schubert classes in H∗(Gr) (t = 1) X X X (q = 0) X

Table: Conjecturally equivalent definitions of k-Schur functions and known
properties.
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Indexed Root ideals

• µ ∈ Z`.

• Ψ ⊆ ∆+ is an upper order ideal of positive roots.

• band(Ψ, µ)i = µi+ number of ”non roots” in row i

Example. µ = 544012, Ψ = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 5), (2, 6), (3, 6)}

5 (1, 3) (1, 4) (1, 5) (1, 6)

4 (2, 5) (2, 6)

4 (3, 6)
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2

band(Ψ, µ) = (6, 6, 6, 2, 2, 2).
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Catalan functions
Def. (Panyushev, Chen-Haiman)

• Ψ ⊆ ∆+ is an upper order ideal of positive roots,

• γ ∈ Z`.

The Catalan function indexed by Ψ and γ:

HΨ
γ (x; t) :=

∏
(i , j)∈Ψ

(1− tRij)
−1sγ(x)

where the raising operator Rij acts by Rij(sγ(x)) = sγ+εi−εj (x).
Equivalently, we can define it using the modified Hall-Littlewood Hγ(x; t)

HΨ
γ (x; t) :=

∏
(i ,j)∈∆+\Ψ

(1− tRij)Hγ(x; t).

where RijHγ(x; t) := Hγ+εi−εj (x; t)
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Special cases

Example. Let µ = (µ1, . . . , µ`) be a partition.

• Empty root set: H∅
µ (x; t) = sµ(x).

• Full root set: H∆+

µ (x; t) = Hµ(x; t), the modified Hall-Littlewood
polynomial.
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k-Schur Catalan functions

Def. For µ a k-bounded partition of length ≤ `, define the root ideal

∆k(µ) = {(i , j) ∈ ∆+ | k − µi + i < j},

and the k - Schur Catalan function

s(k)
µ (x; t) := H∆k (µ)

µ =
∏̀
i=1

∏̀
j=k+1−µi+i

(
1− tRij

)−1
sµ(x) .

band(∆k(µ), µ) is a decreasing sequence

whose first `(∆k(µ)) entries are all k
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Example. k = 4, µ = 3321.

band(Ψ, 3321) = 4431.
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(1− tRij)
−1sµ(x)
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Strong Pieri Operators

Def. Fix a positive integer k . The strong Pieri operators
u1, u2, · · · ∈ EndZ[t](Λk) are defined by their action on the basis

{s(k)
µ }µ∈Park as follows:

s(k)
µ · up =

∑
T∈SMTk (p ;µ)

tspin(T )s
(k)
inside(T ) .

Given a word w = w1 · · ·wd , we write uw = uw1 · · · uwd
.

Powerful tool:

It is the same as:

For any µ ∈ Park` and p ∈ [`],

s(k)
µ · up = H(∆k(µ);µ− εp).
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Properties of k-Schur functions

Theorem (Blasiak-Morse-P.-Summers)

The k-Schur functions {s(k)
µ | µ is k-bounded of length ≤ `} satisfy

(vertical dual Pieri rule) e⊥d s(k)
µ = s(k)

µ ·
( ∑

i1>···>id

ui1 · · · uid
)
,

(shift invariance) s(k)
µ = e⊥` s

(k+1)

µ+1`
,

(Schur function stability) if k ≥ |µ|, then s(k)
µ = sµ.

• e⊥d ∈ End(Λ) is defined by 〈e⊥d (g), h〉 = 〈g , edh〉 for all g , h ∈ Λ.

• ui = operator for removing a strong cover marked in row i .



k-Schur branching rule

Theorem (Blasiak-Morse-P.-Summers)

For µ a k-bounded partition of length ≤ `, the expansion of the k-Schur

function s
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µ into k + 1-Schur functions is given by
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µ+1`
u` · · · u1 =

∑
T∈SMTk+1(` ··· 2 1 ;µ+1`)

tspin(T )s
(k+1)
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Proof.

The shift invariance property followed by the vertical dual Pieri rule yields

s(k)
µ = e⊥` s

(k+1)

µ+1`
= s

(k+1)

µ+1`
u` · · · u1.
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spin(T ) = 0 + 1 + 1 + 0 + 0 = 2 inside(T ) = 3222 outside(T ) = 33332



k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)

Let µ be a k-bounded partition of length ≤ ` and set m = max(|µ| − k , 0).

The Schur expansion the k-Schur function s
(k)
µ is given by
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µ =

∑
T∈SMTk+m( (`···1)m ;µ+m` )

tspin(T )sinside(T ).
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∑
T∈SMTk+m( (`···1)m ;µ+m` )

tspin(T )sinside(T ).

Proof.

Applying the shift invariance property m times followed by the vertical
dual Pieri rule, we obtain

s(k)
µ = (e⊥` )m s

(k+m)

µ+m`
= s

(k+m)

µ+m`
(u` · · · u1)m =

∑
T∈SMTk+m((`···1)m;µ+m`)

tspin(T )sinside(T ).

The Schur function stability property ensures this is the Schur function
decomposition.
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k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)

Let µ be a k-bounded partition of length ≤ ` and set m = max(|µ| − k , 0).

The Schur expansion the k-Schur function s
(k)
µ is given by

s(k)
µ =

∑
T∈SMTk+m( (`···1)m ;µ+m` )

tspin(T )sinside(T ).

Example. k = 1, µ = 111, ` = 3,m = 3− 1 = 2.
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Schur expansion of s
(1)
111 = H111

1? 2 4 4? 5 6

1 2? 4 4 5? 6

3? 5 6?

1 1? 2 4 4? 5 6

2? 4 4 5? 6

3? 5 6?

1? 3 4? 5 5 5 6

2? 5 5 5? 6

1 3? 6?

1 1? 3 4? 5 5 5 6

2? 5 5 5? 6

3? 6?

t3 s3

t2 s21

t s21

s111

s
(1)
111 = t3s3 + t2s21 + ts21 + s111

The Schur expansion of the 1-Schur function s
(1)
111 is obtained by summing

tspin(T )sinside(T ) over the set SMT3(321321; 333) of strong tableaux T
above.



Unifying the definitions of k-Schur functions

• s
(k)
µ (x; t) defined as a sum of monomials over strong tableaux. Equivalent to

the symmetric functions satisfying the dual Pieri rule.

• Ã
(k)
µ (x; t) defined recursively using Jing vertex operators.
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λ }Λk



Unifying the definitions of k-Schur functions

• s
(k)
µ (x; t) defined as a sum of monomials over strong tableaux. Equivalent to

the symmetric functions satisfying the dual Pieri rule.

• Ã
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λ }Λk



Unifying the definitions of k-Schur functions

• s
(k)
µ (x; t) defined as a sum of monomials over strong tableaux. Equivalent to

the symmetric functions satisfying the dual Pieri rule.
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(k)
µ (x; t) defined recursively using Jing vertex operators.

Combining our results with those of Lam and Lam-Lapointe-Morse-Shimozono:

Theorem
The k-Schur functions defined from Jing vertex operators, k-Schur Catalan
functions, and strong tableau k-Schur functions coincide:

Ã(k)
µ (x; t) = s(k)

µ (x; t) = s(k)
µ (x; t) for all k-bounded µ.

Moreover, their t = 1 specializations {s(k)
µ (x; 1)} match a definition using weak

tableaux, and represent Schubert classes in the homology of the affine
Grassmannian GrG of G = SLk+1.
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Conjecture (Blasiak-Morse-P.-Summers)
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Special cases

Let µ ∈ Park .

• Ψ = ∆+:

H(Ψ;µ)(x; t) is the modified Hall Littlewood polynomial,
proving q = 0 of the strengthened Macdonald positivity conjecture;

• product of a schur and a k-schur (and also its generalization) when
the indexing partition concatenate to a partition;

This proves the k-split polynomials G
(k)
λ are k-schur positive and

{s(k)
λ }Λk = {Ã(k)

λ }Λk

.

• proving a substantial special case of a problem of Broer and
Shimozono Weyman on parabolic Hall Littlewood polynomials.
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λ }Λk

.

• proving a substantial special case of a problem of Broer and
Shimozono Weyman on parabolic Hall Littlewood polynomials.



Special cases

Let µ ∈ Park .

• Ψ = ∆+: H(Ψ;µ)(x; t) is the modified Hall Littlewood polynomial,
proving q = 0 of the strengthened Macdonald positivity conjecture;

• product of a schur and a k-schur (and also its generalization) when
the indexing partition concatenate to a partition;

This proves the k-split polynomials G
(k)
λ are k-schur positive and

{s(k)
λ }Λk = {Ã(k)
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Strengthened Macdonald positivity

• Zθ = superstandard tableau of shape θ.

• colword(T ) is the word obtained by concatenating the columns of T ,
reading each from bottom to top, starting with the leftmost.

Theorem (Blasiak-Morse-P.-Summers)

Let µ be a k-bounded partition of length ≤ `. Set w = colword(Zk`/µ).

Hµ = s
(k)

k`
· uw =

∑
T∈SMTk (w ; k`)

tspin(T )s
(k)
inside(T ) .

Example. k = 3, µ = 2211.

Z(3333)/(2211) =

1

2

3 3

4 4

and colword(Z(3333)/(2211)) = 434321 .

H2211 = s
(3)
3333 · u4u3u4u3u2u1 =

∑
SMT3(434321 ; 3333)

tspin(T )s
(3)
inside(T )
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The 3-Schur expansion of H2211

1? 2 3 4 5 6

1 2? 3 4 5 6

1 2 3? 4 5? 6

4? 5 6?

1 1? 2 3 4 5 6

1 1 2? 3 4 5 6

2 3? 4 5? 6

4? 5 6?

1? 2 3 5 5 5 6

1 2? 3 5 5 5 6

3? 5 5 5? 6

1 4? 6?

1? 2 2 2 3 4 5 6

2 2 2? 3 4 5 6

3? 4 5? 6

4? 5 6?

1 1? 2 3 5 5 5 6

1 1 2? 3 5 5 5 6

3? 5 5 5? 6

4? 6?

1 1 1? 2 3 5 5 5 6

2? 3 5 5 5 6

3? 5 5 5? 6

4? 6?

spin

4

3

2

1

0

H2211 = t4 s
(3)
33 + t3 s

(3)
321 + t2 s

(3)
321 + t s

(3)
3111 + t s

(3)
222 + s

(3)
2211.
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spin = 1+1+0+0+1+0
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(3)
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Schur times k-Schur into k-Schur

• SSYTθ(r) = semistandard Young tableaux of shape θ with entries
from {1, . . . , r}.

• Bµ = Shimozono-Zabrocki generalized Hall-Littlewood vertex
operator, which is multiplication by sµ at t = 1.

Theorem (Blasiak-Morse-P.-Summers)

Let µ be a partition of length r with µ1 ≤ k − r + 1, and ν a partition
such that µν is a partition. Set R = (k − r + 1)r . Then

Bµ s
(k)
ν =

∑
T∈SSYTR/µ(r)

s
(k)
Rν · ucolword(T ) .
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Schur times k-Schur into k-Schur

Example. 6-Schur expansion of a t-analog of s432 s22.

B432 s
(6)
22 = s
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u121 + u131 + u132 + u221 + u231 + u232 + u331 + u332

)
.
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1 1 1?
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Example. 6-Schur expansion of a t-analog of s432 s22.
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(k)
44422 ·

(
u121 + u131 + u132 + u221 + u231 + u232 + u331 + u332

)
.

1?

3?

2?

1

3

inside = 44311
spin = 1 + 0 + 1 = 2

B432 s
(6)
22 = t3s

(6)
4441 + t2s

(6)
44311 + t2s

(6)
4432 + t1s

(6)
43321 + t1s

(6)
44221 + s

(6)
43222.



Current and Future Projects

• Catalan operators : generalizing vertex operators

• Augmented Pieri rule
• k-Schur expansion of Catalan functions with increasing band
• adding q to Catalan Functions, nonsymmetric Catalan functions and
k-schur functions, and more....
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k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

Boxes labeled by hook lengths.
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Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

µ

Boxes labeled by hook lengths.
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µ
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Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

µ k-skew(µ)

Boxes labeled by hook lengths.



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:
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k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

1
µ k-skew(µ)

Boxes labeled by hook lengths.



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

3 1
1

µ k-skew(µ)

Boxes labeled by hook lengths.



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

4 2
3 1
1

µ k-skew(µ)

Boxes labeled by hook lengths.



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

5 3
4 2
3 1
1

µ k-skew(µ)

Boxes labeled by hook lengths.



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

4 1
4 2
3 1
1

µ k-skew(µ)

Boxes labeled by hook lengths.



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

6 3 1
4 1

4 2
3 1
1

µ k-skew(µ)

Boxes labeled by hook lengths.



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

4 2 1
4 1

4 2
3 1
1

µ k-skew(µ)

Boxes labeled by hook lengths.



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

4 3 2 1
4 2 1

4 1
4 2
3 1
1

µ k-skew(µ)

Boxes labeled by hook lengths.



k-skew diagrams

Def. A k-bounded partition is a partition with parts of size ≤ k .

Def. The k-skew diagram of a k-bounded partition µ is obtained by
shifting the rows of µ as little as possible so that all hook lengths are ≤ k .

Example. k = 4:

µ k-skew(µ)

Boxes labeled by hook lengths.



k + 1-cores

Def. p(µ) denotes the outer shape of k-skew(µ).

Def. A k + 1-core is a partition whose diagram has no box with hook
length k + 1.
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Def. p(µ) denotes the outer shape of k-skew(µ).

Def. A k + 1-core is a partition whose diagram has no box with hook
length k + 1.

Example. k = 4:

µ k-skew(µ)



k + 1-cores

Def. p(µ) denotes the outer shape of k-skew(µ).

Def. A k + 1-core is a partition whose diagram has no box with hook
length k + 1.

Example. k = 4:

14 12 9 7 6 4 3 2 1

9 7 4 2 1

6 4 1

4 2

3 1

1

µ p(µ)



k + 1-cores

Def. p(µ) denotes the outer shape of k-skew(µ).

Def. A k + 1-core is a partition whose diagram has no box with hook
length k + 1.

Example. k = 4:

14 12 9 7 6 4 3 2 1

9 7 4 2 1

6 4 1

4 2

3 1

1

µ p(µ)



k + 1-cores

Def. p(µ) denotes the outer shape of k-skew(µ).

Def. A k + 1-core is a partition whose diagram has no box with hook
length k + 1.

Example. k = 4:

14 12 9 7 6 4 3 2 1

9 7 4 2 1

6 4 1

4 2

3 1

1

µ p(µ)

Proposition. The map µ 7→ p(µ) defines a bijection from k-bounded
partitions to k + 1-cores.



Strong covers

Def. An inclusion τ ⊂ κ of k + 1-cores is a strong cover, denoted τ ⇒ κ,
if |p−1(τ)|+ 1 = |p−1(κ)|.

Example.
Strong cover with k = 4:

corresponding k-skew diagrams:

=⇒

• •
•
•

• •
•
•

=⇒



Strong covers

Def. An inclusion τ ⊂ κ of k + 1-cores is a strong cover, denoted τ ⇒ κ,
if |p−1(τ)|+ 1 = |p−1(κ)|.

Example.
Strong cover with k = 4:

corresponding k-skew diagrams:
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• •
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Strong covers

Def. An inclusion τ ⊂ κ of k + 1-cores is a strong cover, denoted τ ⇒ κ,
if |p−1(τ)|+ 1 = |p−1(κ)|.

Example.
Strong cover with k = 4: corresponding k-skew diagrams:

=⇒

• •
•
•

• •
•
•

=⇒

p−1(τ) = 332221111 p−1(κ) = 222222221



Strong covers

Def. An inclusion τ ⊂ κ of k + 1-cores is a strong cover, denoted τ ⇒ κ,
if |p−1(τ)|+ 1 = |p−1(κ)|.

Example.
Strong cover with k = 4: corresponding k-skew diagrams:

=⇒

• •
•
•

• •
•
•

=⇒

|p−1(τ)| = 16 |p−1(κ)| = 17



Strong marked covers

Def. A strong marked cover τ
r

==⇒ κ is a strong cover τ ⇒ κ together
with a positive integer r which is allowed to be the smallest row index of
any connected component of the skew shape κ/τ .

Example. The two possible markings of the previous strong cover:

• •
•
•

• •?
•
•

• •?
•
•

• •
•
•

τ
6

==⇒ κ τ
3

==⇒ κ



Spin

Def.
spin

(
τ

r
==⇒ κ

)
= c · (h − 1) + N, where

• c = number of connected components of κ/τ ,

• h = height (number of rows) of each component,

• N = number of components below the marked one.

Example.

• •
•
•

• •?
•
•

• •?
•
•

• •
•
•

τ
6

==⇒ κ τ
3

==⇒ κ

spin = 4 spin = 5
spin = c · (h − 1) + N = 2 · (3− 1) + 0 = 4 spin = 2 · (3− 1) + 1 = 5



Spin

Def.
spin

(
τ

r
==⇒ κ

)
= c · (h − 1) + N, where

• c = number of connected components of κ/τ ,

• h = height (number of rows) of each component,

• N = number of components below the marked one.

Example.

• •
•
•

• •?
•
•

• •?
•
•

• •
•
•

τ
6

==⇒ κ τ
3

==⇒ κ

spin = 4 spin = 5
spin = c · (h − 1) + N = 2 · (3− 1) + 0 = 4 spin = 2 · (3− 1) + 1 = 5



Strong marked tableaux

Def. For a word w = w1 · · ·wm ∈ Zm
≥1, a strong tableau marked by w is a

sequence of strong marked covers of the form

κ(0) wm====⇒ κ(1) wm−1
=====⇒ · · · w1===⇒ κ(m).

• inside(T ) := p−1(κ(0))

• outside(T ) := p−1(κ(m))

Example. For k = 4, a strong marked tableau marked by 34121:



Strong marked tableaux

Def. For a word w = w1 · · ·wm ∈ Zm
≥1, a strong tableau marked by w is a

sequence of strong marked covers of the form

κ(0) wm====⇒ κ(1) wm−1
=====⇒ · · · w1===⇒ κ(m).

• inside(T ) := p−1(κ(0))

• outside(T ) := p−1(κ(m))

Example. For k = 4, a strong marked tableau marked by 34121:

1?

κ(0) 1
==⇒ κ(1), spin = 1(1− 1) + 0 = 0



Strong marked tableaux

Def. For a word w = w1 · · ·wm ∈ Zm
≥1, a strong tableau marked by w is a

sequence of strong marked covers of the form

κ(0) wm====⇒ κ(1) wm−1
=====⇒ · · · w1===⇒ κ(m).

• inside(T ) := p−1(κ(0))

• outside(T ) := p−1(κ(m))

Example. For k = 4, a strong marked tableau marked by 34121:

2 2 2?

2 κ(1) 2
==⇒ κ(2), spin = 1(2− 1) + 0 = 1



Strong marked tableaux

Def. For a word w = w1 · · ·wm ∈ Zm
≥1, a strong tableau marked by w is a

sequence of strong marked covers of the form

κ(0) wm====⇒ κ(1) wm−1
=====⇒ · · · w1===⇒ κ(m).

• inside(T ) := p−1(κ(0))

• outside(T ) := p−1(κ(m))

Example. For k = 4, a strong marked tableau marked by 34121:

3?

3

3

κ(2) 1
==⇒ κ(3), spin = 3(1− 1) + 2 = 2



Strong marked tableaux

Def. For a word w = w1 · · ·wm ∈ Zm
≥1, a strong tableau marked by w is a

sequence of strong marked covers of the form

κ(0) wm====⇒ κ(1) wm−1
=====⇒ · · · w1===⇒ κ(m).

• inside(T ) := p−1(κ(0))

• outside(T ) := p−1(κ(m))

Example. For k = 4, a strong marked tableau marked by 34121:

4

4?

κ(3) 4
==⇒ κ(4), spin = 2(1− 1) + 0 = 0



Strong marked tableaux

Def. For a word w = w1 · · ·wm ∈ Zm
≥1, a strong tableau marked by w is a

sequence of strong marked covers of the form

κ(0) wm====⇒ κ(1) wm−1
=====⇒ · · · w1===⇒ κ(m).

• inside(T ) := p−1(κ(0))

• outside(T ) := p−1(κ(m))

Example. For k = 4, a strong marked tableau marked by 34121:

5

5?

5

κ(4) 3
==⇒ κ(5), spin = 3(1− 1) + 1 = 1



Strong marked tableaux

Def. For a word w = w1 · · ·wm ∈ Zm
≥1, a strong tableau marked by w is a

sequence of strong marked covers of the form

κ(0) wm====⇒ κ(1) wm−1
=====⇒ · · · w1===⇒ κ(m).

• inside(T ) := p−1(κ(0))

• outside(T ) := p−1(κ(m))

Example. For k = 4, a strong marked tableau marked by 34121:

T =

1? 3? 5

2 2 2? 4

2 3 5?

4?

3 5

, spin(T ) = 1 + 0 + 2 + 1 + 0 = 4



Spin k-Schur functions

• We work in the ring of symmetric functions in infinitely many
variables x = (x1, x2, . . . ).

• SMTk(w ;µ) = set of strong tableaux T marked by w with
outside(T ) = µ.

• spin(T ) = sum of the spins of the strong marked covers comprising T .

Def. For a k-bounded partition µ, let

s(k)
µ (x; t) =

∑
1≤i1≤···≤id

∑
w∈Zd

≥1

ij=ij+1 =⇒ wj≤wj+1

∑
T∈SMTk (w ;µ)

tspin(T )xi1 · · · xid .

Their t = 1 specializations

• agree with another combinatorial definition using weak tableaux
(Lam-Lapointe-Morse-Shimozono 2010),

• are Schubert classes in the homology of the affine Grassmannian
GrSLk+1

of SLk+1 (Lam 2008).
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Spin k-Schur functions

• We work in the ring of symmetric functions in infinitely many
variables x = (x1, x2, . . . ).

• SMTk(w ;µ) = set of strong tableaux T marked by w with
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Spin k-Schur functions

Example.
k = 3, µ = 311:

There are 10 strong marked standard tableaux T whose 4-core is 411 with
outside(T) = 311:

1? 2? 4 4?

3?

5?

1? 2? 4 5?

3?

4?

1? 3? 4 5?

2?

4?

1? 3? 4 4?

2?

5?

1? 2? 3? 4

4?

5?

1? 4 4? 5?

2?

3?

spin = 0

w = 31211 w = 13211 w = 13121 w = 31121 w = 32111 w = 11321

wt = 221 wt = 212 wt = 122 wt = 131 wt = 311 wt = 113

1? 2? 3? 4?

4

5?

1? 2? 3? 5?

4?

4

1? 2? 4? 5?

3?

4

1? 3? 4? 5?

2?

4

spin = 1

w = 31111 w = 12111 w = 11211 w = 11121

wt = 41 wt = 32 wt = 23 wt = 14

s
(3)
311 = tm41 + tm32 + (1 + 2t)m311 + (1 + 2t)m221 + (3 + 3t)m2111 + (6 + 4t)m11111.



Spin k-Schur functions

Example. k = 3, µ = 311:

There are 10 strong marked standard tableaux T whose 4-core is 411 with
outside(T) = 311:

1? 2? 4 4?

3?

5?

1? 2? 4 5?

3?

4?

1? 3? 4 5?

2?

4?

1? 3? 4 4?

2?

5?

1? 2? 3? 4

4?

5?

1? 4 4? 5?

2?

3?

spin = 0

w = 31211 w = 13211 w = 13121 w = 31121 w = 32111 w = 11321

wt = 221 wt = 212 wt = 122 wt = 131 wt = 311 wt = 113

1? 2? 3? 4?

4

5?

1? 2? 3? 5?

4?

4

1? 2? 4? 5?

3?

4

1? 3? 4? 5?

2?

4

spin = 1

w = 31111 w = 12111 w = 11211 w = 11121

wt = 41 wt = 32 wt = 23 wt = 14

s
(3)
311 = tm41 + tm32 + (1 + 2t)m311 + (1 + 2t)m221 + (3 + 3t)m2111 + (6 + 4t)m11111.



Spin k-Schur functions

Example. k = 3, µ = 311:
There are 10 strong marked standard tableaux T whose 4-core is 411 with
outside(T) = 311:

1? 2? 4 4?

3?

5?

1? 2? 4 5?

3?

4?

1? 3? 4 5?

2?

4?

1? 3? 4 4?

2?

5?

1? 2? 3? 4

4?

5?

1? 4 4? 5?

2?

3?

spin = 0

w = 31211 w = 13211 w = 13121 w = 31121 w = 32111 w = 11321

wt = 221 wt = 212 wt = 122 wt = 131 wt = 311 wt = 113

1? 2? 3? 4?

4

5?

1? 2? 3? 5?

4?

4

1? 2? 4? 5?

3?

4

1? 3? 4? 5?

2?

4

spin = 1

w = 31111 w = 12111 w = 11211 w = 11121

wt = 41 wt = 32 wt = 23 wt = 14

s
(3)
311 = tm41 + tm32 + (1 + 2t)m311 + (1 + 2t)m221 + (3 + 3t)m2111 + (6 + 4t)m11111.



Spin k-Schur functions

Example. k = 3, µ = 311:
There are 10 strong marked standard tableaux T whose 4-core is 411 with
outside(T) = 311:

1? 2? 4 4?

3?

5?

1? 2? 4 5?

3?

4?

1? 3? 4 5?

2?

4?

1? 3? 4 4?

2?

5?

1? 2? 3? 4

4?

5?

1? 4 4? 5?

2?

3?

spin = 0

w = 31211 w = 13211 w = 13121 w = 31121 w = 32111 w = 11321

wt = 221 wt = 212 wt = 122 wt = 131 wt = 311 wt = 113

1? 2? 3? 4?

4

5?

1? 2? 3? 5?

4?

4

1? 2? 4? 5?

3?

4

1? 3? 4? 5?

2?

4

spin = 1

w = 31111 w = 12111 w = 11211 w = 11121

wt = 41 wt = 32 wt = 23 wt = 14

s
(3)
311 = tm41 + tm32 + (1 + 2t)m311 + (1 + 2t)m221 + (3 + 3t)m2111 + (6 + 4t)m11111.



Spin k-Schur functions

Example. k = 3, µ = 311:
There are 10 strong marked standard tableaux T whose 4-core is 411 with
outside(T) = 311:

1? 2? 4 4?

3?

5?

1? 2? 4 5?

3?

4?

1? 3? 4 5?

2?

4?

1? 3? 4 4?

2?

5?

1? 2? 3? 4

4?

5?

1? 4 4? 5?

2?

3?

spin = 0

w = 31211 w = 13211 w = 13121 w = 31121 w = 32111 w = 11321

wt = 221 wt = 212 wt = 122 wt = 131 wt = 311 wt = 113

1? 2? 3? 4?

4

5?

1? 2? 3? 5?

4?

4

1? 2? 4? 5?

3?

4

1? 3? 4? 5?

2?

4

spin = 1

w = 31111 w = 12111 w = 11211 w = 11121

wt = 41 wt = 32 wt = 23 wt = 14

s
(3)
311 = tm41 + tm32 + (1 + 2t)m311 + (1 + 2t)m221 + (3 + 3t)m2111 + (6 + 4t)m11111.
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