Zero-Inflated Generalized Dirichlet Multinomial (ZIGDM) Regression Model for Microbiome Compositional Data

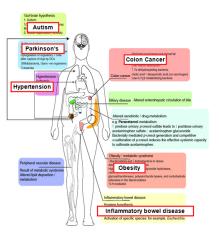
ZhengZheng Tang

Department of Biostatistics and Medical Informatics University of Wisconsin-Madison

tang@biostat.wisc.edu

Human Microbiome Research

- Use high-throughput sequencing to quantify abundances of microbial taxa
- Link the abundance to human diseases and traits
- Proper modeling of microbial abundance is essential to the power of detecting this association

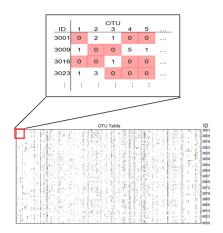


Kinross et al., Genome Medicine 2011, 3:14

Microbiome Data

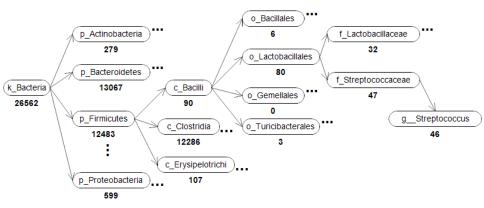
Data Characteristics

- Compositional
- Zero-inflated
- Over-dispersed
- Complex correlation structure



Count Data on a Taxonomic Tree

Counts for species can be summarized into higher taxonomic levels



Outline

Probability distributions for microbial compositions

- Dirichlet Multinomial (DM)
- Generalized Dirichlet Multinomial (GDM)
- Zero-Inflated Generalized Dirichlet Multinomial (ZIGDM)
- ZIGDM regression model
 - Differential mean and dispersion tests

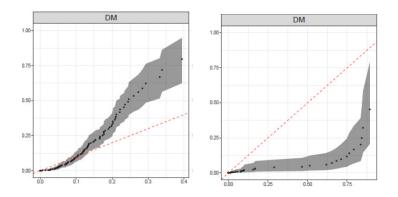
Dirichlet Multinomial (DM) Dirichlet Prior for Multinomial

$$K + 1$$
: Number of taxa in the composition
 $\mathbf{Y} = (Y_1, \dots, Y_{(K+1)})$ with $N = \sum_{j=1}^{K+1} Y_j$
 $\mathbf{P} = (P_1, \dots, P_{(K+1)})$ with $\sum_{j=1}^{K+1} P_j = 1$

 $\mathbf{Y} \mid \mathbf{P} \sim \operatorname{Multinomial}(\mathbf{P}, \mathbf{N}),$ $\mathbf{P} \sim \operatorname{Dirichlet}(\boldsymbol{\nu}, \theta)$

Number of parameters: K + 1

DM is Not Ideal

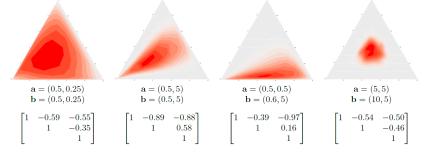


- Negative correlations
- Restrictive mean-variance relationships
- Limited ability to handle excessive zeros

Generalized Dirichlet Multinomial (GDM) Generalized Dirichlet (GD) Prior for Multinomial Generalized Dirichlet (Connor and Mosimann, JASA 1969)

$$\begin{split} \mathbf{Y} &| \ \mathbf{P} \sim \text{Multinomial}(\mathbf{P}, \mathbf{N}), \\ \mathbf{P} \sim \text{GD}(\mathbf{a}, \mathbf{b}), \quad \mathbf{a} = (a_1, \dots, a_K), \mathbf{b} = (b_1, \dots, b_K) \end{split}$$

Number of parameters: 2KGD reduces to Dirichlet if $b_j = a_{j+1} + b_{j+1}$, j = 1, ..., K - 1.



Advantages of GD Prior

- Comparing with Dirichlet Provide more general correlation structure
- Comparing with Logistic Normal Conjugate prior for multinomial (Wong, Appl Math Comput. 1998)

$$\begin{aligned} \mathbf{Y} | \mathbf{P} &\sim \text{Multinomial}(\mathbf{P}, \mathbf{N}) \\ \mathbf{P} &\sim \text{GD}(\mathbf{a}, \mathbf{b}) \\ \implies \mathbf{P} | \mathbf{Y} &\sim \text{GD}(\mathbf{a}^*, \mathbf{b}^*), \\ \mathbf{a}^* &= (a_1^*, \dots, a_K^*), \ a_j^* &= a_j + Y_j \text{ and} \\ \mathbf{b}^* &= (b_1^*, \dots, b_K^*), \ b_j^* &= b_j + Y_{j+1} + \dots + Y_{K+1}, \\ j &= 1, \dots, K \end{aligned}$$

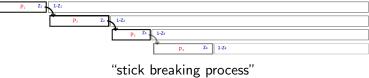
Can GD handle excessive zeros?

Construct GD from Independent Beta Variables

$$Z_j \sim \text{Beta}(a_j, b_j), j = 1, ..., K$$

 $P_j = Z_j \prod_{i=1}^{j-1} (1 - Z_i) \bigoplus Z_j = P_j / (1 - \sum_{i=1}^{j-1} P_i)$

$$\mathbf{P} = (P_1, \dots, P_K) \sim \operatorname{GD}(\mathbf{a}, \mathbf{b})$$



Doesn't Permit Taxa Absence (Structural Zero)

Zero-Inflated Generalized Dirichlet (ZIGD)

$$Z_j \sim \begin{cases} 0 & \text{with probability } \pi_j, \\ \text{Beta}(a_j, b_j) & \text{with probability } 1 - \pi_j, \end{cases}$$

$$P_j = Z_j \prod_{i=1}^{j-1} (1 - Z_i) \prod Z_j = P_j / (1 - \sum_{i=1}^{j-1} P_i)$$

 $\mathbf{P} = (P_1, \ldots, P_K) \sim \operatorname{ZIGD}(\boldsymbol{\pi}, \mathbf{a}, \mathbf{b}), \ \boldsymbol{\pi} = (\pi_1, \ldots, \pi_K)$

ZIGD is a Conjugate Prior to Multinomial

Notation: $\Delta_{j} = I(P_{j} = 0) = I(Z_{j} = 0)$ $\mathcal{U}: \text{ index set for taxa present in the sample } (\boldsymbol{\Delta}_{\mathcal{U}} = \mathbf{0}, \, \boldsymbol{\Delta}_{\overline{\mathcal{U}}} = \mathbf{1})$ $\overline{\mathcal{U}}: \text{ index set for the structural zeros}$ $\mathcal{V}: \text{ index set for taxa with zero counts } (\mathbf{Y}_{\mathcal{V}} = \mathbf{0}, \, \mathbf{Y}_{\overline{\mathcal{V}}} > \mathbf{0})$ Sets \mathcal{U} and \mathcal{V} are not exclusive: their intersection $\mathcal{U} \cap \mathcal{V}$ indexed taxa that are present in the sample but have zero counts due to the undersampling in the sequencing experiment (i.e. sampling zeros).

$$f(\mathbf{P} \mid \mathbf{Y}) = f(\mathbf{P} \mid \mathbf{\Delta}, \mathbf{Y}) Pr(\mathbf{\Delta} \mid \mathbf{Y})$$

$$\begin{array}{l} \blacktriangleright f(\mathbf{P} \mid \mathbf{\Delta}, \mathbf{Y}) = I(\mathbf{P}_{\overline{\mathcal{U}}} = \mathbf{0})f(\mathbf{P}_{\mathcal{U}} \mid \mathbf{\Delta}_{\mathcal{U}} = \mathbf{0}, \mathbf{\Delta}_{\overline{\mathcal{U}}} = \mathbf{1}, \mathbf{Y}) \\ \mathbf{P}_{\mathcal{U}} \mid (\mathbf{\Delta}_{\mathcal{U}} = \mathbf{0}, \mathbf{\Delta}_{\overline{\mathcal{U}}} = \mathbf{1}) \sim GD(\mathbf{a}_{\mathcal{U}}, \mathbf{b}_{\mathcal{U}}) \\ \mathbf{P}_{\mathcal{U}} \mid (\mathbf{\Delta}_{\mathcal{U}} = \mathbf{0}, \mathbf{\Delta}_{\overline{\mathcal{U}}} = \mathbf{1}, \mathbf{Y}) \sim GD(\mathbf{a}_{\mathcal{U}}^*, \mathbf{b}_{\mathcal{U}}^*) \end{array}$$

ZIGD is a Conjugate Prior to Multinomial

 \mathcal{U} : index set for the taxa present in the sample \mathcal{V} : index set for the taxa with zero counts

$$Pr(\boldsymbol{\Delta} \mid \boldsymbol{Y}) = I(\boldsymbol{\Delta}_{\overline{\mathcal{V}}} = \boldsymbol{0})Pr(\boldsymbol{\Delta}_{\mathcal{V}} \mid \boldsymbol{Y}_{\mathcal{V}} = \boldsymbol{0}, \boldsymbol{Y}_{\overline{\mathcal{V}}} > \boldsymbol{0})$$

$$Pr(\boldsymbol{\Delta}_{\mathcal{V}} \mid \boldsymbol{Y}_{\mathcal{V}} = \boldsymbol{0}, \boldsymbol{Y}_{\overline{\mathcal{V}}} > \boldsymbol{0})$$

$$\propto \prod_{j \in \mathcal{V}} \left\{ \pi_{j}^{\Delta_{j}} \left[(1 - \pi_{j}) \frac{\mathcal{B}(\boldsymbol{a}_{j}^{*}, \boldsymbol{b}_{j}^{*})}{\mathcal{B}(\boldsymbol{a}_{j}, \boldsymbol{b}_{j})} \right]^{(1 - \Delta_{j})} \right\},$$

For the taxon *j* with zero count, the probability of this observed zero being structural zero is $\frac{\pi_j}{\pi_j + (1 - \pi_j) \frac{\mathcal{B}(a_j^*, b_j^*)}{\mathcal{B}(a_j, b_j)}}$.

ZIGDM Regression Model

Use ZIGD as a prior for multinomial \rightarrow ZIGDM

- ZIGDM regression model can link mean, dispersion, presence-absence frequency of the microbial abundance to the covariates of interest
- An efficient EM for fitting the model and estimating parameters

ZIGDM Regression Model

n subjects measured on K + 1 taxa

$$i = 1, \ldots, n; j = 1, \ldots, K + 1$$

 Y_{ij} : observed taxon count

P_{ij}: underlying true proportion

X_{*i*}: *d*-dimensional vector including intercept and covariates

$$\begin{split} \mathbf{Y}_i &= (Y_{i1}, \ldots, Y_{iK}) \sim \text{ZIGDM}(\boldsymbol{\pi}_i, \mathbf{a}_i, \mathbf{b}_i), \text{ where} \\ \boldsymbol{\pi}_i &= (\pi_{i1}, \ldots, \pi_{iK}), \ \mathbf{a}_i = (a_{i1}, \ldots, a_{iK}), \text{ and } \mathbf{b}_i = (b_{i1}, \ldots, b_{iK}). \\ \text{We model } \mu_{ij} &= a_{ij}/(a_{ij} + b_{ij}) \text{ and } \sigma_{ij} = 1/(1 + a_{ij} + b_{ij}) \text{ as they} \\ &\text{ are Beta mean and dispersion parameters.} \end{split}$$

$$\mu_{ij} = \frac{e^{\boldsymbol{\alpha}_j^{\mathrm{T}} \mathbf{X}_i}}{1 + e^{\boldsymbol{\alpha}_j^{\mathrm{T}} \mathbf{X}_i}}, \quad \sigma_{ij} = \frac{e^{\boldsymbol{\beta}_j^{\mathrm{T}} \mathbf{X}_i}}{1 + e^{\boldsymbol{\beta}_j^{\mathrm{T}} \mathbf{X}_i}}, \quad \text{and} \quad \pi_{ij} = \frac{e^{\boldsymbol{\gamma}_j^{\mathrm{T}} \mathbf{X}_i}}{1 + e^{\boldsymbol{\gamma}_j^{\mathrm{T}} \mathbf{X}_i}},$$

where $\alpha_j = (\alpha_{1j}, \ldots, \alpha_{dj})$, $\beta_j = (\beta_{1j}, \ldots, \beta_{dj})$, and $\gamma_j = (\gamma_{1j}, \ldots, \gamma_{dj})$ are regression coefficients for taxon *j*.

Equivalent Hierarchical Model

$$\begin{split} \Delta_{ij} &\sim \text{Bernoulli}(\pi_{ij}), \quad j = 1, \dots, K, \\ Z_{ij} &= 0 \text{ if } \Delta_{ij} = 1, \quad Z_{ij} \mid \Delta_{ij} = 0 \sim \text{Beta}(a_{ij}, b_{ij}), \quad j = 1, \dots, K, \\ P_{i1} &= Z_{i1}, \quad P_{ij} = Z_{ij} \prod_{k=1}^{j-1} (1 - Z_{ik}), \quad j = 2, \dots, K, \\ \mathbf{Y}_i \mid \mathbf{P}_i \sim \text{Multinomial}(\mathbf{P}_i, N_i), \\ \text{where } \mathbf{P}_i &= (P_{i1}, \dots, P_{iK}) \text{ and } N_i = \sum_{j=1}^{K+1} Y_{ij}. \end{split}$$

EM algorithm

Complete set of parameters: $\theta = (\gamma_1, \dots, \gamma_K, \alpha_1, \dots, \alpha_K, \beta_1, \dots, \beta_K)$ Complete data log-likelihood expressed in terms of Z's:

$$\begin{split} l(\theta) &= \log \left[\prod_{i=1}^{n} \left\{ \Pr(\mathbf{Y}_{i} \mid \mathbf{Z}_{i}) \prod_{j=1}^{K} f(Z_{ij}) \right\} \right] \\ &= \sum_{i=1}^{n} \log \left\{ \Pr(\mathbf{Y}_{i} \mid \mathbf{Z}_{i}) \right\} \\ &+ \sum_{j=1}^{K} \sum_{i=1}^{n} \left\{ \Delta_{ij} \log \pi_{ij} + (1 - \Delta_{ij}) \log(1 - \pi_{ij}) + (1 - \Delta_{ij}) \left[-\log(\mathcal{B}(a_{ij}, b_{ij})) + (a_{ij} - 1) \log(Z_{ij}) + (b_{ij} - 1) \log(1 - Z_{ij}) \right] \right\}, \end{split}$$

where $a_{ij} = \mu_{ij}(1/\sigma_{ij} - 1)$ and $b_{ij} = (1 - \mu_{ij})(1/\sigma_{ij} - 1)$. Using Z's instead of P's allows us to derive the explicit form of posterior expectations in the E-step and estimate parameters for each taxon independently in the M-step.

EM algorithm – E Step

In the *t*-th E-step, we need to compute the expected complete data log-likelihood,

$$egin{aligned} Q^*_ heta &= \sum_{j=1}^{K} \sum_{i=1}^{n} \mathsf{E} \Big\{ \Delta_{ij} \log \pi_{ij} + (1-\Delta_{ij}) \log(1-\pi_{ij}) + \ & (1-\Delta_{ij}) \left[-\log(\mathcal{B}(a_{ij},b_{ij})) + (a_{ij}-1) \log Z_{ij} + (b_{ij}-1) \log(1-Z_{ij})
ight] \end{aligned}$$

where the expectation is with respect to the posterior distributions of $(\mathbf{\Delta}_i | \mathbf{Y}_i; \boldsymbol{\theta}^{(t-1)})$ and $(\mathbf{Z}_i | \mathbf{\Delta}_i, \mathbf{Y}_i; \boldsymbol{\theta}^{(t-1)})$ with $\boldsymbol{\theta}^{(t-1)}$ being the parameter estimates in the (t-1)-th M-step.

EM algorithm – E Step

Based on the results for ZIGD posterior distribution, we can derive the explicit form for the posterior means:

$$\begin{split} \Delta_{ij}^* &= \mathrm{E}\left(\Delta_{ij} \mid \mathbf{Y}_i\right) = \begin{cases} 0 & \text{if } Y_{ij} > 0\\ \frac{\pi_{ij}}{\pi_{ij} + \left(1 - \pi_{ij}\right) \frac{\mathcal{B}\left(a_{ij}^*, b_{ij}^*\right)}{\mathcal{B}\left(a_{ij}, b_{ij}\right)}} & \text{if } Y_{ij} = 0 \end{cases},\\ A_{ij}^* &= \mathrm{E}\left(\log Z_{ij} \mid \mathbf{Y}_i, \Delta_{ij} = 0\right) = \psi\left(a_{ij}^*\right) - \psi\left(a_{ij}^* + b_{ij}^*\right),\\ B_{ij}^* &= \mathrm{E}\left(\log(1 - Z_{ij}) \mid \mathbf{Y}_i, \Delta_{ij} = 0\right) = \psi\left(b_{ij}^*\right) - \psi\left(a_{ij}^* + b_{ij}^*\right), \end{split}$$

where $a_{ij}^* = a_{ij} + Y_{ij}$, $b_{ij}^* = b_{ij} + Y_{i(j+1)} + \ldots + Y_{i(K+1)}$, and $\psi(\cdot)$ is the digamma function.

EM algorithm – M Step

Thus, Q^*_{θ} can be rewritten as

$$Q_{\theta}^{*} = \sum_{j=1}^{K} Q_{\gamma_{j}}^{*} + \sum_{j=1}^{K} Q_{\alpha_{j},\beta_{j}}^{*}, \qquad (3)$$

where
$$Q_{\gamma_j}^* = \sum_{i=1}^n \{\Delta_{ij}^* \log \pi_{ij} + (1 - \Delta_{ij}^*) \log(1 - \pi_{ij})\}$$
 and
 $Q_{\alpha_j,\beta_j}^* = \sum_{i=1}^n (1 - \Delta_{ij}^*) \{-\log(\mathcal{B}(a_{ij}, b_{ij})) + (a_{ij} - 1)A_{ij}^* + (b_{ij} - 1)B_{ij}^*\}.$

In the *t*-th M-step, for each taxon *j*, we obtain $\gamma_j^{(t)}$ from maximizing the function $Q^*_{\gamma_j}$ and obtain $\alpha_j^{(t)}$ and $\beta_j^{(t)}$ from maximizing the function $Q^*_{\alpha_j,\beta_j}$.

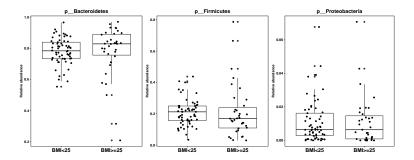
Association Tests

Test for the mean: $H_0: \alpha_{*1} = \ldots = \alpha_{*K} = 0$ Test for the dispersion: $H_0: \beta_{*1} = \ldots = \beta_{*K} = 0$ Test for the presence-absence frequency: $H_0: \gamma_{*1} = \ldots = \gamma_{*K} = 0$

- When performing a test on a particular set of parameters (e.g. α's), we include only the intercept coefficient in the model for the other sets of parameters (e.g. β's and γ's)
- ► We adopted score statistics, which are computationally faster and more stable than Wald and LR statistics (Lin and Tang, AJHG 2011)
- The asymptotic approximation of the test statistics may not be accurate when most of the observations are zero, especially when the sample size is small. Therefore, we need to use permutation techniques to obtain p-values.

Why we care about differential dispersion?

Microbiome compositions are very dynamic Disease-microbe association can be moderated by many factors, resulting in heterogeneous dispersion levels between disease and healthy groups



Simulation Study

Setup:

- Simulate 6 taxon counts for two groups with same sample sizes and tested differential abundance in the 6 taxa between the two groups.
- Sample sizes of 100 and 200 in all simulation studies
- In the power evaluation, we change either the mean abundance or the dispersion level in one group.
- 5000 simulated data sets to evaluate type I error and power of the tests at the 0.05 significance level.

Simulation Study

 $Y \sim \text{Multinomial}(\mathbf{P}, N); N \sim \text{Poisson}(1000)$

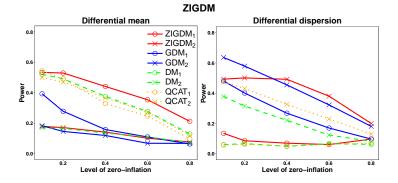
model for proportion P	data generation	parameter specification		
Dirichlet	$egin{aligned} \mathbf{P} &= \{P_j\}_{j=1}^6 \ &\sim \textit{Dir}(m{\mu}, \sigma) \ m{\mu} &= \{\mu_j\}_{j=1}^6 \end{aligned}$	mean of Dirichlet: $\mu_j = 1/6$ dispersion of Dirichlet: $\sigma = 0.3$		
GD ZIGD	$egin{aligned} Z_j &\sim (ZI) B(\pi_j, \mu_j, \sigma_j) \ P_j &= Z_j \prod_{i=1}^{j-1} (1-Z_i) \ (j=1,\ldots,5) \ P_6 &= 1 - \sum_{i=1}^5 P_i \end{aligned}$	mean of Beta: $\mu_j = 0.2$ dispersion of Beta: $\sigma_j = 0.2$ zero-inflation: $\{\pi_j\}_{j=1}^5 = \{0.1, 0.2, 0.4, 0.6, 0.8\}$		
LN ZILN	$\{W_j\}_{j=1}^5 \sim LN(\mu, \sigma, \Omega)$ $P_j = W_j / (\sum_{i=1}^5 W_i + 1)$ (j = 1,, 5) replace counts with zero $P_6 = 1 - \sum_{i=1}^5 P_i$	mean of Normal: $\mu_j = 0$ variance of Normal: $\sigma_j = 1$ correlation: $\Omega_{jj'} = 0.5^{ j-j' }$ zero-inflation: $\{\pi_j\}_{j=1}^5 = \{0.1, 0.2, 0.4, 0.6, 0.8\}$		

Power Simulation Setup

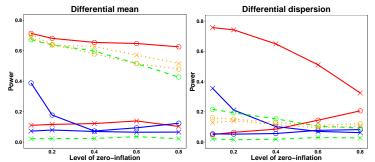
parameter specification	perturbation
mean of Dirichlet: $\mu_j = 1/6$ dispersion of Dirichlet: $\sigma = 0.3$	$\mu_k \sim Unif(0, 0.5) \ { m OR} \ \sigma \sim Unif(0, 0.5)$
mean of Beta: $\mu_j = 0.2$ dispersion of Beta: $\sigma_j = 0.2$ zero-inflation: $\{\pi_j\}_{j=1}^5 = \{0.1, 0.2, 0.4, 0.6, 0.8\}$	$\mu_k \sim Unif(0, 0.5)$ OR $\sigma_k \sim Unif(0, 1)$
mean of Normal: $\mu_j = 0$ variance of Normal: $\sigma_j = 1$ correlation: $\mathbf{\Omega}_{jj'} = 0.5^{ j-j' }$	For LN: $\mu_k \sim Unif(0,1)$ OR $\sigma_k \sim Unif(1,6)$
zero-inflation: $\{\pi_j\}_{j=1}^5 = \{0.1, 0.2, 0.4, 0.6, 0.8\}$	For ZILN: $\mu_k \sim Unif(0,2)$ OR $\sigma_k \sim Unif(1,8)$

Power under Non-zero-inflated Models

Model	Diff	n	ZIGDM_1	ZIGDM_2	${\rm GDM}_1$	GDM_2	DM_1	DM_2	$QCAT_1$	$QCAT_2$
DM	Mean	100	0.52	0.33	0.67	0.47	0.60	0.66	0.58	0.59
		200	0.67	0.54	0.76	0.62	0.71	0.76	0.70	0.72
	Disp	100	0.17	0.72	0.42	0.77	0.05	0.76	0.06	0.64
		200	0.52	0.84	0.60	0.84	0.05	0.81	0.05	0.75
GDM	Mean	100	0.60	0.27	0.66	0.34	0.59	0.60	0.60	0.59
		200	0.70	0.39	0.76	0.48	0.70	0.71	0.71	0.70
	Disp	100	0.17	0.47	0.56	0.79	0.07	0.55	0.07	0.59
		200	0.23	0.54	0.67	0.86	0.07	0.62	0.08	0.66
LN	Mean	100	0.48	0.06	0.48	0.06	0.50	0.51	0.52	0.52
		200	0.63	0.06	0.63	0.05	0.65	0.66	0.66	0.66
	Disp	100	0.05	0.70	0.05	0.70	0.24	0.39	0.17	0.18
		200	0.06	0.83	0.06	0.83	0.47	0.61	0.40	0.41



ZILN



Take Home Message

- The ZIGDM tests are more powerful to detect differential mean/dispersion and are more robust to the underlying distribution if the taxon counts are zero-inflated
- If the taxon counts are not zero-inflated, the GDM tests are more desirable
- The DM tests yield similar power to the GDM test even if data are DM distributed and the DM differential-dispersion test has substantial power loss if data are not DM distributed
- The QCAT tests have robust and decent power in detecting differential mean but cannot powerfully detect differential dispersion

Gut Microbiome and Body Mass Index

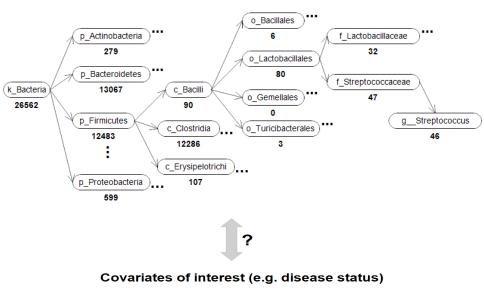
Wu, Gary D., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334.6052 (2011): 105-108.

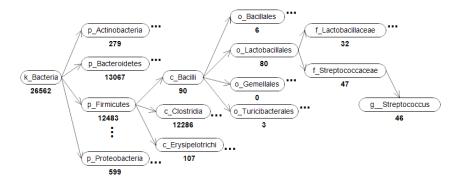
- Gut microbiota play an important role in obesity
- Fecal samples were collected from 98 healthy volunteers, along with their demographic data and diet information
- Sample DNA was analyzed by sequencing the V1-V2 region of the 16S rRNA gene
- The sequencing reads were taxonomically classified to the 80 genera, and then mapped to a taxonomic tree with 74 lineages from family to kingdom

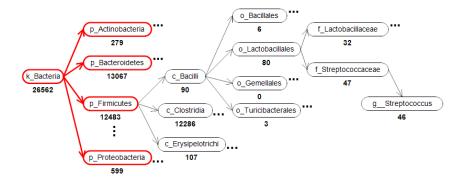
Identify the microbial lineages have differential mean or dispersion between high and normal BMI groups

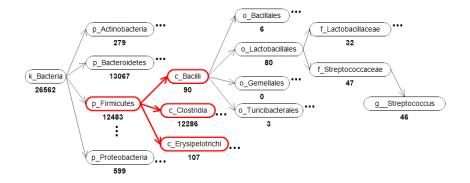
Count Data on a Taxonomic Tree

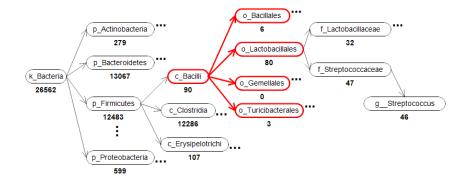
Counts for species can be summarized into higher taxonomic levels

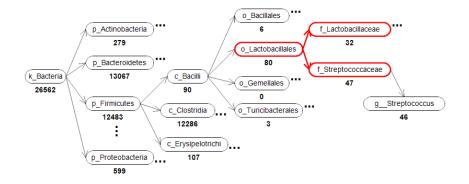


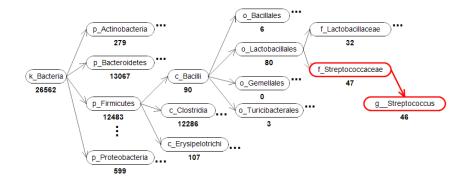












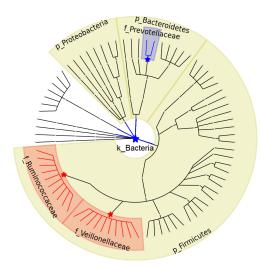
BMI-Associated Lineages

Use Benjamini-Hochberg procedure to control FDR at 0.05 level

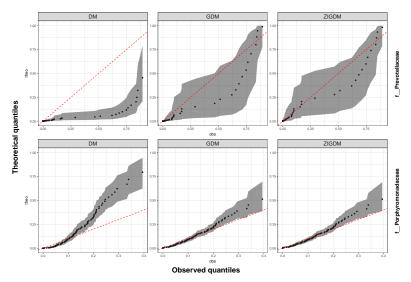
Results from DM and QCAT tests: Family Ruminococcaceae (DM₁ p-value = 0.0013 and QCAT₁ p-value = 0.00014) Family Veillonellaceae (DM₂ p-value = 0.0012 and QCAT₂ p-value = 0.00080)

```
Results from GDM and ZIGDM tests:
Family Ruminococcaceae
Family Prevotellaceae
(ZIGDM<sub>2</sub> p-value = 0.0014 and GDM_2 p-value = 0.0014)
Kingdom Bacteria
(ZIGDM<sub>2</sub> p-value = 0.0016)
```

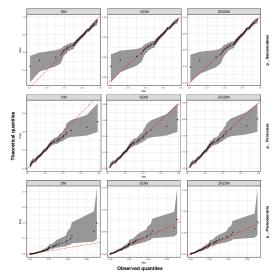
Differential Lineages



QQ plots for the two families under order Bacteroidales



QQ plots for the three most abundant phyla



Choose between ZIGDM and GDM based on AIC/BIC or LRT

Summary

- The ZIGDM provides better fit to the microbiome data than DM
- The ZIGDM provides a more flexible way of accommodating excessive zeros and disentangle structural zeros and sampling zeros.
- Propose score tests based on the ZIGDM regression model to detect differential mean or dispersion level of microbial composition
- Develop an efficient EM algorithm to estimate parameters in the ZIGDM regression.

Tang, Zheng-Zheng, and Chen, Guanhua. "Zero-inflated generalized Dirichlet multinomial regression model for microbiome compositional data analysis." Biostatistics, k×y025, (2018).

Software

https://tangzheng1.github.io/tanglab/software.html

	Tang Lab	Home	Research	Publications	Software	People
--	----------	------	----------	--------------	----------	--------

software

miLineage: An R package to perform association tests for microbial lineages on a taxonomic tree.

miLineage package has functions that implement a variety of association tests for microbiome data. These functions allow users to (a) perform tests on multivariate taxon counts; (b) localize the covariate-associated lineages on the taxonomic tree; and (c) assess the overall association of the microbial community with the covariate of interest.

References: Tang ZZ et al. 2017, Tang ZZ & Chen G 2018

Acknowledgements

- > Dr. Guanhua Chen, University of Wisconsin-Madison
- Dr. Hongzhe Li, University of Pennsylvania

Thank you!