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Genetic architecture of 
complex traits
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• Genome-wide association studies (GWAS) allows for 
better understanding of genetic architecture
• Have identified thousands of trait-associated variants 

for complex traits Timpson et al. 2018

Natural selection & 
demography
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• Inference of genetic architecture from 
GWAS data & population genetic models 

• How does genetic architecture differ across 
populations?
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Most GWAS hits are common

Very 
rare Common

Data from UK Biobank



Negative correlation between 
effect size and frequency

Park et al. (2011)
The UK10K Consortium (2015)

Very 
rare Common

Data from UK Biobank



Purifying selection enriches for 
rare variants with large effect

Variant with large 
effect on the trait

Trait is early 
onset Reduce 

reproductive fitness

Purifying 
selection

Keep 
frequency low

• Eyre-Walker (2010):
• Propose a parameter called 𝛕 
•  𝛕 captures the relationship between a variant’s effect 

on the trait with its effect on fitness



 𝛕 relates effects size to selection coefficient 
and allele frequency
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Support for a relationship 
between effect size and selection

Figure drawn using values from Schoech et al. (2017)



The number of causal variants 
is understudied
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The number of causal variants 
is difficult to study 
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The number of causal variants 
is difficult to study 

A site that hasn’t 
mutated but could be a 

trait-affecting variant
(not known)

GWAS hits 
(known)

Causal variants
(not known)

+ + =
The total number of sites in the genome 

that, if mutated, would give rise to a 
trait-affecting variant

Mutational target size (M) 



Goal: develop an improved 
model of complex traits

• Infer M: 
– M is not known for many traits 
–The number of causal variants can be inferred from 

knowing M 

• Also, improve on existing methods to infer 𝛕: 
–Existing method (i.e. Shoech et al. 2017) used genotyped 

data 
–Our method uses summary statistics from GWAS 

• Developed Inference of Genetic Architecture 
method (InGeAr) 
–An Approximate Bayesian Computation framework to infer 

for 𝛕 and M



InGeAr framework

Simulate causal 
variants with a value of 
! drawn from a prior 

distribution

Determine number of 
significant variants 

based on power 
(simulating GWAS)

Calculate effect size:
"#$%& = (), where * is 

drawn from a prior 
distribution

GWAS simulation

Rejection algorithm
Step 1: Compute:

àAccept (!, *)
àRepeat until 10,000 
acceptances are obtained

Step 2: Compute:

àSelect the best 10%
àPosterior distribution of ! and *

Tanya Phung 

Bioinformatics graduate student 
Currently a postdoc with Melissa 

Wilson Sayres 



Summary statistics



InGeAr framework

Simulate causal 
variants with a value of 
! drawn from a prior 

distribution

Determine number of 
significant variants 

based on power 
(simulating GWAS)

Calculate effect size:
"#$%& = (), where * is 

drawn from a prior 
distribution

GWAS simulation

Rejection algorithm
Step 1: Compute:

àAccept (!, *)
àRepeat until 10,000 
acceptances are obtained

Step 2: Compute:

àSelect the best 10%
àPosterior distribution of ! and *



Remove linkage disequilibrium 
(LD) by considering independent 

GWAS hits
• Kichaev et al. (2017) developed FINDOR 

to identify independent, genome-wide 
significant GWAS hits 

–Weight GWAS hits by how well they tag 
functional categories that are enriched for 
heritability 

–Identify ~ 2,500 independent GWAS hits for 
height



Application of InGeAr to height 
GWAS from UKBiobank



Mutational target size for 
height: 95Mb



Mutational target size for 
height: 95Mb

• For a mutational target size of 95Mb (~3% of 
the genome) 
–~300,000 causal variants 
–~2,500 GWAS hits 



Coupling between selection and  
trait effect for height



Joint posterior distribution 𝛕 of  
and M



Assess model fit



Model fits the empirical GWAS 
data well



GWAS hits are enriched for 
variants with large effect size



Most causal variants are 
weakly deleterious

Strength |s|

Weak <10-4

Intermediate 10-4–10-2

Strong >10-2



Weakly and intermediately selected 
variants explain most of the additive 

genetic variance

Strength |s|

Weak <10-4

Intermediate 10-4–10-2

Strong >10-2



 M varies across examined 
traits



 𝛕 is similar across examined 
traits



Our results support the omnigenic 
model

• The omnigenic model (Boyle et al. 2017) predicts: 
1. A large proportion of the genome (peripheral genes) 

affects most traits 
2. Most of the heritability is explained by the weak effects 

from peripheral genes 

•  M is on orders of ten of megabases for most traits 
–Supports Prediction 1 

• 𝛕 is similar for all traits examined 
–Supports Prediction 2



Outline

• Inference of genetic architecture from 
GWAS data & population genetic models 

• How does genetic architecture differ across 
populations?



Additive variance when trait effects are 
proportional to fitness effects (𝛕 = 0.5)

Rare mutations explain 
about 2x more variance 

under recent growth
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Forward simulations under 
more realistic demography

Arun Durvasula 
  

(Genetics & 
Genomics 

Graduate student)



Forward simulations under 
more realistic demography

Present day

• Forward simulation of a trait 
under stabilizing selection 
following an out of Africa 
human demography 

• Simulations done using SLiM 

Haller and Messer 2016 
Gravel et al 2011

YRI
CEU

𝑁
𝑒



Simulations imply similar 
heritability across populations

YRI CEU
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However, number of causal variants and 
effect sizes are predicted to differ

N
um

be
r o

f c
au

sa
l v

ar
ia

nt
s

M
ea

n 
ef

fe
ct

 s
iz

e/
va

ria
nt

YRI CEUYRI CEU



●

●●

●

YRI CEU
0.

00
30

0.
00

35
0.

00
40

0.
00

45
0.

00
50

0.
00

55
0.

00
60

M
ea

n 
ef

fe
ct

 s
iz

e 
pe

r v
ar

ia
nt

●

YRI CEU

40
0

50
0

60
0

70
0

80
0

N
um

be
r o

f c
au

sa
l v

ar
ia

nt
s

●

●

YRI CEU

8
10

12
14

Ad
di

tiv
e 

ge
ne

tic
 v

ar
ia

nc
e

T−test P−value: 0.76585A B C

However, number of causal variants and 
effect sizes are predicted to differ

N
um

be
r o

f c
au

sa
l v

ar
ia

nt
s

M
ea

n 
ef

fe
ct

 s
iz

e/
va

ria
nt

YRI CEUYRI CEU



Testing models of genetic 
architecture using gene expression

• Examine eQTLs in GEUVADIS data 

• Overall, Lappalainen et al. (2013) find more 
significant associations in EUR than YRI. 
However, differences in power… 

• Computed power to detect each variant (given 
its effect size, frequency & sample size) 

• Simulated eQTL studies of same sample size 
to account for differential power



More causal variants of weaker 
effect in EUR compared to YRI

A B C
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Private variants account for the 
majority of additive genetics variance



Conclusions
• The mutational target size differs between traits 

but is large (on orders of tens of megabases) 

• Purifying selection is pervasive on complex 
traits, even those not thought to be directly tied 
to fitness 

• Demography impacts the architecture of traits 

• This provides an important additional source of 
ambiguity when attempting to transfer polygenic 
risk scores across populations
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Incorporate pleiotropy

• Pleiotropy is captured by ⍴ (Uricchio et al. 
2016) 

• Modify InGeAr to also infer ⍴



⍴ is close to 1



 𝛕 does not change significantly



 M is smaller when 
incorporating pleiotropy


