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Background: Geometric classification of graph C ∗-algebras

Theorem (Eilers-Restorff-Ruiz-Sørensen [ERRS16])

Let E ,F be directed graphs with finitely many vertices. C ∗(E ) and
C ∗(F ) are stably equivalent if and only if one can convert E into F
by a finite sequence of the moves

(S), (O), (I), (R), (C), (P)

and their inverses.

Built on work of Bates-Pask [BP04], Drinen (thesis) and
Crisp-Gow [CG06] on moves for graph algebras; Rørdam [Rø95] on
classification of Cuntz-Krieger algebras; Boyle-Huang [BH] from
dynamical systems.

ERRS also obtained a classification, up to isomorphism, of such
graph C ∗-algebras by using ordered filtered K -theory.

Our work constitutes a first step in developing such classification
results for higher-rank graphs.
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Moves for k-graphs

So far, we have identified four types of moves on k-graphs which
preserve Morita equivalence:

Sink deletion

(S)

Insplitting (O)

Reduction (R)

Delay

Delay for directed graphs was considered by Drinen and
Bates-Pask; related to flow equivalence for shifts of finite type.
(Parry-Sullivan)

For directed graphs, reduction and delay are (intuitively but not
exactly) inverses.
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Higher-rank graphs

A k-graph Λ consists of:

An edge-colored directed graph, with k colors of edges;

plus

A factorization rule: for any two colors (red, blue), any
red-blue path from v to w is equivalent to a unique blue-red
path.

w

v

∼

Any 3-color path needs to determine a well-defined “cube.”

Higher-rank graphs (k-graphs) were introduced by Kumjian &
Pask in 2000 to give examples of combinatorial, computable
C ∗-algebras, more general than graph C ∗-algebras.
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Definition of C ∗(Λ)

C ∗(Λ) is a universal C ∗-algebra, generated by projections
associated to the vertices in Λ and partial isometries associated to
the edges, such that multiplication of these generators corresponds
to concatenating the given edges in Λ.

Precisely: Given a row-finite source-free higher-rank graph Λ,
C ∗(Λ) is the universal C ∗-algebra generated by a family of
projections {pv : v a vertex in Λ} and partial isometries
{se : e an edge in Λ} satisfying the Cuntz-Krieger relations:

(CK1) pvpw = δv ,wpv

(CK2) If ef ∼ f ′e ′ then sesf = sf ′se′

(CK3) s∗e se = ps(e)

(CK4) For any vertex v and any color i , pv =
∑

e:d(e)=i ,r(e)=v

ses
∗
e .
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Universality

Recall: C ∗(Λ) is the universal C ∗-algebra generated by {pv , se}
satisfying the Cuntz-Krieger relations.

That is, if we have any family of projections and partial isometries
{Qv ,Te} satisfying (CK1)-(CK4) – a Cuntz-Krieger family – then
there is a surjective ∗-homomorphism π : C ∗(Λ)→ C ∗({Qv ,Te}).

Theorem (Kumjian-Pask; “Gauge-invariant uniqueness theorem”)

Let Λ be a k-graph. There is a continuous action α of Tk on
C ∗(Λ), satisfying

αz(se) = zi se

if e is an edge of color i . If π(pv ) 6= 0 for all v , and there is also an
action β of Tk on C ∗({Qv ,Te}) such that

π ◦ α = β ◦ π

then π is an isomorphism.
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Example and notation

vf1
f2 e

Factorization rule: f1e = ef2, f2e = ef1. C ∗(Λ) ∼= O2 o Z

For n = (n1, . . . , nk) ∈ Nk we write

Λn = {λ ∈ Λ : λ has ni edges of color i}.

The factorization rule means this is well defined.

Note that Λ0 is the vertices of Λ.
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Sink deletion

Definition

A sink in a k-graph Λ is a vertex which emits no edges of color i ,
for some i .

Definition

If v ,w ∈ Λ0 we say v ≥ w if there exists a path λ ∈ Λ with
s(λ) = v , r(λ) = w .

Proposition (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If v is a sink in Λ0, then deleting v, all vertices w such that w ≥ v,
and all incident edges results in a k-graph ΛS such that
C ∗(ΛS) ∼ME C ∗(Λ).
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Example of sink deletion

1. Sink Deletion

Notation 1.1. We say v 2 ⇤0 is an ni sink if s�1(v) \ ⇤ni = ;. We say v is a sink if
it is an ni sink for some 1  i  k.

Notation 1.2. We say v � w if there exists a � 2 G⇤ such that s(�) = v and
r(�) = w.

Definition 1.3. Let (⇤, d) be a k-graph. Let G = (⇤0,⇤1, r, s), and G⇤ be its 1-
skeleton and category of paths respectively with v 2 ⇤0 a sink. Define

V = {x 2 ⇤0 : v � x}
⇤S = ⇤ \ {[�] 2 ⇤ : r([�]) 2 V },

rS([�]) = r([�]), sS([�]) = s([�]), and dS([�]) = d([�]), for [�] 2 ⇤S

The 1-skeleton GS of ⇤S is then GS = (⇤0
S,⇤1

S, rS, sS). We write ◆ : G⇤
S ! G⇤ for the

inclusion map, and call ⇤S the result of deleting the sink at v.

E: I wonder if it might be better to define GS first, and then the equivalence relation
on G⇤

S. For me it’s a bit confusing to think about deleting morphisms [�] 2 ⇤; this
doesn’t necessarily mean deleting all the edges that comprise �.

Example 1.4. The graphs ⇤ and ⇤S after deleting the ni sink v, where ni is the
blue-dashed color.

⇤ v •

• • •

• •

⇤S •

• •

• •

Figure 1. The 1-skeletons for k-graphs ⇤ and the resulting ⇤S with
the sink v deleted.

Lemma 1.5. If (⇤, d) is a k-graph with v 2 ⇤0 an ni sink, then V consists of ni

sinks.

Proof. Let (⇤, d) be a k-graph with v 2 ⇤0 an ni sink. Take w 2 V and assume to
get a contradiction that w is not an ni sink. Then there exists an y 2 ⇤0 and e 2 ⇤ni

such that s(e) = w and r(e) = y. Thus there exists a path e� 2 s�1(v) \ r�1(y), and
further, since ⇤ is a k -graph there exists a path µf ⇠ e� with f 2 ⇤ni . Thus v is not
an ni sink. This is a contradiction, therefore every w 2 V is an ni sink. ⇤
Theorem 1.6. If (⇤, d) is a source-free k-graph with v 2 ⇤0 a sink then (⇤S, dS), the
graph of ⇤ with the sink v 2 ⇤0 deleted, is a source-free k-graph.

1

In this case, C ∗(Λ) ∼ME C (T2)⊕ C (T2), which we see if we delete
the three remaining sinks.
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blue-dashed color.

⇤ v •

• • •

• •

⇤S •

• •

• •

Figure 1. The 1-skeletons for k-graphs ⇤ and the resulting ⇤S with
the sink v deleted.

Lemma 1.5. If (⇤, d) is a k-graph with v 2 ⇤0 an ni sink, then V consists of ni

sinks.

Proof. Let (⇤, d) be a k-graph with v 2 ⇤0 an ni sink. Take w 2 V and assume to
get a contradiction that w is not an ni sink. Then there exists an y 2 ⇤0 and e 2 ⇤ni

such that s(e) = w and r(e) = y. Thus there exists a path e� 2 s�1(v) \ r�1(y), and
further, since ⇤ is a k -graph there exists a path µf ⇠ e� with f 2 ⇤ni . Thus v is not
an ni sink. This is a contradiction, therefore every w 2 V is an ni sink. ⇤
Theorem 1.6. If (⇤, d) is a source-free k-graph with v 2 ⇤0 a sink then (⇤S, dS), the
graph of ⇤ with the sink v 2 ⇤0 deleted, is a source-free k-graph.

1

In this case, C ∗(Λ) ∼ME C (T2)⊕ C (T2), which we see if we delete
the three remaining sinks.
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Insplitting

Intuitively, to in-split at a vertex, we make two copies of the vertex;
divide up the incoming edges; and duplicate the outgoing edges.

With k-graphs, the factorization rule means we have to be careful
about how we divide up the incoming edges.

Definition

Fix v ∈ Λ0. Partition the edges with range v into two non-empty
sets E1 and E2 satisfying the pairing condition: if f , g ∈ r−1(v)
and there exist edges a1, a2 such that fa1 ∼ ga2 in Λ, then f and g
are contained in the same set.
We define ΛI by Λ0

I = Λ0\{v} ∪ {v1, v2}; importing from Λ all
edges not incident on v ; edges in Ei have range vi ; and making two
copies e1, e2, of all edges e with source v . In ΛI , if e, f are not
“duplicated” edges, we have ef ∼I f

′e ′ iff ef ∼ f ′e ′ in Λ. We
define ei f :∼I f

′e ′ if s(ei ) = vi , f ∈ Ei , and ef ∼ f ′e ′ in Λ.

The pairing condition ensures that we can define the factorization
in ΛI by importing the factorization in Λ.
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Insplitting examples

Not all k-graphs can be insplit at all vertices; this depends on the
factorization rule as well as on the underlying directed graph.

If e i f j = f je i , then Λ cannot be insplit. If e i f j = f ie j , then take
E1 = {e1, f 1}, E2 = {e2, f 2}. Then in ΛI , we have e ij f

j
k ∼I f

i
j e

j
k .

ΛI

v1 v2
f 1
2
f 2
1

e1
2

e2
1

f 1
1

e1
1 f 2

2e2
2
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Insplitting and isomorphism

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If Λ is a row-finite, source-free k-graph then C ∗(ΛI ) ∼= C ∗(Λ).

Idea: Define a Cuntz-Krieger Λ-family {Qw ,Te} in C ∗(ΛI ):

Qw =

{
pw , w 6= v

pv1 + pv2 , w = v
Te =

{
se , s(e) 6= v

se1 + se2 , s(e) = v .

Then show we get an onto map ψ : C ∗(Λ)→ C ∗(ΛI ). Use the
gauge-invariant uniqueness theorem to prove that C ∗(ΛI ) ∼= C ∗(Λ).
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Delay

For directed graphs, we delay at an edge e by breaking it into two
edges.

In k-graphs, this introduces complications.
Suppose we want to delay at an edge e in Λ. Set E1 = {e}.
For each edge e ∈ E1, if ef ∼ f ′e ′, add e ′ to E1. Wash rinse
repeat.
Note that all edges in E1 are the same color, black say.
In ΛD , we will delay at all edges in E1 – for each e ∈ E1, we add a
vertex ve , and replace e with e1, e2.

2

commuting squares ↵t, ↵b for each ↵ 2 S i as shown below.

• • • •

ve vf vg vh

• • • •

b1

e1
↵t

f1
�t

b2

g1
�t

b3

h1

e2

↵b

e↵

f2
�b

e�

g2

�b

e�

h2

a1 a2 a3

or

• • • •

vh vg vf ve

• • • •

a3

�0t�
0
t

h1 g1

�0
t�
0
t

a2

f1
↵0

t

a1

e1

h2

�0b

e�0

g2
�0

b

e�0

f2
↵0

b

e↵0

e2

b3 b2 b1

Using all this data, we define a new k-colored graph GD = (⇤0
D,⇤1

D, rD, sD) by

⇤0
D = ⇤0 [ {ve}e2E1 , adding in new vertices for each delayed edge in E1.

Now we identify the edges in the new graph of degree "1:

⇤"1
D = (⇤"1 \ E1) [ E1

D, replacing delayed edges of degree "1 with pairs, such that

sD(e1) = s(e), sD(e2) = ve, rD(e1) = ve, rD(e2) = r(e), dD(ei) = "1.

Now for each 2  i  k we identify the new edges we created to divide the squares
in S i which have become rectangles back into squares. This is done by adding new
edges E i

D of degree "i to the original edges: ⇤"i
D = ⇤"i [ E i

D where for [↵] 2 S i we put

sD(e[↵]) = vf , rD(e[↵]) = vg where [↵] = ag = fb 2 S i, d(a) = d(b) = "1, dD(e[↵]) = "i, .

Finally we collect all the edges together: ⇤1
D = [k

i=1⇤
"i
D. Edges in ⇤1\E1 una↵ected

by the delay process described above keep the same range and source maps in GD.
In order to finish our contruction of the delayed k graph, it remains to specify the

commuting squares in GD: Let G⇤
D be the path category on GD and define the equiv-

alence relation ⇠ on bi-colored paths by µ = µ2µ1 2 G2
D by examining the following

cases

Case 1: If µj /2 Sk
i=1 E i

D for j = 1, 2. Then the commuting square µ2µ1 = ⌫2⌫1 in

G2 is such that ⌫j /2 Sk
i=1 E i

D, and so we may take µ2µ1 ⇠ ⌫2⌫1 in G2
D.

Case 2: If µ1 2 E1
D. Then by definition either µ1 = g1 or µ1 = g2 for some g 2 E1.

• •

• •

a

g f

b

�!

• •

• •

• •

a

g1 f1

e[af ]

g2 f2

b

Figure 1. A commuting square in G and its “children” in GD, when
f, g 2 E1

D.
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D be the path category on GD and define the equiv-
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Finally we collect all the edges together: ⇤1
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D. Edges in ⇤1\E1 una↵ected

by the delay process described above keep the same range and source maps in GD.
In order to finish our contruction of the delayed k graph, it remains to specify the
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D be the path category on GD and define the equiv-

alence relation ⇠ on bi-colored paths by µ = µ2µ1 2 G2
D by examining the following

cases

Case 1: If µj /2 Sk
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D for j = 1, 2. Then the commuting square µ2µ1 = ⌫2⌫1 in

G2 is such that ⌫j /2 Sk
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D, and so we may take µ2µ1 ⇠ ⌫2⌫1 in G2
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Case 2: If µ1 2 E1
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Figure 1. A commuting square in G and its “children” in GD, when
f, g 2 E1

D.
Many commuting squares α in Λ have now become rectangles;

add
an edge eα for each. If α had black and blue edges, then eα is blue.

The factorization in ΛD essentially comes from the factorization in
Λ, but there are lots of cases to check.
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Figure 1. A commuting square in G and its “children” in GD, when
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If α had black and blue edges, then eα is blue.
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Λ, but there are lots of cases to check.
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Delay: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If Λ is a row-finite source-free k-graph, then so is ΛD .

Moreover,
C ∗(ΛD) ∼ME C ∗(Λ).

Proof.

If C ∗(ΛD) = C ∗({pv , se}), define

qv = pv ∀ v ∈ Λ0; te =

{
se , e 6∈ E1

se2se1 , e ∈ E1
.

Then {qv , te} is a Cuntz-Krieger Λ-family in C ∗(ΛD); the
gauge-invariant uniqueness theorem tells us C ∗(Λ) ∼= C ∗({qv , te}).
If p =

∑
v∈Λ0 pv , then C ∗({qv , te}) ∼= pC ∗(ΛD)p is a full corner of

C ∗(ΛD).
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Reduction

For directed graphs, if all edges with range v have the same
source, and s−1(v) = {e} with r(e) 6= v , we can reduce at v :

basically, delete e.

For k-graphs, if

r−1(v) and s−1(v) both contain a single edge of each color;

|s(r−1(v))| = |r(s−1(v))| = 1;

If s(e) = v and ef = f ′e ′ then s(f ′) = e;

then we can reduce at v .
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Reduction: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

The k-graph ΛR resulting from reducing at v satisfies
C ∗(ΛR) ∼ME C ∗(Λ).

Proof.

Pick an edge f ∈ s−1(v); define a Cuntz-Krieger ΛR -family in
C ∗(Λ) = C ∗{pv , se}) by

qv = pv ; te =

{
sf se , r(e) = v

sf , r(e) 6= v
.

Again, check that C ∗({qv , te}) ∼= C ∗(ΛR), using gauge-invariant
uniqueness theorem, and that it’s a full corner in C ∗(Λ).
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The end

Thanks for listening!

This research was supported by the National Science Foundation.
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