Catalan Functions and k-Schur Functions

Anna Pun
Drexel University

Joint work with Jennifer Morse, Jonah Blasiak, and Dan Summers

BIRS workshop:
Representation Theory Connections to (q,t)-Combinatorics
Jan 23, 2019

Background

Macdonald polynomials form a basis for the ring of symmetric functions over the field $\mathbb{Q}(q, t)$.

Background

Macdonald polynomials form a basis for the ring of symmetric functions over the field $\mathbb{Q}(q, t)$.

Their study over the last three decades has generated an impressive body of research, a prominent focus being the Macdonald positivity conjecture:

Background

Macdonald polynomials form a basis for the ring of symmetric functions over the field $\mathbb{Q}(q, t)$.

Their study over the last three decades has generated an impressive body of research, a prominent focus being the Macdonald positivity conjecture:

Conjecture

The (Garsia) modified Macdonald polynomials are q, t-Schur positive:

$$
H_{\mu}(\mathbf{x} ; q, t)=\sum_{\lambda} K_{\lambda \mu}(q, t) s_{\lambda}(\mathbf{x}) \quad \text { for } K_{\lambda \mu}(q, t) \in \mathbb{N}[q, t]
$$

Background

Macdonald polynomials form a basis for the ring of symmetric functions over the field $\mathbb{Q}(q, t)$.

Their study over the last three decades has generated an impressive body of research, a prominent focus being the Macdonald positivity conjecture:

This was proved by Haiman using geometry of Hilbert schemes:

Conjecture

The (Garsia) modified Macdonald polynomials are q, t-Schur positive:

$$
H_{\mu}(\mathbf{x} ; q, t)=\sum_{\lambda} K_{\lambda \mu}(q, t) s_{\lambda}(\mathbf{x}) \quad \text { for } K_{\lambda \mu}(q, t) \in \mathbb{N}[q, t] .
$$

Background

Macdonald polynomials form a basis for the ring of symmetric functions over the field $\mathbb{Q}(q, t)$.

Their study over the last three decades has generated an impressive body of research, a prominent focus being the Macdonald positivity conjecture:

This was proved by Haiman using geometry of Hilbert schemes:

Theorem (Haiman 2001)

The modified Macdonald polynomials are Schur positive:

$$
H_{\mu}(\mathbf{x} ; q, t)=\sum_{\lambda} K_{\lambda \mu}(q, t) s_{\lambda}(\mathbf{x}) \quad \text { for } K_{\lambda \mu}(q, t) \in \mathbb{N}[q, t] .
$$

Background

Yet....

Background

Yet....

many questions arising in this study remain unanswered.

Background

Is there a combinatorial interpretation of the coefficients?

20-21 years ago ...

Birth of k-Schur functions

Strengthened Macdonald positivity conjecture

Conjecture (Lapointe-Lascoux-Morse)

The atom k-Schur functions $\left\{A_{\lambda}(\mathbf{x} ; t)\right\}_{\lambda_{1} \leq k}$

- form a basis for $\Lambda^{k}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{\mu}(\mathbf{x} ; q, t)\right\}_{\mu_{1} \leq k}$, and

Strengthened Macdonald positivity conjecture

Conjecture (Lapointe-Lascoux-Morse)

The atom k-Schur functions $\left\{A_{\lambda}(\mathbf{x} ; t)\right\}_{\lambda_{1} \leq k}$

- form a basis for $\Lambda^{k}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{\mu}(\mathbf{x} ; q, t)\right\}_{\mu_{1} \leq k}$, and
- are Schur positive;

Strengthened Macdonald positivity conjecture

Conjecture (Lapointe-Lascoux-Morse)

The atom k-Schur functions $\left\{A_{\lambda}(\mathbf{x} ; t)\right\}_{\lambda_{1} \leq k}$

- form a basis for $\Lambda^{k}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{\mu}(\mathbf{x} ; q, t)\right\}_{\mu_{1} \leq k}$, and
- are Schur positive;
- expansion of $H_{\mu}(\mathbf{x} ; q, t) \in \Lambda^{k}$ in this basis has coefficients in $\mathbb{N}[q, t]$.

Strengthened Macdonald positivity conjecture

Conjecture (Lapointe-Lascoux-Morse)

The atom k-Schur functions $\left\{A_{\lambda}(\mathbf{x} ; t)\right\}_{\lambda_{1} \leq k}$

- form a basis for $\Lambda^{k}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{\mu}(\mathbf{x} ; q, t)\right\}_{\mu_{1} \leq k}$, and
- are Schur positive;
- expansion of $H_{\mu}(\mathbf{x} ; q, t) \in \Lambda^{k}$ in this basis has coefficients in $\mathbb{N}[q, t]$.

Schur expanding Macdonald

Strengthened Macdonald positivity conjecture

Conjecture (Lapointe-Lascoux-Morse)

The atom k-Schur functions $\left\{A_{\lambda}(\mathbf{x} ; t)\right\}_{\lambda_{1} \leq k}$

- form a basis for $\Lambda^{k}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{\mu}(\mathbf{x} ; q, t)\right\}_{\mu_{1} \leq k}$, and
- are Schur positive;
- expansion of $H_{\mu}(\mathbf{x} ; q, t) \in \Lambda^{k}$ in this basis has coefficients in $\mathbb{N}[q, t]$.

Schur expanding Macdonald $\quad H_{\mu}(\mathbf{x} ; q, t) \in \Lambda^{k}$ is $q, t k$-Schur are Schur positive

Strengthened Macdonald positivity conjecture

Conjecture (Lapointe-Lascoux-Morse)

The atom k-Schur functions $\left\{A_{\lambda}(\mathbf{x} ; t)\right\}_{\lambda_{1} \leq k}$

- form a basis for $\Lambda^{k}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{\mu}(\mathbf{x} ; q, t)\right\}_{\mu_{1} \leq k}$, and
- are Schur positive;
- expansion of $H_{\mu}(\mathbf{x} ; q, t) \in \Lambda^{k}$ in this basis has coefficients in $\mathbb{N}[q, t]$.

The intricate construction of these functions lacked in mechanism for proof.

Strengthened Macdonald positivity conjecture

Conjecture (Lapointe-Lascoux-Morse)

The atom k-Schur functions $\left\{A_{\lambda}(\mathbf{x} ; t)\right\}_{\lambda_{1} \leq k}$

- form a basis for $\Lambda^{k}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{\mu}(\mathbf{x} ; q, t)\right\}_{\mu_{1} \leq k}$, and
- are Schur positive;
- expansion of $H_{\mu}(\mathbf{x} ; q, t) \in \Lambda^{k}$ in this basis has coefficients in $\mathbb{N}[q, t]$.

The intricate construction of these functions lacked in mechanism for proof.

Many conjecturally equivalent candidates have since been proposed, now all informally called k-Schur functions.

Strengthened Macdonald positivity conjecture

Example. $k=2$,
$\Lambda^{2}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{1}, H_{11}, H_{2}, H_{111}, H_{21}, H_{1^{4}}, H_{211}, H_{22}, \cdots\right\}$
$H_{1^{4}}=t^{4}\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square \square}\right)+\left(t^{2}+t^{3}\right)\left(s_{母}+t s_{\square}\right)+\left(s_{母}+t s_{\sharp}+t^{2} s_{\boxplus}\right)$
$H_{211}=t\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square}\right)+\left(1+q t^{2}\right)\left(s_{\exists}+t s_{\square}\right)+q\left(s_{\sharp}+t s_{\sharp}+t^{2} s_{\boxplus}\right)$
$H_{22}=\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square \square \square}\right)+\underbrace{(q+q t)}_{\substack{\text { positive sum of of } \\ q, t \text {-monomials }}} \underbrace{\left(s_{\square}+t s_{\square \square}\right)}_{\begin{array}{c}t \text {-positive sum } \\ \text { of schur functions }\end{array}}+q^{2}\left(s_{\square}+t s_{\square}+t^{2} s_{\boxplus}\right)$

Strengthened Macdonald positivity conjecture

Example. $k=2$,
$\Lambda^{2}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{1}, H_{11}, H_{2}, H_{111}, H_{21}, H_{1^{4}}, H_{211}, H_{22}, \cdots\right\}$
$H_{1^{4}}=t^{4}\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square \amalg}\right)+\left(t^{2}+t^{3}\right)\left(s_{\boxminus}+t s_{\square}\right)+\left(s_{\square}+t s_{\sharp}+t^{2} s_{\boxplus}\right)$
$H_{211}=t\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square \square}\right)+\left(1+q t^{2}\right)\left(s_{\exists}+t s_{\square}\right)+q\left(s_{\sharp}+t s_{\exists}+t^{2} s_{\boxplus}\right)$
$H_{22}=\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square \square}\right)+\underbrace{(q+q t)}_{\substack{\text { positive sum of of } \\ q, t-\text {-monomials }}} \underbrace{\left(s_{\square}+t s_{\square \square}\right)}_{\begin{array}{c}t \text {-positive sum } \\ \text { of schur functions }\end{array}}+q^{2}\left(s_{\square}+t s_{\square}+t^{2} s_{\boxplus}\right)$

$s \stackrel{(2)}{\square}_{(2)}$

Strengthened Macdonald positivity conjecture

Example. $k=2$,
$\Lambda^{2}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{1}, H_{11}, H_{2}, H_{111}, H_{21}, H_{1^{4}}, H_{211}, H_{22}, \cdots\right\}$
$H_{1^{4}}=t^{4}\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square 巴}\right)+\left(t^{2}+t^{3}\right)\left(s_{\square}+t s_{\square}\right)+\left(s_{母}+t s_{\sharp}+t^{2} s_{\boxplus}\right)$
$H_{211}=t\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square \square}\right)+\left(1+q t^{2}\right)\left(s_{\exists}+t s_{\square}\right)+q\left(s_{\sharp}+t s_{\exists}+t^{2} s_{\boxplus}\right)$
$H_{22}=\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square \square \square}\right)+\underbrace{(q+q t)}_{\substack{\text { positive sum of of } \\ q, t \text {-monomials }}} \underbrace{\left(s_{\square}+t s_{\square \square}\right)}_{\begin{array}{c}t \text {-positive sum } \\ \text { of schur functions }\end{array}}+q^{2}\left(s_{\square}+t s_{\square}+t^{2} s_{\boxplus}\right)$

Strengthened Macdonald positivity conjecture

Example. $k=2$,
$\Lambda^{2}=\operatorname{span}_{\mathbb{Q}(q, t)}\left\{H_{1}, H_{11}, H_{2}, H_{111}, H_{21}, H_{1^{4}}, H_{211}, H_{22}, \cdots\right\}$
$H_{1^{4}}=t^{4}\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square \square}\right)+\left(t^{2}+t^{3}\right)\left(s_{\boxminus}+t s_{\square}\right)+\left(s_{母}+t s_{\sharp}+t^{2} s_{\boxplus}\right)$
$H_{211}=t\left(s_{\boxplus}+t s_{\square}+t^{2} s_{\square}\right)+\left(1+q t^{2}\right)\left(s_{\exists}+t s_{\square}\right)+q\left(s_{\sharp}+t s_{\exists}+t^{2} s_{\boxplus}\right)$
$H_{22}=\left(s_{\boxplus}+t s_{\square \square}+t^{2} s_{\square \square}\right)+\underbrace{(q+q t)}_{\begin{array}{c}\text { positive sum of } \\ q, t-\text {-monomials }\end{array}} \underbrace{\left(s_{\square}+t s_{\square \square}\right)}_{\begin{array}{c}t \text {-positive sum } \\ \text { of Schur functions }\end{array}}+q^{2}\left(s_{\square}+t s_{\boxminus}+t^{2} s_{\square}\right)$

$s \square^{(2)}$

basis for restricted span Λ^{k} of Macdonald polynomials

k-Schur candidate	basis of Λ^{k}	Schur positive	$H_{\mu}(\mathbf{x} ; q, t)$ are k-Schur positive	k-rectangle property	
('98) Young tableaux and katabolism		\checkmark			
('03) k-split polynomials	$\tilde{A}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('06) Strong tableaux	$s_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('10) Catalan functions	$\mathfrak{s}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('12) Affine Kostka matrix		\checkmark		$\checkmark(q=0)$	
('04) Weak tableaux $(t=1)$	$\bar{s}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('05) Schubert classes in $H_{*}(\mathrm{Gr})(t=1)$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark	

Table: Conjecturally equivalent definitions of k-Schur functions and known properties.

k-Schur candidate	basis of Λ^{k}	Schur positive	$H_{\mu}(\mathbf{x} ; q, t)$ are k-Schur positive	k-rectangle property	
('98) Young tableaux and katabolism		\checkmark			
('03) k-split polynomials	$\tilde{A}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('06) Strong tableaux	$s_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('10) Catalan functions	$\mathfrak{s}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('12) Affine Kostka matrix		\checkmark		$\checkmark(q=0)$	
('04) Weak tableaux $(t=1)$	$\bar{s}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('05) Schubert classes in $H_{*}(\mathrm{Gr})(t=1)$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark	

Table: Conjecturally equivalent definitions of k-Schur functions and known properties.

k-Schur candidate	basis of Λ^{k}	Schur positive	$H_{\mu}(\mathbf{x} ; q, t)$ are k-Schur positive	k-rectangle property	
('98) Young tableaux and katabolism		\checkmark			
('03) k-split polynomials	$\tilde{A}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('06) Strong tableaux	$s_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('10) Catalan functions	$\mathfrak{s}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('12) Affine Kostka matrix		\checkmark		$\checkmark(q=0)$	
('04) Weak tableaux $(t=1)$	$\bar{s}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('05) Schubert classes in $H_{*}(\mathrm{Gr})(t=1)$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark	

Table: Conjecturally equivalent definitions of k-Schur functions and known properties.

k-Schur candidate	basis of Λ^{k}	Schur positive	$H_{\mu}(\mathbf{x} ; q, t)$ are k-Schur positive	k-rectangle property	
('98) Young tableaux and katabolism		\checkmark			
('03) k-split polynomials	$\tilde{A}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('06) Strong tableaux	$s_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('10) Catalan functions	$\mathfrak{s}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('12) Affine Kostka matrix		\checkmark		$\checkmark(q=0)$	
('04) Weak tableaux $(t=1)$	$\bar{s}_{\lambda}^{(k)}$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark
('05) Schubert classes in $H_{*}(\mathrm{Gr})(t=1)$	\checkmark	\checkmark	$\checkmark(q=0)$	\checkmark	

Table: Conjecturally equivalent definitions of k-Schur functions and known properties.

Introducing a new powerful tool

photo by Royce chocolate

Introducing a new powerful tool

Root ideals

- Set of positive roots $\Delta^{+}:=\{(i, j) \mid 1 \leq i<j \leq \ell\}$.

Root ideals

- Set of positive roots $\Delta^{+}:=\{(i, j) \mid 1 \leq i<j \leq \ell\}$.
- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots.

Root ideals

- Set of positive roots $\Delta^{+}:=\{(i, j) \mid 1 \leq i<j \leq \ell\}$.
- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots.

Example. $\psi=\{(1,3),(1,4),(1,5),(1,6),(2,5),(2,6),(3,6)\}$

Root ideals

- Set of positive roots $\Delta^{+}:=\{(i, j) \mid 1 \leq i<j \leq \ell\}$.
- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots.

Example. $\psi=\{(1,3),(1,4),(1,5),(1,6),(2,5),(2,6),(3,6)\}$

- $\mu \in \mathbb{Z}^{\ell}$.

Indexed Root ideals

- $\mu \in \mathbb{Z}^{\ell}$.
- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots.

Indexed Root ideals

- $\mu \in \mathbb{Z}^{\ell}$.
- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots.

Example. $\mu=544012, \Psi=\{(1,3),(1,4),(1,5),(1,6),(2,5),(2,6),(3,6)\}$

Indexed Root ideals

- $\mu \in \mathbb{Z}^{\ell}$.
- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots.

Example. $\mu=544012, \Psi=\{(1,3),(1,4),(1,5),(1,6),(2,5),(2,6),(3,6)\}$

$\mathbf{5}$		$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
	4			$(2,5)$	$(2,6)$
		4			$(3,6)$
			0		
				1	
					2

Indexed Root ideals

- $\mu \in \mathbb{Z}^{\ell}$.
- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots.
- band $(\Psi, \mu)_{i}=\mu_{i}+$ number of "non roots" in row i

Example. $\mu=544012, \Psi=\{(1,3),(1,4),(1,5),(1,6),(2,5),(2,6),(3,6)\}$

$\mathbf{5}$		$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
	4			$(2,5)$	$(2,6)$
		4			$(3,6)$
			0		
				$\mathbf{1}$	
					2

Indexed Root ideals

- $\mu \in \mathbb{Z}^{\ell}$.
- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots.
- band $(\Psi, \mu)_{i}=\mu_{i}+$ number of "non roots" in row i

Example. $\mu=544012, \Psi=\{(1,3),(1,4),(1,5),(1,6),(2,5),(2,6),(3,6)\}$

$\mathbf{5}$		$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
	4			$(2,5)$	$(2,6)$
		4			$(3,6)$
			0		
				$\mathbf{1}$	
					2

$$
\operatorname{band}(\Psi, \mu)=(6,6,6,2,2,2)
$$

Catalan functions

Def. (Panyushev, Chen-Haiman)

- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots,
- $\gamma \in \mathbb{Z}^{\ell}$.

Catalan functions

Def. (Panyushev, Chen-Haiman)

- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots,
- $\gamma \in \mathbb{Z}^{\ell}$.

The Catalan function indexed by ψ and γ :

Catalan functions

Def. (Panyushev, Chen-Haiman)

- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots,
- $\gamma \in \mathbb{Z}^{\ell}$.

The Catalan function indexed by Ψ and γ :

$$
H_{\gamma}^{\Psi}(\mathbf{x} ; t):=\prod_{(i, j) \in \Psi}\left(1-t R_{i j}\right)^{-1} s_{\gamma}(\mathbf{x})
$$

Catalan functions

Def. (Panyushev, Chen-Haiman)

- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots,
- $\gamma \in \mathbb{Z}^{\ell}$.

The Catalan function indexed by Ψ and γ :

$$
H_{\gamma}^{\Psi}(\mathbf{x} ; t):=\prod_{(i, j) \in \Psi}\left(1-t R_{i j}\right)^{-1} s_{\gamma}(\mathbf{x})
$$

where the raising operator $R_{i j}$ acts by $R_{i j}\left(s_{\gamma}(\mathbf{x})\right)=s_{\gamma+\epsilon_{i}-\epsilon_{j}}(\mathbf{x})$.

Catalan functions

Def. (Panyushev, Chen-Haiman)

- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots,
- $\gamma \in \mathbb{Z}^{\ell}$.

The Catalan function indexed by Ψ and γ :

$$
H_{\gamma}^{\Psi}(\mathbf{x} ; t):=\prod_{(i, j) \in \Psi}\left(1-t R_{i j}\right)^{-1} s_{\gamma}(\mathbf{x})
$$

where the raising operator $R_{i j}$ acts by $R_{i j}\left(s_{\gamma}(\mathbf{x})\right)=s_{\gamma+\epsilon_{i}-\epsilon_{j}}(\mathbf{x})$.
Equivalently, we can define it using the modified Hall-Littlewood $H_{\gamma}(\mathbf{x} ; t)$

Catalan functions

Def. (Panyushev, Chen-Haiman)

- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots,
- $\gamma \in \mathbb{Z}^{\ell}$.

The Catalan function indexed by Ψ and γ :

$$
H_{\gamma}^{\Psi}(\mathbf{x} ; t):=\prod_{(i, j) \in \Psi}\left(1-t R_{i j}\right)^{-1} s_{\gamma}(\mathbf{x})
$$

where the raising operator $R_{i j}$ acts by $R_{i j}\left(s_{\gamma}(\mathbf{x})\right)=s_{\gamma+\epsilon_{i}-\epsilon_{j}}(\mathbf{x})$.
Equivalently, we can define it using the modified Hall-Littlewood $H_{\gamma}(\mathbf{x} ; t)$

$$
H_{\gamma}^{\Psi}(\mathbf{x} ; t):=\prod_{(i, j) \in \Delta^{+} \backslash \Psi}\left(1-t \mathbf{R}_{i j}\right) H_{\gamma}(\mathbf{x} ; t)
$$

Catalan functions

Def. (Panyushev, Chen-Haiman)

- $\Psi \subseteq \Delta^{+}$is an upper order ideal of positive roots,
- $\gamma \in \mathbb{Z}^{\ell}$.

The Catalan function indexed by Ψ and γ :

$$
H_{\gamma}^{\Psi}(\mathbf{x} ; t):=\prod_{(i, j) \in \Psi}\left(1-t R_{i j}\right)^{-1} s_{\gamma}(\mathbf{x})
$$

where the raising operator $R_{i j}$ acts by $R_{i j}\left(s_{\gamma}(\mathbf{x})\right)=s_{\gamma+\epsilon_{i}-\epsilon_{j}}(\mathbf{x})$.
Equivalently, we can define it using the modified Hall-Littlewood $H_{\gamma}(\mathbf{x} ; t)$

$$
H_{\gamma}^{\psi}(\mathbf{x} ; t):=\prod_{(i, j) \in \Delta^{+} \backslash \Psi}\left(1-t \mathbf{R}_{i j}\right) H_{\gamma}(\mathbf{x} ; t)
$$

where $\mathbf{R}_{i j} H_{\gamma}(\mathbf{x} ; t):=H_{\gamma+\epsilon_{i}-\epsilon_{j}}(\mathbf{x} ; t)$

Special cases

Example. Let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ be a partition.

Special cases

Example. Let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ be a partition.

- Empty root set: $H_{\mu}^{\varnothing}(\mathbf{x} ; t)=s_{\mu}(\mathbf{x})$.

Special cases

Example. Let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ be a partition.

- Empty root set: $H_{\mu}^{\varnothing}(\mathbf{x} ; t)=s_{\mu}(\mathbf{x})$.

4					
	3				
		2			
			2		
				2	
					1

$H_{432221}^{\varnothing}(\mathbf{x} ; t)=s_{432221}$.

Special cases

Example. Let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ be a partition.

- Empty root set: $H_{\mu}^{\varnothing}(\mathbf{x} ; t)=s_{\mu}(\mathbf{x})$.
- Full root set: $H_{\mu}^{\Delta^{+}}(\mathbf{x} ; t)=H_{\mu}(\mathbf{x} ; t)$, the modified Hall-Littlewood polynomial.

4					
	3				
		2			
			2		
				2	
					1

$H_{432221}^{\oslash}(\mathbf{x} ; t)=s_{432221}$.

Special cases

Example. Let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ be a partition.

- Empty root set: $H_{\mu}^{\varnothing}(\mathbf{x} ; t)=s_{\mu}(\mathbf{x})$.
- Full root set: $H_{\mu}^{\Delta^{+}}(\mathbf{x} ; t)=H_{\mu}(\mathbf{x} ; t)$, the modified Hall-Littlewood polynomial.

4					
	3				
		2			
			2		
				2	
					1
$H_{432221}^{\Delta^{+}}(x ; t)=H_{432221}$.					

k-Schur Catalan functions

Def. For μ a k-bounded partition of length $\leq \ell$, define the root ideal

k-Schur Catalan functions

Def. For μ a k-bounded partition of length $\leq \ell$, define the root ideal

$$
\Delta^{k}(\mu)=\left\{(i, j) \in \Delta^{+} \mid k-\mu_{i}+i<j\right\}
$$

k-Schur Catalan functions

Def. For μ a k-bounded partition of length $\leq \ell$, define the root ideal

$$
\Delta^{k}(\mu)=\left\{(i, j) \in \Delta^{+} \mid k-\mu_{i}+i<j\right\}
$$

and the k - Schur Catalan function

$$
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t):=H_{\mu}^{\Delta^{k}(\mu)}=\prod_{i=1}^{\ell} \prod_{j=k+1-\mu_{i}+i}^{\ell}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) .
$$

k-Schur Catalan functions

Def. For μ a k-bounded partition of length $\leq \ell$, define the root ideal

$$
\Delta^{k}(\mu)=\left\{(i, j) \in \Delta^{+} \mid k-\mu_{i}+i<j\right\}
$$

and the k - Schur Catalan function

$$
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t):=H_{\mu}^{\Delta^{k}(\mu)}=\prod_{i=1}^{\ell} \prod_{j=k+1-\mu_{i}+i}^{\ell}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) .
$$

band $\left(\Delta^{k}(\mu), \mu\right)$ is a decreasing sequence whose first $\ell\left(\Delta^{k}(\mu)\right)$ entries are all k

Examples of Catalan functions

Example. $k=4, \mu=3321$.

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3			
	3		
		2	
			1

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

$$
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t)=\prod_{(i, j) \in \Delta^{k}(\mu)}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x})
$$

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

$$
\begin{aligned}
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t) & =\prod_{(i, j) \in \Delta^{k}(\mu)}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) \\
& =\left(1-t R_{13}\right)^{-1}\left(1-t R_{24}\right)^{-1}\left(1-t R_{14}\right)^{-1} s_{3321}(\mathbf{x})
\end{aligned}
$$

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

$$
\begin{aligned}
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t)= & \prod_{(i, j) \in \Delta^{k}(\mu)}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) \\
= & \left(1-t R_{13}\right)^{-1}\left(1-t R_{24}\right)^{-1}\left(1-t R_{14}\right)^{-1} s_{3321}(\mathbf{x}) \\
= & s_{3321}+t\left(s_{3420}+s_{4311}+s_{4320}\right)+t^{2}\left(s_{4410}+s_{5301}+s_{5310}\right) \\
& +t^{3}\left(s_{63-11}+s_{5400}+s_{6300}\right)+t^{4}\left(s_{64-10}+s_{73-10}\right)
\end{aligned}
$$

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

$$
\begin{aligned}
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t)= & \prod_{(i, j) \in \Delta^{k}(\mu)}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) \\
= & \left(1-t R_{13}\right)^{-1}\left(1-t R_{24}\right)^{-1}\left(1-t R_{14}\right)^{-1} s_{3321}(\mathbf{x}) \\
= & s_{3321}+t\left(0+s_{4311}+s_{4320}\right)+t^{2}\left(s_{4410}+s_{5301}+s_{5310}\right) \\
& +t^{3}\left(s_{63-11}+s_{5400}+s_{6300}\right)+t^{4}\left(s_{64-10}+s_{73-10}\right)
\end{aligned}
$$

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

$$
\begin{aligned}
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t)= & \prod_{(i, j) \in \Delta^{k}(\mu)}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) \\
= & \left(1-t R_{13}\right)^{-1}\left(1-t R_{24}\right)^{-1}\left(1-t R_{14}\right)^{-1} s_{3321}(\mathbf{x}) \\
= & s_{3321}+t\left(0+s_{4311}+s_{4320}\right)+t^{2}\left(s_{4410}+0+s_{5310}\right) \\
& +t^{3}\left(s_{63-11}+s_{5400}+s_{6300}\right)+t^{4}\left(s_{64-10}+s_{73-10}\right)
\end{aligned}
$$

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

$$
\begin{aligned}
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t)= & \prod_{(i, j) \in \Delta^{k}(\mu)}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) \\
= & \left(1-t R_{13}\right)^{-1}\left(1-t R_{24}\right)^{-1}\left(1-t R_{14}\right)^{-1} s_{3321}(\mathbf{x}) \\
= & s_{3321}+t\left(0+s_{4311}+s_{4320}\right)+t^{2}\left(s_{4410}+0+s_{5310}\right) \\
& +t^{3}\left(-s_{6300}+s_{5400}+s_{6300}\right)+t^{4}\left(s_{64-10}+s_{73-10}\right)
\end{aligned}
$$

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

$$
\begin{aligned}
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t)= & \prod_{(i, j) \in \Delta^{k}(\mu)}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) \\
= & \left(1-t R_{13}\right)^{-1}\left(1-t R_{24}\right)^{-1}\left(1-t R_{14}\right)^{-1} s_{3321}(\mathbf{x}) \\
= & s_{3321}+t\left(0+s_{4311}+s_{4320}\right)+t^{2}\left(s_{4410}+0+s_{5310}\right) \\
& +t^{3}\left(-s_{6300}+s_{5400}+s_{6300}\right)+t^{4}(0+0)
\end{aligned}
$$

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

$$
\begin{aligned}
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t)= & \prod_{(i, j) \in \Delta^{k}(\mu)}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) \\
= & \left(1-t R_{13}\right)^{-1}\left(1-t R_{24}\right)^{-1}\left(1-t R_{14}\right)^{-1} s_{3321}(\mathbf{x}) \\
= & s_{3321}+t\left(0+s_{4311}+s_{4320}\right)+t^{2}\left(s_{4410}+0+s_{5310}\right) \\
& +t^{3}\left(-s_{6300}+s_{5400}+s_{6300}\right)+t^{4}(0+0) \\
= & s_{3321}+t\left(s_{4320}+s_{4311}\right)+t^{2}\left(s_{4410}+s_{5310}\right)+t^{3} s_{5400} .
\end{aligned}
$$

Examples of Catalan functions

Example. $k=4, \mu=3321$.

3		1,3	1,4
	3		2,4
		2	
			1

$\operatorname{band}(\Psi, 3321)=4431$.

$$
\begin{aligned}
\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t)= & \prod_{(i, j) \in \Delta^{k}(\mu)}\left(1-t R_{i j}\right)^{-1} s_{\mu}(\mathbf{x}) \\
= & \left(1-t R_{13}\right)^{-1}\left(1-t R_{24}\right)^{-1}\left(1-t R_{14}\right)^{-1} s_{3321}(\mathbf{x}) \\
= & s_{3321}+t\left(0+s_{4311}+s_{4320}\right)+t^{2}\left(s_{4410}+0+s_{5310}\right) \\
& +t^{3}\left(-s_{6300}+s_{5400}+s_{6300}\right)+t^{4}(0+0) \\
= & 1 \cdot s_{3321}+t\left(s_{4320}+s_{4311}\right)+t^{2}\left(s_{4410}+s_{5310}\right)+t^{3} s_{5400} .
\end{aligned}
$$

Is there any combinatorial objects related?

Is there any combinatorial objects related?

YES! :)

From SSYT to SMT

From SSYT to SMT

From SSYT to SMT

SSYT

From SSYT to SMT

Fix a positive integer k (for construction),

From SSYT to SMT

Fix a positive integer k (for construction),

From SSYT to SMT

Fix a positive integer k (for construction),

From SSYT to SMT

Fix a positive integer k (for construction),

From SSYT to SMT

1	1	1	1	3
2	2	3	4	
4				

Fix a positive integer $k=4$,

From SSYT to SMT

1	1	1	1	3
2	2	3	4	
4				

$$
\text { shape }=541
$$

Fix a positive integer $k=4$,

						1*	3*	5
		2		2	2^	4		
		2		3	5*			
		4*						
3	5							

From SSYT to SMT

1	1	1	1	3
2	2	3	4	
4				

shape $=541$

Fix a positive integer $k=4$,

					$1 *$	$3 \star$	5
		2	2	2*	4		
		2	3	5*			
		4*					
3	5						

From SSYT to SMT

1	1	1	1	3
2	2	3	4	
4				

$$
\text { shape }=541
$$

Fix a positive integer $k=4$,

						$1 \star$	3*	5
		2		2	$2 \star$	4		
		2		3	5*			
		4×						
3	5							

From SSYT to SMT

1	1	1	1	3
2	2	3	4	
4				

$$
\text { shape }=541
$$

Fix a positive integer $k=4$,

						$1 \star$	3*	5
		2		2	$2 \star$	4		
		2		3	5*			
		4×						
3	5							

From SSYT to SMT

1	1	1	1	3
2	2	3	4	
4				

shape $=541$

Fix a positive integer $k=4$,

					$1 \star$	3*	5
		2	2	2*	4		
		2	3	5*			
		4*					
3	5						

From SSYT to SMT

Fix a positive integer $k=4$,

We write $\operatorname{SMT}^{k}(w ; \mu)=$ set of strong tableaux T marked by w with outside $(T)=\mu$.

Strong Pieri Operators

Def. Fix a positive integer k. The strong Pieri operators $u_{1}, u_{2}, \cdots \in \operatorname{End}_{\mathbb{Z}[t]}\left(\Lambda^{k}\right)$ are defined by their action on the basis $\left\{\mathfrak{s}_{\mu}^{(k)}\right\}_{\mu \in \operatorname{Par}^{k}}$ as follows:

Strong Pieri Operators

Def. Fix a positive integer k. The strong Pieri operators $u_{1}, u_{2}, \cdots \in \operatorname{End}_{\mathbb{Z}[t]}\left(\Lambda^{k}\right)$ are defined by their action on the basis $\left\{\mathfrak{s}_{\mu}^{(k)}\right\}_{\mu \in \operatorname{Par}^{k}}$ as follows:

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=\sum_{T \in \operatorname{SMT}^{k}(p ; \mu)} t^{\operatorname{spin}(T)} \mathfrak{s}_{\text {inside }(T)}^{(k)}
$$

Strong Pieri Operators

Def. Fix a positive integer k. The strong Pieri operators $u_{1}, u_{2}, \cdots \in \operatorname{End}_{\mathbb{Z}[t]}\left(\Lambda^{k}\right)$ are defined by their action on the basis $\left\{\mathfrak{s}_{\mu}^{(k)}\right\}_{\mu \in \operatorname{Par}^{k}}$ as follows:

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=\sum_{T \in \operatorname{SMT}^{k}(p ; \mu)} t^{\operatorname{spin}(T)_{\mathfrak{s}^{\prime}}(k)} \text { inside(T)} .
$$

Given a word $w=w_{1} \cdots w_{d}$, we write $u_{w}=u_{w_{1}} \cdots u_{w_{d}}$.

Strong Pieri Operators

Def. Fix a positive integer k. The strong Pieri operators $u_{1}, u_{2}, \cdots \in \operatorname{End}_{\mathbb{Z}[t]}\left(\Lambda^{k}\right)$ are defined by their action on the basis $\left\{\mathfrak{s}_{\mu}^{(k)}\right\}_{\mu \in \operatorname{Par}^{k}}$ as follows:

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=\sum_{T \in \operatorname{SMT}^{k}(p ; \mu)} t^{\operatorname{spin}(T)} \mathfrak{s}_{\text {inside }(T)}^{(k)} .
$$

Given a word $w=w_{1} \cdots w_{d}$, we write $u_{w}=u_{w_{1}} \cdots u_{w_{d}}$. Powerful tool:

Strong Pieri Operators

Def. Fix a positive integer k. The strong Pieri operators $u_{1}, u_{2}, \cdots \in \operatorname{End}_{\mathbb{Z}[t]}\left(\Lambda^{k}\right)$ are defined by their action on the basis $\left\{\mathfrak{s}_{\mu}^{(k)}\right\}_{\mu \in \operatorname{Par}^{k}}$ as follows:

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=\sum_{T \in \operatorname{SMT}^{k}(p ; \mu)} t^{\operatorname{spin}(T)_{\mathfrak{s}^{\prime}}(k)} \text { inside(T)} .
$$

Given a word $w=w_{1} \cdots w_{d}$, we write $u_{w}=u_{w_{1}} \cdots u_{w_{d}}$. Powerful tool: It is the same as:

For any $\mu \in \operatorname{Par}_{\ell}^{k}$ and $p \in[\ell]$,

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=H\left(\Delta^{k}(\mu) ; \mu-\epsilon_{p}\right) .
$$

Strong Pieri Operators

Def. Fix a positive integer k. The strong Pieri operators $u_{1}, u_{2}, \cdots \in \operatorname{End}_{\mathbb{Z}[t]}\left(\Lambda^{k}\right)$ are defined by their action on the basis $\left\{\mathfrak{s}_{\mu}^{(k)}\right\}_{\mu \in \operatorname{Par}^{k}}$ as follows:

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=\sum_{T \in \operatorname{SMT}^{k}(p ; \mu)} t^{\operatorname{spin}(T)} \mathfrak{s}_{\text {inside }(T)}^{(k)} .
$$

Given a word $w=w_{1} \cdots w_{d}$, we write $u_{w}=u_{w_{1}} \cdots u_{w_{d}}$. Powerful tool: It is the same as:

For any $\mu \in \operatorname{Par}_{\ell}^{k}$ and $p \in[\ell]$,

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=H\left(\Delta^{k}(\mu) ; \mu-\epsilon_{p}\right) .
$$

Strong Pieri Operators

For any $\mu \in \operatorname{Par}_{\ell}^{k}$ and $p \in[\ell]$,

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=H\left(\Delta^{k}(\mu) ; \mu-\epsilon_{p}\right)
$$

Example.

Strong Pieri Operators

For any $\mu \in \operatorname{Par}_{\ell}^{k}$ and $p \in[\ell]$,

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=H\left(\Delta^{k}(\mu) ; \mu-\epsilon_{p}\right)
$$

Example.

3			
	3		
		2	
			1

$\mathfrak{s}_{3321}^{(4)} \cdot u_{2}$

Strong Pieri Operators

For any $\mu \in \operatorname{Par}_{\ell}^{k}$ and $p \in[\ell]$,

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=H\left(\Delta^{k}(\mu) ; \mu-\epsilon_{p}\right)
$$

Example.

3			
	3		
		2	
			1

$u_{2}=$| 3 | | | |
| :--- | :--- | :--- | :--- |
| | 2 | | |
| | | 2 | |
| | | | 1 |

$\mathfrak{s}_{3321}^{(4)} \cdot u_{2}$

Strong Pieri Operators

For any $\mu \in \operatorname{Par}_{\ell}^{k}$ and $p \in[\ell]$,

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=H\left(\Delta^{k}(\mu) ; \mu-\epsilon_{p}\right)
$$

Example.

3			
	3		
		2	
			1

$u_{2}=$| 3 | | | |
| :--- | :--- | :--- | :--- |
| | 2 | | |
| | | 2 | |
| | | | 1 |

$\mathfrak{s}_{3321}^{(4)} \cdot u_{2}$

Strong Pieri Operators

For any $\mu \in \operatorname{Par}_{\ell}^{k}$ and $p \in[\ell]$,

$$
\mathfrak{s}_{\mu}^{(k)} \cdot u_{p}=H\left(\Delta^{k}(\mu) ; \mu-\epsilon_{p}\right) .
$$

Example.

3			
	3		
		2	
			1

$\cdot u_{2}=$

3				
$+t$		3		
			2	
			0	

$$
\mathfrak{s}_{3321}^{(4)} \cdot u_{2}=\mathfrak{s}_{3221}^{(4)}+t \mathfrak{s}_{3320}^{(4)}
$$

Properties of k-Schur functions

Theorem (Blasiak-Morse-P.-Summers)

The k-Schur functions $\left\{\mathfrak{s}_{\mu}^{(k)} \mid \mu\right.$ is k-bounded of length $\left.\leq \ell\right\}$ satisfy
(vertical dual Pieri rule)

$$
e_{d}^{\perp} \mathfrak{s}_{\mu}^{(k)}=\mathfrak{s}_{\mu}^{(k)} \cdot\left(\sum_{i_{1}>\cdots>i_{d}} u_{i_{1}} \cdots u_{i_{d}}\right),
$$

(shift invariance)

$$
\mathfrak{s}_{\mu}^{(k)}=e_{\ell}^{\perp} \mathfrak{s}_{\mu+1^{\ell}}^{(k+1)},
$$

(Schur function stability) if $k \geq|\mu|$, then $\mathfrak{s}_{\mu}^{(k)}=s_{\mu}$.

- $e_{d}^{\perp} \in \operatorname{End}(\Lambda)$ is defined by $\left\langle e_{d}^{\perp}(g), h\right\rangle=\left\langle g, e_{d} h\right\rangle$ for all $g, h \in \Lambda$.
- $u_{i}=$ operator for removing a strong cover marked in row i.

k-Schur branching rule

Theorem (Blasiak-Morse-P.-Summers)

For μ a k-bounded partition of length $\leq \ell$, the expansion of the k-Schur function $s_{\mu}^{(k)}$ into $k+1$-Schur functions is given by

$$
\mathfrak{s}_{\mu}^{(k)}=\mathfrak{s}_{\mu+1^{\ell}}^{(k+1)} u_{\ell} \cdots u_{1}=\sum_{T \in \operatorname{SMT}^{k+1}\left(\ell \cdots 21 ; \mu+1^{\ell}\right)} t^{\operatorname{spin}(T)} \mathfrak{s}_{\text {inside }(T)}^{(k+1)}
$$

k-Schur branching rule

Theorem (Blasiak-Morse-P.-Summers)

For μ a k-bounded partition of length $\leq \ell$, the expansion of the k-Schur function $s_{\mu}^{(k)}$ into $k+1$-Schur functions is given by

$$
\mathfrak{s}_{\mu}^{(k)}=\mathfrak{s}_{\mu+1^{\ell}}^{(k+1)} u_{\ell} \cdots u_{1}=\sum_{T \in \operatorname{SMT}^{k+1}\left(\ell \cdots 21 ; \mu+1^{\ell}\right)} t^{\operatorname{spin}(T)} \mathfrak{s}_{\text {inside }(T)}^{(k+1)}
$$

Proof.

The shift invariance property followed by the vertical dual Pieri rule yields

$$
\mathfrak{s}_{\mu}^{(k)}=e_{\ell}^{\perp} \mathfrak{s}_{\mu+1^{\ell}}^{(k+1)}=\mathfrak{s}_{\mu+1^{\ell}}^{(k+1)} u_{\ell} \cdots u_{1}
$$

k-Schur branching rule

$$
\mathfrak{s}_{22221}^{(3)}=t^{3} \mathfrak{s}_{3321}^{(4)}+t^{2} \mathfrak{s}_{3222}^{(4)}+t^{2} \mathfrak{s}_{33111}^{(4)}+\mathfrak{s}_{22221}^{(4)}
$$

$\operatorname{SMT}^{4}(54321 ; 33332)$

k-Schur branching rule

$$
\mathfrak{s}_{22221}^{(3)}=t^{3} \mathfrak{s}_{3321}^{(4)}+t^{2} \mathfrak{s}_{3222}^{(4)}+t^{2} \mathfrak{s}_{33111}^{(4)}+\mathfrak{s}_{22221}^{(4)}
$$

$\operatorname{SMT}^{4}(54321 ; 33332)$

$\operatorname{spin}(T)=0+1+1+0+0=2 \quad \operatorname{inside}(T)=3222 \quad$ outside $(T)=33332$

k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a k-bounded partition of length $\leq \ell$ and set $m=\max (|\mu|-k, 0)$. The Schur expansion the k-Schur function $\mathfrak{s}_{\mu}^{(k)}$ is given by

$$
\mathfrak{s}_{\mu}^{(k)}=\sum_{T \in \operatorname{SMT}^{k+m}\left((\ell \cdots 1)^{m} ; \mu+m^{\ell}\right)} t^{\sin (T)} S_{\text {inside }(T)} .
$$

k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a k-bounded partition of length $\leq \ell$ and set $m=\max (|\mu|-k, 0)$. The Schur expansion the k-Schur function $\mathfrak{s}_{\mu}^{(k)}$ is given by

$$
\mathfrak{s}_{\mu}^{(k)}=\sum_{T \in \operatorname{SMT}^{k+m}\left((\ell \cdots 1)^{m} ; \mu+m^{\ell}\right)} t^{\mathrm{spin}(T)} S_{\text {inside }(T)}
$$

Proof.

Applying the shift invariance property m times followed by the vertical dual Pieri rule, we obtain
$\mathfrak{s}_{\mu}^{(k)}=\left(e_{\ell}^{\perp}\right)^{m} \mathfrak{s}_{\mu+m^{\ell}}^{(k+m)}=\mathfrak{s}_{\mu+m^{\ell}}^{(k+m)}\left(u_{\ell} \cdots u_{1}\right)^{m}=\sum_{T \in \operatorname{SMT}^{k+m}\left((\ell \cdots 1)^{m} ; \mu+m^{\ell}\right)} t^{\operatorname{spin}(T)} S_{\text {inside }(T)}$.
The Schur function stability property ensures this is the Schur function decomposition.

k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a k-bounded partition of length $\leq \ell$ and set $m=\max (|\mu|-k, 0)$. The Schur expansion the k-Schur function $\mathfrak{s}_{\mu}^{(k)}$ is given by

$$
\mathfrak{s}_{\mu}^{(k)}=\sum_{T \in \operatorname{SMT}^{k+m}\left((\ell \cdots 1)^{m} ; \mu+m^{\ell}\right)} t^{\mathrm{spin}(T)} S_{\text {inside }(T)} .
$$

Example. $k=1, \mu=111$,

k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a k-bounded partition of length $\leq \ell$ and set $m=\max (|\mu|-k, 0)$. The Schur expansion the k-Schur function $\mathfrak{s}_{\mu}^{(k)}$ is given by

$$
\mathfrak{s}_{\mu}^{(k)}=\sum_{T \in \operatorname{SMT}^{k+m}\left((\ell \cdots 1)^{m} ; \mu+m^{\ell}\right)} t^{\mathrm{spin}(T)} S_{\text {inside }(T)} .
$$

Example. $k=1, \mu=111, \ell=3, m=3-1=2$.

k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a k-bounded partition of length $\leq \ell$ and set $m=\max (|\mu|-k, 0)$. The Schur expansion the k-Schur function $\mathfrak{s}_{\mu}^{(k)}$ is given by

$$
\mathfrak{s}_{\mu}^{(k)}=\sum_{T \in \operatorname{SMT}^{k+m}\left((\ell \cdots 1)^{m} ; \mu+m^{\ell}\right)} t^{\mathrm{spin}(T)} S_{\text {inside }(T)} .
$$

Example. $k=1, \mu=111, \ell=3, m=3-1=2$.

$$
\operatorname{SMT}^{k+m}\left((\ell \cdots 1)^{m} ; \mu+m^{\ell}\right)=\operatorname{SMT}^{3}\left((321)^{2} ; 111+2^{3}\right)
$$

k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a k-bounded partition of length $\leq \ell$ and set $m=\max (|\mu|-k, 0)$. The Schur expansion the k-Schur function $\mathfrak{s}_{\mu}^{(k)}$ is given by

$$
\mathfrak{s}_{\mu}^{(k)}=\sum_{T \in \operatorname{SMT}^{k+m}\left((\ell \cdots 1)^{m} ; \mu+m^{\ell}\right)} t^{\mathrm{spin}(T)} S_{\text {inside }(T)} .
$$

Example. $k=1, \mu=111, \ell=3, m=3-1=2$.

$$
\operatorname{SMT}^{k+m}\left((\ell \cdots 1)^{m} ; \mu+m^{\ell}\right)=\operatorname{SMT}^{3}(321321 ; 333)
$$

Schur expansion of $s_{111}^{(1)}=H_{111}$

			1*	2	4	4*	4* 5	5	6	$t^{3} s_{3}$
1	$2 \star$	4	4	5*	6					
3*	5	6*								
		1	1*	2	4	4*	4*	5	6	$t^{2} s_{21}$
	2*	4	4	5*	6					
$3 *$ 5 $6 *$										
		1*	3	4*	5	5	5	5	6	$t S_{21}$
	2*	5	5	5*	6					
1	3*	6*								
	1	1*		4*	5	5	5	5	6	S_{111}
	2*	5		5*	6					
	3*	6*								
$\mathfrak{s}_{111}^{(1)}=t^{3} s_{3}+t^{2} s_{21}+t s_{21}+s_{111}$										

The Schur expansion of the 1 -Schur function $\mathfrak{s}_{111}^{(1)}$ is obtained by summing $t^{\text {spin }(T)} S_{\text {inside }(T)}$ over the set $\operatorname{SMT}^{3}(321321 ; 333)$ of strong tableaux T above.

Unifying the definitions of k-Schur functions

- $s_{\mu}^{(k)}(\mathbf{x} ; t)$ defined as a sum of monomials over strong tableaux. Equivalent to the symmetric functions satisfying the dual Pieri rule.

Unifying the definitions of k-Schur functions

- $s_{\mu}^{(k)}(\mathbf{x} ; t)$ defined as a sum of monomials over strong tableaux. Equivalent to the symmetric functions satisfying the dual Pieri rule.
- $\tilde{A}_{\mu}^{(k)}(\mathbf{x} ; t)$ defined recursively using Jing vertex operators.

Unifying the definitions of k-Schur functions

- $s_{\mu}^{(k)}(\mathbf{x} ; t)$ defined as a sum of monomials over strong tableaux. Equivalent to the symmetric functions satisfying the dual Pieri rule.
- $\tilde{A}_{\mu}^{(k)}(\mathbf{x} ; t)$ defined recursively using Jing vertex operators.

$$
\left\{s_{\lambda}^{(k)}\right\}_{\Lambda^{k}} \quad\left\{\mathfrak{s}_{\lambda}^{(k)}\right\}_{\Lambda^{k}} \quad\left\{\tilde{A}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}
$$

Unifying the definitions of k-Schur functions

- $s_{\mu}^{(k)}(\mathbf{x} ; t)$ defined as a sum of monomials over strong tableaux. Equivalent to the symmetric functions satisfying the dual Pieri rule.
- $\tilde{A}_{\mu}^{(k)}(\mathbf{x} ; t)$ defined recursively using Jing vertex operators.

$$
\left\{s_{\lambda}^{(k)}\right\}_{\Lambda^{k}} \quad=\quad\left\{\mathfrak{s}_{\lambda}^{(k)}\right\}_{\Lambda^{k}} \quad\left\{\tilde{A}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}
$$

Unifying the definitions of k-Schur functions

- $s_{\mu}^{(k)}(\mathbf{x} ; t)$ defined as a sum of monomials over strong tableaux. Equivalent to the symmetric functions satisfying the dual Pieri rule.
- $\tilde{A}_{\mu}^{(k)}(\mathbf{x} ; t)$ defined recursively using Jing vertex operators.

$$
\left\{s_{\lambda}^{(k)}\right\}_{\Lambda^{k}}=\left\{\mathfrak{s}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}=\left\{\tilde{A}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}
$$

Unifying the definitions of k-Schur functions

- $s_{\mu}^{(k)}(\mathbf{x} ; t)$ defined as a sum of monomials over strong tableaux. Equivalent to the symmetric functions satisfying the dual Pieri rule.
- $\tilde{A}_{\mu}^{(k)}(\mathbf{x} ; t)$ defined recursively using Jing vertex operators.

$$
\left\{s_{\lambda}^{(k)}\right\}_{\Lambda^{k}} \quad=\quad\left\{\mathfrak{s}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}=\left\{\tilde{A}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}
$$

Unifying the definitions of k-Schur functions

- $s_{\mu}^{(k)}(\mathbf{x} ; t)$ defined as a sum of monomials over strong tableaux. Equivalent to the symmetric functions satisfying the dual Pieri rule.
- $\tilde{A}_{\mu}^{(k)}(\mathbf{x} ; t)$ defined recursively using Jing vertex operators.

Combining our results with those of Lam and Lam-Lapointe-Morse-Shimozono:

Unifying the definitions of k-Schur functions

- $s_{\mu}^{(k)}(\mathbf{x} ; t)$ defined as a sum of monomials over strong tableaux. Equivalent to the symmetric functions satisfying the dual Pieri rule.
- $\tilde{A}_{\mu}^{(k)}(\mathbf{x} ; t)$ defined recursively using Jing vertex operators.

Combining our results with those of Lam and Lam-Lapointe-Morse-Shimozono:

Theorem

The k-Schur functions defined from Jing vertex operators, k-Schur Catalan functions, and strong tableau k-Schur functions coincide:

$$
\tilde{A}_{\mu}^{(k)}(\mathbf{x} ; t)=\mathfrak{s}_{\mu}^{(k)}(\mathbf{x} ; t)=s_{\mu}^{(k)}(\mathbf{x} ; t) \quad \text { for all } k \text {-bounded } \mu .
$$

Moreover, their $t=1$ specializations $\left\{s_{\mu}^{(k)}(\mathrm{x} ; 1)\right\}$ match a definition using weak tableaux, and represent Schubert classes in the homology of the affine Grassmannian Gr_{G} of $G=S L_{k+1}$.

k-Schur positivity of Catalan Functions

Proposition

If (Ψ, μ) is an indexed root ideal with band $(\Psi, \mu)_{i} \leq k$ for all i, then $H(\Psi ; \mu) \in \Lambda^{k}$.

k-Schur positivity of Catalan Functions

Proposition

If (Ψ, μ) is an indexed root ideal with band $(\Psi, \mu)_{i} \leq k$ for all i, then $H(\Psi ; \mu) \in \Lambda^{k}$.

Are they k-Schur positive?

k-Schur positivity of Catalan Functions

Proposition

If (Ψ, μ) is an indexed root ideal with band $(\Psi, \mu)_{i} \leq k$ for all i, then $H(\Psi ; \mu) \in \Lambda^{k}$.

Conjecture (Blasiak-Morse-P.-Summers)

If (Ψ, μ) is an indexed root ideal with $\mu \in \operatorname{Par}^{k}$ and $\operatorname{band}(\Psi, \mu)_{i} \leq k$ for all i, then the Catalan function $H(\Psi ; \mu)$ is k-Schur positive.

k-Schur positivity of Catalan Functions

Proposition

If (Ψ, μ) is an indexed root ideal with band $(\Psi, \mu)_{i} \leq k$ for all i, then $H(\Psi ; \mu) \in \Lambda^{k}$.

Conjecture (Blasiak-Morse-P.-Summers)

If (Ψ, μ) is an indexed root ideal with $\mu \in \operatorname{Par}^{k}$ and $\operatorname{band}(\Psi, \mu)_{i} \leq k$ for all i, then the Catalan function $H(\Psi ; \mu)$ is k-Schur positive.

k-Schur positivity of Catalan Functions

Conjecture (Blasiak-Morse-P.-Summers)

If (Ψ, μ) is an indexed root ideal with $\mu \in \operatorname{Par}^{k}$ and band $(\Psi, \mu)_{i} \leq k$ for all i, then the Catalan function $H(\Psi ; \mu)$ is k-Schur positive.

k-Schur positivity of Catalan Functions

Conjecture (Blasiak-Morse-P.-Summers)

If (Ψ, μ) is an indexed root ideal with $\mu \in \operatorname{Par}^{k}$ and band $(\Psi, \mu)_{i} \leq k$ for all i, then the Catalan function $H(\Psi ; \mu)$ is k-Schur positive.

Example.

band
5
6
4
4
3
1

This Catalan function is 6-Schur positive.

k-Schur positivity of Catalan Functions

Conjecture (Blasiak-Morse-P.-Summers)

If (Ψ, μ) is an indexed root ideal with $\mu \in \operatorname{Par}^{k}$ and band $(\Psi, \mu)_{i} \leq k$ for all i, then the Catalan function $H(\Psi ; \mu)$ is k-Schur positive.

Example.

band
5
6
4
4
3
1

This Catalan function is 6 -Schur positive.

Conjecture (Chen-Haiman)
The Catalan function H_{μ}^{Ψ} is Schur positive for any root ideal Ψ and partition μ.

Special cases

Let $\mu \in \operatorname{Par}^{k}$.

Special cases

Let $\mu \in \operatorname{Par}^{k}$.

- $\psi=\Delta^{+}$:

Special cases

Let $\mu \in \mathrm{Par}^{k}$.

- $\Psi=\Delta^{+}: H(\Psi ; \mu)(\mathbf{x} ; t)$ is the modified Hall Littlewood polynomial, proving $\mathrm{q}=0$ of the strengthened Macdonald positivity conjecture;

Special cases

Let $\mu \in \operatorname{Par}^{k}$.

- $\Psi=\Delta^{+}: H(\Psi ; \mu)(\mathbf{x} ; t)$ is the modified Hall Littlewood polynomial, proving $\mathrm{q}=0$ of the strengthened Macdonald positivity conjecture;
- product of a schur and a k-schur (and also its generalization) when the indexing partition concatenate to a partition;

Special cases

Let $\mu \in \operatorname{Par}^{k}$.

- $\Psi=\Delta^{+}: H(\Psi ; \mu)(\mathbf{x} ; t)$ is the modified Hall Littlewood polynomial, proving $\mathrm{q}=0$ of the strengthened Macdonald positivity conjecture;
- product of a schur and a k-schur (and also its generalization) when the indexing partition concatenate to a partition;
This proves the k-split polynomials $G_{\lambda}^{(k)}$ are k-schur positive and $\left\{\mathfrak{s}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}=\left\{\tilde{A}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}$.

Special cases

Let $\mu \in \operatorname{Par}^{k}$.

- $\Psi=\Delta^{+}: H(\Psi ; \mu)(\mathbf{x} ; t)$ is the modified Hall Littlewood polynomial, proving $\mathrm{q}=0$ of the strengthened Macdonald positivity conjecture;
- product of a schur and a k-schur (and also its generalization) when the indexing partition concatenate to a partition;
This proves the k-split polynomials $G_{\lambda}^{(k)}$ are k-schur positive and $\left\{\mathfrak{s}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}=\left\{\tilde{A}_{\lambda}^{(k)}\right\}_{\Lambda^{k}}$.
- proving a substantial special case of a problem of Broer and Shimozono Weyman on parabolic Hall Littlewood polynomials.

Strengthened Macdonald positivity

- $Z_{\theta}=$ superstandard tableau of shape θ.
- colword (T) is the word obtained by concatenating the columns of T, reading each from bottom to top, starting with the leftmost.

Strengthened Macdonald positivity

- $Z_{\theta}=$ superstandard tableau of shape θ.
- colword (T) is the word obtained by concatenating the columns of T, reading each from bottom to top, starting with the leftmost.

Example. $k=3, \mu=2211$.

$$
Z_{(3333) /(2211)}=\begin{array}{|r|r|}
\hline & 1 \\
\hline 3 & 3 \\
\hline 4 & 4 \\
\hline
\end{array}
$$

$$
\text { and } \quad \operatorname{colword}\left(Z_{(3333) /(2211)}\right)=434321
$$

Strengthened Macdonald positivity

- $Z_{\theta}=$ superstandard tableau of shape θ.
- colword (T) is the word obtained by concatenating the columns of T, reading each from bottom to top, starting with the leftmost.

Theorem (Blasiak-Morse-P.-Summers)
Let μ be a k-bounded partition of length $\leq \ell$. Set $w=\operatorname{colword}\left(Z_{k^{\ell} / \mu}\right)$.

$$
H_{\mu}=\mathfrak{s}_{k^{\ell}}^{(k)} \cdot u_{w}=\sum_{T \in \operatorname{SMT}^{k}\left(w ; k^{\ell}\right)} t^{\sin (T)_{\mathfrak{s}}} \mathfrak{s}_{\text {inside }(T)}^{(k)} .
$$

Example. $k=3, \mu=2211$.

$$
Z_{(3333) /(2211)}=\begin{array}{|r|r|}
\hline & 1 \\
\hline & 2 \\
\hline 4 & 4 \\
\hline
\end{array}
$$

and $\quad \operatorname{colword}\left(Z_{(3333) /(2211)}\right)=434321$.

Strengthened Macdonald positivity

- $Z_{\theta}=$ superstandard tableau of shape θ.
- colword (T) is the word obtained by concatenating the columns of T, reading each from bottom to top, starting with the leftmost.

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a k-bounded partition of length $\leq \ell$. Set $w=\operatorname{colword}\left(Z_{k^{\ell} / \mu}\right)$.

$$
H_{\mu}=\mathfrak{s}_{k^{\ell}}^{(k)} \cdot u_{w}=\sum_{T \in \operatorname{SMT}^{k}\left(w ; k^{\ell}\right)} t^{\operatorname{spin}(T)_{\mathfrak{s}}}\left(\begin{array}{c}
\text { inside }(T)
\end{array} .\right.
$$

Example. $k=3, \mu=2211$.

$$
\begin{aligned}
& Z_{(3333) /(2211)}=\begin{array}{l}
\begin{array}{l}
1 \\
\hline
\end{array} \\
\begin{array}{l}
2 \\
3
\end{array} \\
\begin{array}{l}
4 \\
4
\end{array} \\
\hline
\end{array} \text { and } \quad \operatorname{colword}\left(Z_{(3333) /(2211)}\right)=43432 \\
& H_{2211}=\mathfrak{s}_{3333}^{(3)} \cdot u_{4} u_{3} u_{4} u_{3} u_{2} u_{1}=\sum_{\operatorname{SMT}^{3}(434321 ; 3333)} t^{\operatorname{spin}(T)} \mathfrak{s}_{\text {inside }(T)}^{(3)}
\end{aligned}
$$

The 3-Schur expansion of H_{2211}

						$1 \star$	2	3	4	5	6
			1	$2 \star$	3	4	5	6			
1	2	$3 \star$	4	$5 \star$	6						
	$4 \star$	5	$6 \star$								

spin

					1	$1 \star$	2	3	4	5	6
		1	1	$2 \star$	3	4	5	6			
	2	$3 \star$	4	$5 \star$	6						
$4 \star$	5	$6 \star$									

					$1 \star$	2	3	5	5	5	6
		1	$2 \star$	3	5	5	5	6			
	$3 \star$	5	5	$5 \star$	6						
	$4 *$	$6 \star$									

				$1 *$	2	2	2	3	4	5	6	
		2	2	$2 \star$	3	4	5	6				
		$3 \star$	4	$5 *$	6							
$4 *$	5	$6 \star$										

		1	11	1	*	2	3	5	5	5	5	6
			* 3	35	5	5	5	6				
3*		55	55		6							
$4 * 6 *$												

$H_{2211}=t^{4} \mathfrak{s}_{33}^{(3)}+t^{3} \mathfrak{s}_{321}^{(3)}+t^{2} \mathfrak{s}_{321}^{(3)}+t \mathfrak{s}_{3111}^{(3)}+t \mathfrak{s}_{222}^{(3)}+\mathfrak{s}_{2211}^{(3)}$.

The 3-Schur expansion of H_{2211}

$$
\begin{aligned}
& \text { inside }=321 \\
& \operatorname{spin}=1+1+0+0+1+0 \\
& \begin{array}{c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & 1 & 1 \star & 2 & 3 & 4 & 5 \\
\hline & 1 & 1 & 2 \star & 3 & 4 & 5 & 6 & & & \\
\hline & 2 & 3 \star & 4 & 5 \star & 6 & & & & & \\
\hline & \\
\hline 4 \star & 5 & 6 \star & & & & & & & & \\
\hline
\end{array} \\
& H_{2211}=t^{4} \mathfrak{s}_{33}^{(3)}+t^{3} \mathfrak{s}_{321}^{(3)}+t^{2} \mathfrak{s}_{321}^{(3)}+t \mathfrak{s}_{3111}^{(3)}+t \mathfrak{s}_{222}^{(3)}+\mathfrak{s}_{2211}^{(3)} .
\end{aligned}
$$

Schur times k-Schur into k-Schur

- $\operatorname{SSYT}_{\theta}(r)=$ semistandard Young tableaux of shape θ with entries from $\{1, \ldots, r\}$.

Schur times k-Schur into k-Schur

- $\operatorname{SSYT}_{\theta}(r)=$ semistandard Young tableaux of shape θ with entries from $\{1, \ldots, r\}$.
- $\mathbf{B}_{\mu}=$ Shimozono-Zabrocki generalized Hall-Littlewood vertex operator, which is multiplication by s_{μ} at $t=1$.

Schur times k-Schur into k-Schur

- $\operatorname{SSYT}_{\theta}(r)=$ semistandard Young tableaux of shape θ with entries from $\{1, \ldots, r\}$.
- $\mathbf{B}_{\mu}=$ Shimozono-Zabrocki generalized Hall-Littlewood vertex operator, which is multiplication by s_{μ} at $t=1$.

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a partition of length r with $\mu_{1} \leq k-r+1$, and ν a partition such that $\mu \nu$ is a partition. Set $R=(k-r+1)^{r}$. Then

$$
\mathbf{B}_{\mu} \mathfrak{s}_{\nu}^{(k)}=\sum_{T \in \operatorname{SSYT}_{R / \mu}(r)} \mathfrak{s}_{R \nu}^{(k)} \cdot u_{\text {colword }(T)}
$$

Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)
Let μ be a partition of length r with $\mu_{1} \leq k-r+1$, and ν a partition such that $\mu \nu$ is a partition. Set $R=(k-r+1)^{r}$. Then

$$
\mathbf{B}_{\mu} \mathfrak{s}_{\nu}^{(k)}=\sum_{T \in \operatorname{SSYT}_{R / \mu}(r)} \mathfrak{s}_{R \nu}^{(k)} \cdot u_{\operatorname{colword}(T)}
$$

Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a partition of length r with $\mu_{1} \leq k-r+1$, and ν a partition such that $\mu \nu$ is a partition. Set $R=(k-r+1)^{r}$. Then

$$
\mathbf{B}_{\mu} \mathfrak{s}_{\nu}^{(k)}=\sum_{T \in \operatorname{SSYT}_{R / \mu}(r)} \mathfrak{s}_{R \nu}^{(k)} \cdot u_{\text {colword }(T)}
$$

Example. Let $k=6, r=3, \mu=432, \nu=22$. Then $R=444$.

Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a partition of length r with $\mu_{1} \leq k-r+1$, and ν a partition such that $\mu \nu$ is a partition. Set $R=(k-r+1)^{r}$. Then

$$
\mathbf{B}_{\mu} \mathfrak{s}_{\nu}^{(k)}=\sum_{T \in \operatorname{SSYT}_{R / \mu}(r)} \mathfrak{s}_{R \nu}^{(k)} \cdot u_{\text {colword }(T)}
$$

Example. Let $k=6, r=3, \mu=432, \nu=22$. Then $R=444$.

Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a partition of length r with $\mu_{1} \leq k-r+1$, and ν a partition such that $\mu \nu$ is a partition. Set $R=(k-r+1)^{r}$. Then

$$
\mathbf{B}_{\mu} \mathfrak{s}_{\nu}^{(k)}=\sum_{T \in \operatorname{SSYT}_{R / \mu}(r)} \mathfrak{s}_{R \nu}^{(k)} \cdot u_{\text {colword }(T)}
$$

Example. Let $k=6, r=3, \mu=432, \nu=22$. Then $R=444$.

$$
\mathbf{B}_{\mu} \mathfrak{s}_{\nu}^{(k)}=\mathfrak{s}_{R \nu}^{(k)} \cdot\left(u_{121}+u_{131}+u_{132}+u_{221}+u_{231}+u_{232}+u_{331}+u_{332}\right)
$$

Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)

Let μ be a partition of length r with $\mu_{1} \leq k-r+1$, and ν a partition such that $\mu \nu$ is a partition. Set $R=(k-r+1)^{r}$. Then

$$
\mathbf{B}_{\mu} \mathfrak{s}_{\nu}^{(k)}=\sum_{T \in \operatorname{SSYT}_{R / \mu}(r)} \mathfrak{s}_{R \nu}^{(k)} \cdot u_{\text {colword }(T)}
$$

Example. Let $k=6, r=3, \mu=432, \nu=22$. Then $R=444$.
$\mathbf{B}_{432} \mathfrak{s}_{22}^{(6)}=\mathfrak{s}_{44422}^{(6)} \cdot\left(u_{121}+u_{131}+u_{132}+u_{221}+u_{231}+u_{232}+u_{331}+u_{332}\right)$.

Schur times k-Schur into k-Schur

Example. 6-Schur expansion of a t-analog of $s_{432} s_{22}$.

$\mathbf{B}_{432} \mathfrak{s}_{22}^{(6)}=\mathfrak{s}_{44422}^{(6)} \cdot\left(u_{121}+u_{131}+u_{132}+u_{221}+u_{231}+u_{232}+u_{331}+u_{332}\right)$.

$\mathbf{B}_{432} \mathfrak{s}_{22}^{(6)}=t^{3} \mathfrak{s}_{4441}^{(6)}+t^{2} \mathfrak{s}_{44311}^{(6)}+t^{2} \mathfrak{s}_{4432}^{(6)}+t^{1} \mathfrak{s}_{43321}^{(6)}+t^{1} \mathfrak{s}_{44221}^{(6)}+\mathfrak{s}_{43222}^{(6)}$.

Schur times k-Schur into k-Schur

Example. 6-Schur expansion of a t-analog of $s_{432} s_{22}$.
$\mathbf{B}_{432} \mathfrak{s}_{22}^{(6)}=\mathfrak{s}_{44422}^{(k)} \cdot\left(u_{121}+u_{131}+u_{132}+u_{221}+u_{231}+u_{232}+u_{331}+u_{332}\right)$.

inside $=44311$

$$
\operatorname{spin}=1+0+1=2
$$

$\mathbf{B}_{432} \mathfrak{s}_{22}^{(6)}=t^{3} \mathfrak{s}_{4441}^{(6)}+t^{2} \mathfrak{s}_{44311}^{(6)}+t^{2} \mathfrak{s}_{4432}^{(6)}+t^{1} \mathfrak{s}_{43321}^{(6)}+t^{1} \mathfrak{s}_{44221}^{(6)}+\mathfrak{s}_{43222}^{(6)}$.

Current and Future Projects

- Catalan operators : generalizing vertex operators

Current and Future Projects

- Catalan operators : generalizing vertex operators
- Augmented Pieri rule

Current and Future Projects

- Catalan operators : generalizing vertex operators
- Augmented Pieri rule
- k-Schur expansion of Catalan functions with increasing band

Current and Future Projects

- Catalan operators : generalizing vertex operators
- Augmented Pieri rule
- k-Schur expansion of Catalan functions with increasing band
- adding q to Catalan Functions, nonsymmetric Catalan functions and k-schur functions, and more....

Current and Future Projects

- Catalan operators : generalizing vertex operators
- Augmented Pieri rule
- k-Schur expansion of Catalan functions with increasing band
- adding q to Catalan Functions, nonsymmetric Catalan functions and k-schur functions, and more....

Thank You oo listening'

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.

Example. $k=4$:

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.

Example. $k=4$:

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ
k-skew (μ)

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ

$$
k \text {-skew }(\mu)
$$

Boxes labeled by hook lengths.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ

1
k-skew (μ)

Boxes labeled by hook lengths.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ

k-skew (μ)

Boxes labeled by hook lengths.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ

\[

\]

k-skew (μ)

Boxes labeled by hook lengths.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ

5	3
4	2
3	1
1	

k-skew (μ)

Boxes labeled by hook lengths.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ

k-skew (μ)

Boxes labeled by hook lengths.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ

k-skew (μ)

Boxes labeled by hook lengths.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ

k-skew (μ)

Boxes labeled by hook lengths.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

Boxes labeled by hook lengths.

k-skew diagrams

Def. A k-bounded partition is a partition with parts of size $\leq k$.
Def. The k-skew diagram of a k-bounded partition μ is obtained by shifting the rows of μ as little as possible so that all hook lengths are $\leq k$.

Example. $k=4$:

μ

k-skew (μ)

Boxes labeled by hook lengths.

$k+1$-cores

Def. $\mathfrak{p}(\mu)$ denotes the outer shape of k-skew (μ).

$k+1$-cores

Def. $\mathfrak{p}(\mu)$ denotes the outer shape of k-skew (μ).

Example. $k=4$:

μ

$k+1$-cores

Def. $\mathfrak{p}(\mu)$ denotes the outer shape of k-skew (μ).

Example. $k=4$:

14	12	9	7	6	4	3	2	1
9	7	4	2	1				
6	4	1						
4	2							
3	1							
1								
$\mathfrak{p}(\mu)$								

$k+1$-cores

Def. $\mathfrak{p}(\mu)$ denotes the outer shape of k-skew (μ).
Def. A $k+1$-core is a partition whose diagram has no box with hook length $k+1$.

Example. $k=4$:

μ

14	12	9	7	6	4	3	2	1
9	7	4	2	1				
6	4	1						
4	2							
3	1							
1								

$\mathfrak{p}(\mu)$

$k+1$-cores

Def. $\mathfrak{p}(\mu)$ denotes the outer shape of k-skew (μ).
Def. A $k+1$-core is a partition whose diagram has no box with hook length $k+1$.

Example. $k=4$:

μ

14	12	9	7	6	4	3	2	1
9	7	4	2	1				
6	4	1						
4	2							
3	1							
1								

$\mathfrak{p}(\mu)$

Proposition. The map $\mu \mapsto \mathfrak{p}(\mu)$ defines a bijection from k-bounded partitions to $k+1$-cores.

Strong covers

Def. An inclusion $\tau \subset \kappa$ of $k+1$-cores is a strong cover, denoted $\tau \Rightarrow \kappa$, if $\left|\mathfrak{p}^{-1}(\tau)\right|+1=\left|\mathfrak{p}^{-1}(\kappa)\right|$.

Strong covers

Def. An inclusion $\tau \subset \kappa$ of $k+1$-cores is a strong cover, denoted $\tau \Rightarrow \kappa$, if $\left|\mathfrak{p}^{-1}(\tau)\right|+1=\left|\mathfrak{p}^{-1}(\kappa)\right|$.

Example.

Strong cover with $k=4$:

Strong covers

Def. An inclusion $\tau \subset \kappa$ of $k+1$-cores is a strong cover, denoted $\tau \Rightarrow \kappa$, if $\left|\mathfrak{p}^{-1}(\tau)\right|+1=\left|\mathfrak{p}^{-1}(\kappa)\right|$.

Example.

Strong cover with $k=4$:

corresponding k-skew diagrams:

$\mathfrak{p}^{-1}(\tau)=332221111 \quad \mathfrak{p}^{-1}(\kappa)=222222221$

Strong covers

Def. An inclusion $\tau \subset \kappa$ of $k+1$-cores is a strong cover, denoted $\tau \Rightarrow \kappa$, if $\left|\mathfrak{p}^{-1}(\tau)\right|+1=\left|\mathfrak{p}^{-1}(\kappa)\right|$.

Example.

Strong cover with $k=4$:
corresponding k-skew diagrams:

$\left|\mathfrak{p}^{-1}(\tau)\right|=16$

$\left|\mathfrak{p}^{-1}(\kappa)\right|=17$

Strong marked covers

Def. A strong marked cover $\tau \xlongequal{r} \kappa$ is a strong cover $\tau \Rightarrow \kappa$ together with a positive integer r which is allowed to be the smallest row index of any connected component of the skew shape κ / τ.

Example. The two possible markings of the previous strong cover:

$$
\tau \stackrel{6}{\Longrightarrow} \kappa
$$

$\tau \xlongequal{3} \kappa$

Spin

Def.

$$
\operatorname{spin}(\tau \xlongequal{r} \kappa)=c \cdot(h-1)+N, \quad \text { where }
$$

- $c=$ number of connected components of κ / τ,
- $h=$ height (number of rows) of each component,
- $N=$ number of components below the marked one.

Spin

Def.

$$
\operatorname{spin}(\tau \xlongequal{r} \kappa)=c \cdot(h-1)+N, \quad \text { where }
$$

- $c=$ number of connected components of κ / τ,
- $h=$ height (number of rows) of each component,
- $N=$ number of components below the marked one.

Example.

$$
\tau \stackrel{6}{\Longrightarrow} \kappa
$$

$$
\mathrm{spin}=4
$$

$$
\operatorname{spin}=c \cdot(h-1)+N=2 \cdot(3-1)+0=4
$$

$$
\tau \stackrel{3}{\Longrightarrow} \kappa
$$

$$
\operatorname{spin}=5
$$

$$
\operatorname{spin}=2 \cdot(3-1)+1=5
$$

Strong marked tableaux

Def. For a word $w=w_{1} \cdots w_{m} \in \mathbb{Z}_{>1}^{m}$, a strong tableau marked by w is a sequence of strong marked covers of the form

$$
\kappa^{(0)} \xlongequal{w_{m}} \kappa^{(1)} \xlongequal{w_{m-1}} \Rightarrow \stackrel{w_{1}}{\Longrightarrow} \kappa^{(m)} .
$$

- inside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(0)}\right)$
- outside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(m)}\right)$

Strong marked tableaux

Def. For a word $w=w_{1} \cdots w_{m} \in \mathbb{Z}_{>1}^{m}$, a strong tableau marked by w is a sequence of strong marked covers of the form

$$
\kappa^{(0)} \xlongequal{w_{m}} \kappa^{(1)} \xlongequal{w_{m-1}} \cdots \xlongequal{w_{1}} \kappa^{(m)} .
$$

- inside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(0)}\right)$
- outside($T):=\mathfrak{p}^{-1}\left(\kappa^{(m)}\right)$

Example. For $k=4$, a strong marked tableau marked by 34121:

$$
\kappa^{(0)} \stackrel{1}{\Longrightarrow} \kappa^{(1)}, \text { spin }=1(1-1)+0=0
$$

Strong marked tableaux

Def. For a word $w=w_{1} \cdots w_{m} \in \mathbb{Z}_{>1}^{m}$, a strong tableau marked by w is a sequence of strong marked covers of the form

$$
\kappa^{(0)} \xlongequal{w_{m}} \kappa^{(1)} \xlongequal{w_{m-1}} \cdots \xlongequal{w_{1}} \kappa^{(m)} .
$$

- inside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(0)}\right)$
- outside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(m)}\right)$

Example. For $k=4$, a strong marked tableau marked by 34121:

$$
\kappa^{(1)} \stackrel{2}{\Longrightarrow} \kappa^{(2)}, \text { spin }=1(2-1)+0=1
$$

Strong marked tableaux

Def. For a word $w=w_{1} \cdots w_{m} \in \mathbb{Z}_{>1}^{m}$, a strong tableau marked by w is a sequence of strong marked covers of the form

$$
\kappa^{(0)} \xlongequal{w_{m}} \kappa^{(1)} \xlongequal{w_{m-1}} \cdots \xlongequal{w_{1}} \kappa^{(m)} .
$$

- inside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(0)}\right)$
- outside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(m)}\right)$

Example. For $k=4$, a strong marked tableau marked by 34121:

$$
\kappa^{(2)} \stackrel{1}{\Longrightarrow} \kappa^{(3)}, \text { spin }=3(1-1)+2=2
$$

Strong marked tableaux

Def. For a word $w=w_{1} \cdots w_{m} \in \mathbb{Z}_{>1}^{m}$, a strong tableau marked by w is a sequence of strong marked covers of the form

$$
\kappa^{(0)} \xlongequal{w_{m}} \kappa^{(1)} \xlongequal{w_{m-1}} \cdots \xlongequal{w_{1}} \kappa^{(m)} .
$$

- inside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(0)}\right)$
- outside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(m)}\right)$

Example. For $k=4$, a strong marked tableau marked by 34121:

$$
\kappa^{(3)} \stackrel{4}{\Longrightarrow} \kappa^{(4)}, \text { spin }=2(1-1)+0=0
$$

Strong marked tableaux

Def. For a word $w=w_{1} \cdots w_{m} \in \mathbb{Z}_{>1}^{m}$, a strong tableau marked by w is a sequence of strong marked covers of the form

$$
\kappa^{(0)} \xlongequal{w_{m}} \kappa^{(1)} \xlongequal{w_{m-1}} \cdots \xlongequal{w_{1}} \kappa^{(m)} .
$$

- inside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(0)}\right)$
- outside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(m)}\right)$

Example. For $k=4$, a strong marked tableau marked by 34121:

$$
\kappa^{(4)} \xlongequal{3} \kappa^{(5)}, \text { spin }=3(1-1)+1=1
$$

Strong marked tableaux

Def. For a word $w=w_{1} \cdots w_{m} \in \mathbb{Z}_{>1}^{m}$, a strong tableau marked by w is a sequence of strong marked covers of the form

$$
\kappa^{(0)} \xlongequal{w_{m}} \kappa^{(1)} \xlongequal{w_{m-1}} \cdots \xlongequal{w_{1}} \kappa^{(m)} .
$$

- inside $(T):=\mathfrak{p}^{-1}\left(\kappa^{(0)}\right)$
- outside($T):=\mathfrak{p}^{-1}\left(\kappa^{(m)}\right)$

Example. For $k=4$, a strong marked tableau marked by 34121:

$$
\operatorname{spin}(T)=1+0+2+1+0=4
$$

Spin k-Schur functions

- We work in the ring of symmetric functions in infinitely many variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$.

Spin k-Schur functions

- We work in the ring of symmetric functions in infinitely many variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$.
- $\operatorname{SMT}^{k}(w ; \mu)=$ set of strong tableaux T marked by w with outside $(T)=\mu$.

Spin k-Schur functions

- We work in the ring of symmetric functions in infinitely many variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$.
- $\operatorname{SMT}^{k}(w ; \mu)=$ set of strong tableaux T marked by w with outside $(T)=\mu$.
- $\operatorname{spin}(T)=$ sum of the spins of the strong marked covers comprising T.

Spin k-Schur functions

- We work in the ring of symmetric functions in infinitely many variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$.
- $\operatorname{SMT}^{k}(w ; \mu)=$ set of strong tableaux T marked by w with outside $(T)=\mu$.
- $\operatorname{spin}(T)=$ sum of the spins of the strong marked covers comprising T.

Def. For a k-bounded partition μ, let

$$
s_{\mu}^{(k)}(\mathbf{x} ; t)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{d}} \sum_{\substack{w \in \mathbb{Z}_{\geq 1}^{d} \\ i_{j}=i_{j+1}}} \sum_{T \in \text { SMT }^{k}(w ; \mu)} t^{\sin (T)} x_{i_{1}} \cdots w_{i_{d}+1} .
$$

Spin k-Schur functions

- We work in the ring of symmetric functions in infinitely many variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$.
- $\operatorname{SMT}^{k}(w ; \mu)=$ set of strong tableaux T marked by w with outside $(T)=\mu$.
- $\operatorname{spin}(T)=$ sum of the spins of the strong marked covers comprising T.

Def. For a k-bounded partition μ, let

$$
s_{\mu}^{(k)}(\mathbf{x} ; t)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{d}} \sum_{\substack{w \in \mathbb{Z}_{\geq 1}^{d} \\ i_{j}=i_{j+1}}} \sum_{T \in \operatorname{SMT}_{j}^{k}\left(w ; w_{j+1}\right.} t^{\sin (T)} x_{i_{1}} \cdots x_{i_{d}} .
$$

Their $t=1$ specializations

Spin k-Schur functions

- We work in the ring of symmetric functions in infinitely many variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$.
- $\operatorname{SMT}^{k}(w ; \mu)=$ set of strong tableaux T marked by w with outside $(T)=\mu$.
- $\operatorname{spin}(T)=$ sum of the spins of the strong marked covers comprising T.

Def. For a k-bounded partition μ, let

$$
s_{\mu}^{(k)}(\mathbf{x} ; t)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{d}} \sum_{\substack{w \in \mathbb{Z}_{\geq 1}^{d} \\ i_{j}=i_{j+1}}} \sum_{T \in \operatorname{SMT}_{j}^{k}\left(w ; w_{j+1}\right.} t^{\sin (T)} x_{i_{1}} \cdots x_{i_{d}} .
$$

Their $t=1$ specializations

- agree with another combinatorial definition using weak tableaux (Lam-Lapointe-Morse-Shimozono 2010),

Spin k-Schur functions

- We work in the ring of symmetric functions in infinitely many variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$.
- $\operatorname{SMT}^{k}(w ; \mu)=$ set of strong tableaux T marked by w with outside $(T)=\mu$.
- $\operatorname{spin}(T)=$ sum of the spins of the strong marked covers comprising T.

Def. For a k-bounded partition μ, let

$$
s_{\mu}^{(k)}(\mathbf{x} ; t)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{d}} \sum_{\substack{w \in \mathbb{Z}_{\geq 1}^{d} \\ i_{j}=i_{j+1}}} \sum_{T \in \operatorname{SMT}_{j}^{k}\left(w ; w_{j+1}\right.} t^{\sin (T)} x_{i_{1}} \cdots x_{i_{d}} .
$$

Their $t=1$ specializations

- agree with another combinatorial definition using weak tableaux (Lam-Lapointe-Morse-Shimozono 2010),
- are Schubert classes in the homology of the affine Grassmannian $\mathrm{Gr}_{S L_{k+1}}$ of $S L_{k+1}$ (Lam 2008).

Spin k-Schur functions

Spin k-Schur functions

Example. $k=3, \mu=311$:

Spin k-Schur functions

Example. $k=3, \mu=311$:
There are 10 strong marked standard tableaux T whose 4 -core is 411 with outside(T) $=311$:

Spin k-Schur functions

Example. $k=3, \mu=311$:
There are 10 strong marked standard tableaux T whose 4 -core is 411 with outside(T) = 311:

$1 \star$ $2 \star$ 4 $4 \star$	$1 \star$ $2 \star$ 4 $5 \star$ $3 \star$	$1 \star$ $3 \star$ 4 $5 \star$	$1 \star$ $3 \star$ 4 $4 \star$ $2 \star$	$1 \star$ $2 \star$ $3 \star$ 4 $4 \star$	1*	
$3 \star$	$3 \star$	2^	$2 \star$	$4 \star$	2*	
$5 \star$	$4 \star$	4*	$5 \star$	$5 \star$	$3 \star$	
$w=31211$	$w=13211$	$w=13121$	$w=31121$	$w=32111$	$w=$	11321
$w t=221$	$w t=212$	$w t=122$	$w t=131$	$w t=311$		$=113$
$1 \star$ $2 \star$ $3 \star$ $4 \star$ 4	$1 \star$ $2 \star$ $3 \star$ $5 \star$ $4 *$					
4	$4 \star$	$3 \star$	2^	$\mathrm{spin}=1$		
5*	4	4	4			
$w=31111$	$w=12111$	$w=11211$	$w=11121$			
$w t=41$	$w t=32$	$w t=23$	$w t=14$			

Spin k-Schur functions

Example. $k=3, \mu=311$:
There are 10 strong marked standard tableaux T whose 4 -core is 411 with outside(T) = 311:

$1 \star$ $2 \star$ 4 $4 \star$	$1 \star$ $2 \star$ 4 $5 \star$ $3 \star$	$1 \star$ $3 \star$ 4 $5 \star$ $2 \star$	1*\|3* 4 4 4 4*	$1 \star$ $2 \star$ $3 \star$ 4	$1 \star$ 4 $4 \star$ $5 \star$ 2 相	
$3 \star$	$3 \star$	$2 \star$	$2 \star$	$4 \star$	$2 \star$	spin $=0$
$5 \star$	$4 \star$	4*	$5 \star$	$5 \star$	$3 \star$	
$w=31211$	$w=13211$	$w=13121$	$w=31121$	$w=32111$	$w=11321$	
$w t=221$	$w t=212$	$w t=122$	$w t=131$	$w t=311$	$w t=113$	
1*\| $2 \star$ \| $3 \star$ 年 $4 \star$	$1 \star$ $2 \star$ $3 \star$ $5 \star$	$1 \star$ $2 \star$ $4 \star$ $5 \star$ $3 \star$				
4	$4 \star$	3*	2^	$\boldsymbol{s p i n}=1$		
5*	4	4	4			
$w=31111$	$w=12111$	$w=11211$	$w=11121$			
$w t=41$	$w t=32$	$w t=23$	$w t=14$			
$s_{311}^{(3)}=t m$	$1+t m_{32}+$	$1+2 t) m_{311}$	$+(1+2 t) m$	$221+(3+3$	$m_{2111}+(6$	-4t) m_{1}

