Inference of the mutational size supports the omnigenic model for complex traits

Kirk Lohmueller

Department of Ecology and Evolutionary Biology Department of Human Genetics Interdepartmental Bioinformatics Program University of California, Los Angeles

- Genome-wide association studies (GWAS) allows for better understanding of genetic architecture
 - Have identified thousands of trait-associated variants for complex traits
 Timpson et al. 2018

Outline

- Inference of genetic architecture from GWAS data & population genetic models
- How does genetic architecture differ across populations?

Outline

- Inference of genetic architecture from GWAS data & population genetic models
- How does genetic architecture differ across populations?

Most GWAS hits are common

Data from UK Biobank

Negative correlation between effect size and frequency

Purifying selection enriches for rare variants with large effect

- Eyre-Walker (2010):
 - Propose a parameter called τ
 - τ captures the relationship between a variant's effect on the trait with its effect on fitness

τ relates effects size to selection coefficient and allele frequency

τ relates effects size to selection coefficient and allele frequency

τ relates effects size to selection coefficient and allele frequency

Support for a relationship between effect size and selection

Figure drawn using values from Schoech et al. (2017)

The number of causal variants is understudied

GWAS hits (known) Causal variants (not known)

GWAS hits (known) Causal variants (not known) A site that hasn't mutated but could be a trait-affecting variant (not known)

+ + =

The total number of sites in the genome that, if mutated, would give rise to a trait-affecting variant **Mutational target size (***M***)**

Goal: develop an improved model of complex traits

- Infer M:
 - *M* is not known for many traits
 - -The number of causal variants can be inferred from knowing *M*
- Also, improve on existing methods to infer τ :
 - Existing method (i.e. Shoech et al. 2017) used genotyped data
 - -Our method uses summary statistics from GWAS
- Developed <u>Inference of Genetic Architecture</u> method (InGeAr)
 - –An Approximate Bayesian Computation framework to infer for τ and M

InGeAr framework

GWAS simulation

Rejection algorithm

Tanya Phung

Bioinformatics graduate student Currently a postdoc with Melissa Wilson Sayres

Summary statistics

InGeAr framework

GWAS simulation

Remove linkage disequilibrium (LD) by considering independent GWAS hits

- Kichaev et al. (2017) developed FINDOR to identify independent, genome-wide significant GWAS hits
 - Weight GWAS hits by how well they tag functional categories that are enriched for heritability
 - Identify ~ 2,500 independent GWAS hits for height

Application of InGeAr to height GWAS from UKBiobank

Mutational target size for height: 95Mb

Mutational target size for height: 95Mb

- For a mutational target size of 95Mb (~3% of the genome)
 - -~300,000 causal variants

Coupling between selection and trait effect for height

Joint posterior distribution τ of and M

Assess model fit

Model fits the empirical GWAS data well

GWAS hits are enriched for variants with large effect size

Most causal variants are weakly deleterious

Weakly and intermediately selected variants explain most of the additive genetic variance

M varies across examined traits

τ is similar across examined traits

Our results support the omnigenic model

- The omnigenic model (Boyle et al. 2017) predicts:
 - 1. A large proportion of the genome (peripheral genes) affects most traits
 - 2. Most of the heritability is explained by the weak effects from peripheral genes
- *M* is on orders of ten of megabases for most traits –Supports Prediction 1
- τ is similar for all traits examined
 - -Supports Prediction 2

Outline

- Inference of genetic architecture from GWAS data & population genetic models
- How does genetic architecture differ across populations?

Additive variance when trait effects are proportional to fitness effects ($\tau = 0.5$)

Forward simulations under more realistic demography

Arun Durvasula

(Genetics & Genomics Graduate student)

Forward simulations under more realistic demography

- Forward simulation of a trait under stabilizing selection following an out of Africa human demography
- Simulations done using SLiM

Haller and Messer 2016 Gravel et al 2011

Simulations imply similar heritability across populations

However, number of causal variants and effect sizes are predicted to differ

However, number of causal variants and effect sizes are predicted to differ

Testing models of genetic architecture using gene expression

- Examine eQTLs in GEUVADIS data
- Overall, Lappalainen et al. (2013) find more significant associations in EUR than YRI.
 However, differences in power...
- Computed power to detect each variant (given its effect size, frequency & sample size)
- Simulated eQTL studies of same sample size to account for differential power

More causal variants of weaker effect in EUR compared to YRI

Private variants account for the majority of additive genetics variance

European Allele Frequency

Conclusions

- The mutational target size differs between traits but is large (on orders of tens of megabases)
- Purifying selection is pervasive on complex traits, even those not thought to be directly tied to fitness
- Demography impacts the architecture of traits
- This provides an important additional source of ambiguity when attempting to transfer polygenic risk scores across populations

Acknowledgements

Tanya Phung

Arun Durvasula

- Bogdan Pasaniuc, Nick Mancuso, Gleb Kichaev, Christian Huber
- Funding sources:
 - -UCLA Biomedical and Big Data training grant to TNP
 - –National Institutes of Health R01 HG009120-01A1 to Bogdan Pasaniuc
 - -National Institutes of Health R35GM119856 to KEL

Incorporate pleiotropy

Pleiotropy is captured by ρ (Uricchio et al. 2016)

• Modify InGeAr to also infer ρ

ρ is close to 1

τ does not change significantly

M is smaller when incorporating pleiotropy

