Moves on k-graphs preserving Morita equivalence

Elizabeth Gillaspy
University of Montana

joint with C. Eckhardt, K. Fieldhouse, D. Gent, I. Gonzales, and D. Pask
BIRS: Topology and Measure in Dynamics and Operator
Algebras
10 September 2019

Background: Geometric classification of graph C*-algebras

Theorem (Eilers-Restorff-Ruiz-Sørensen [ERRS16])
Let E, F be directed graphs with finitely many vertices. $C^{*}(E)$ and $C^{*}(F)$ are stably equivalent if and only if one can convert E into F by a finite sequence of the moves

$$
(S),(O),(I),(R),(C),(P)
$$

and their inverses.

Background: Geometric classification of graph C*-algebras

Theorem (Eilers-Restorff-Ruiz-Sørensen [ERRS16])

Let E, F be directed graphs with finitely many vertices. $C^{*}(E)$ and $C^{*}(F)$ are stably equivalent if and only if one can convert E into F by a finite sequence of the moves

$$
(S),(O),(I),(R),(C),(P)
$$

and their inverses.
Built on work of Bates-Pask [BP04], Drinen (thesis) and Crisp-Gow [CG06] on moves for graph algebras; Rørdam [Rø95] on classification of Cuntz-Krieger algebras; Boyle-Huang [BH] from dynamical systems.

Background: Geometric classification of graph C*-algebras

Theorem (Eilers-Restorff-Ruiz-Sørensen [ERRS16])

Let E, F be directed graphs with finitely many vertices. $C^{*}(E)$ and $C^{*}(F)$ are stably equivalent if and only if one can convert E into F by a finite sequence of the moves

$$
(S),(O),(I),(R),(C),(P)
$$

and their inverses.
Built on work of Bates-Pask [BP04], Drinen (thesis) and Crisp-Gow [CG06] on moves for graph algebras; Rørdam [Rø95] on classification of Cuntz-Krieger algebras; Boyle-Huang [BH] from dynamical systems.
ERRS also obtained a classification, up to isomorphism, of such graph C^{*}-algebras by using ordered filtered K-theory.

Background: Geometric classification of graph C*-algebras

Theorem (Eilers-Restorff-Ruiz-Sørensen [ERRS16])

Let E, F be directed graphs with finitely many vertices. $C^{*}(E)$ and $C^{*}(F)$ are stably equivalent if and only if one can convert E into F by a finite sequence of the moves

$$
(S),(O),(I),(R),(C),(P)
$$

and their inverses.
Built on work of Bates-Pask [BP04], Drinen (thesis) and Crisp-Gow [CG06] on moves for graph algebras; Rørdam [Rø95] on classification of Cuntz-Krieger algebras; Boyle-Huang [BH] from dynamical systems.
ERRS also obtained a classification, up to isomorphism, of such graph C^{*}-algebras by using ordered filtered K-theory.
Our work constitutes a first step in developing such classification results for higher-rank graphs.

Moves for k-graphs

So far, we have identified four types of moves on k-graphs which preserve Morita equivalence:

- Sink deletion

Moves for k-graphs

So far, we have identified four types of moves on k-graphs which preserve Morita equivalence:

- Sink deletion
(S)

Moves for k-graphs

So far, we have identified four types of moves on k-graphs which preserve Morita equivalence:

- Sink deletion
(S)
- Insplitting

Moves for k-graphs

So far, we have identified four types of moves on k-graphs which preserve Morita equivalence:

- Sink deletion (S)
- Insplitting

Moves for k-graphs

So far, we have identified four types of moves on k-graphs which preserve Morita equivalence:

- Sink deletion
(S)
- Insplitting
- Reduction

Moves for k-graphs

So far, we have identified four types of moves on k-graphs which preserve Morita equivalence:

- Sink deletion
(S)
- Insplitting
(0)
- Reduction
(R)

Moves for k-graphs

So far, we have identified four types of moves on k-graphs which preserve Morita equivalence:

- Sink deletion
(S)
- Insplitting
- Reduction
(R)
- Delay

Moves for k-graphs

So far, we have identified four types of moves on k-graphs which preserve Morita equivalence:

- Sink deletion
- Insplitting
- Reduction
- Delay

Delay for directed graphs was considered by Drinen and Bates-Pask; related to flow equivalence for shifts of finite type. (Parry-Sullivan)

Moves for k-graphs

So far, we have identified four types of moves on k-graphs which preserve Morita equivalence:

- Sink deletion
- Insplitting
- Reduction
- Delay

Delay for directed graphs was considered by Drinen and Bates-Pask; related to flow equivalence for shifts of finite type. (Parry-Sullivan)

For directed graphs, reduction and delay are (intuitively but not exactly) inverses.

Higher-rank graphs

A k-graph Λ consists of:

- An edge-colored directed graph, with k colors of edges;

Higher-rank graphs

A k-graph Λ consists of:

- An edge-colored directed graph, with k colors of edges; plus
- A factorization rule: for any two colors (red, blue), any red-blue path from v to w is equivalent to a unique blue-red path.

Higher-rank graphs

A k-graph Λ consists of:

- An edge-colored directed graph, with k colors of edges; plus
- A factorization rule: for any two colors (red, blue), any red-blue path from v to w is equivalent to a unique blue-red path.

- Any 3-color path needs to determine a well-defined "cube."

Higher-rank graphs

A k-graph Λ consists of:

- An edge-colored directed graph, with k colors of edges; plus
- A factorization rule: for any two colors (red, blue), any red-blue path from v to w is equivalent to a unique blue-red path.

- Any 3-color path needs to determine a well-defined "cube."

Higher-rank graphs (k-graphs) were introduced by Kumjian \& Pask in 2000 to give examples of combinatorial, computable C^{*}-algebras, more general than graph C^{*}-algebras.

Definition of $C^{*}(\Lambda)$

$C^{*}(\Lambda)$ is a universal C^{*}-algebra, generated by projections associated to the vertices in Λ and partial isometries associated to the edges, such that multiplication of these generators corresponds to concatenating the given edges in Λ.

Definition of $C^{*}(\Lambda)$

$C^{*}(\Lambda)$ is a universal C^{*}-algebra, generated by projections associated to the vertices in Λ and partial isometries associated to the edges, such that multiplication of these generators corresponds to concatenating the given edges in Λ.

Precisely: Given a row-finite source-free higher-rank graph Λ, $C^{*}(\Lambda)$ is the universal C^{*}-algebra generated by a family of projections $\left\{p_{v}: v\right.$ a vertex in $\left.\Lambda\right\}$ and partial isometries $\left\{s_{e}: e\right.$ an edge in $\left.\Lambda\right\}$ satisfying the Cuntz-Krieger relations:

Definition of $C^{*}(\Lambda)$

$C^{*}(\Lambda)$ is a universal C^{*}-algebra, generated by projections associated to the vertices in Λ and partial isometries associated to the edges, such that multiplication of these generators corresponds to concatenating the given edges in Λ.

Precisely: Given a row-finite source-free higher-rank graph Λ, $C^{*}(\Lambda)$ is the universal C^{*}-algebra generated by a family of projections $\left\{p_{v}: v\right.$ a vertex in $\left.\Lambda\right\}$ and partial isometries $\left\{s_{e}: e\right.$ an edge in $\left.\Lambda\right\}$ satisfying the Cuntz-Krieger relations:
$(\mathrm{CK} 1) p_{v} p_{w}=\delta_{v, w} p_{v}$

Definition of $C^{*}(\Lambda)$

$C^{*}(\Lambda)$ is a universal C^{*}-algebra, generated by projections associated to the vertices in Λ and partial isometries associated to the edges, such that multiplication of these generators corresponds to concatenating the given edges in Λ.

Precisely: Given a row-finite source-free higher-rank graph Λ, $C^{*}(\Lambda)$ is the universal C^{*}-algebra generated by a family of projections $\left\{p_{v}: v\right.$ a vertex in $\left.\Lambda\right\}$ and partial isometries $\left\{s_{e}: e\right.$ an edge in $\left.\Lambda\right\}$ satisfying the Cuntz-Krieger relations:
(CK1) $p_{v} p_{w}=\delta_{v, w} p_{v}$
(CK2) If ef $\sim f^{\prime} e^{\prime}$ then $s_{e} s_{f}=s_{f^{\prime}} s_{e^{\prime}}$

Definition of $C^{*}(\Lambda)$

$C^{*}(\Lambda)$ is a universal C^{*}-algebra, generated by projections associated to the vertices in Λ and partial isometries associated to the edges, such that multiplication of these generators corresponds to concatenating the given edges in Λ.

Precisely: Given a row-finite source-free higher-rank graph Λ, $C^{*}(\Lambda)$ is the universal C^{*}-algebra generated by a family of projections $\left\{p_{v}: v\right.$ a vertex in $\left.\Lambda\right\}$ and partial isometries $\left\{s_{e}: e\right.$ an edge in $\left.\Lambda\right\}$ satisfying the Cuntz-Krieger relations:
(CK1) $p_{v} p_{w}=\delta_{v, w} p_{v}$
(CK2) If ef $\sim f^{\prime} e^{\prime}$ then $s_{e} s_{f}=s_{f^{\prime}} s_{e^{\prime}}$
(CK3) $s_{e}^{*} s_{e}=p_{s(e)}$

Definition of $C^{*}(\Lambda)$

$C^{*}(\Lambda)$ is a universal C^{*}-algebra, generated by projections associated to the vertices in Λ and partial isometries associated to the edges, such that multiplication of these generators corresponds to concatenating the given edges in Λ.

Precisely: Given a row-finite source-free higher-rank graph Λ, $C^{*}(\Lambda)$ is the universal C^{*}-algebra generated by a family of projections $\left\{p_{v}: v\right.$ a vertex in $\left.\Lambda\right\}$ and partial isometries $\left\{s_{e}: e\right.$ an edge in $\left.\Lambda\right\}$ satisfying the Cuntz-Krieger relations:
(CK1) $p_{v} p_{w}=\delta_{v, w} p_{v}$
(CK2) If ef $\sim f^{\prime} e^{\prime}$ then $s_{e} s_{f}=s_{f^{\prime}} s_{e^{\prime}}$
(CK3) $s_{e}^{*} s_{e}=p_{s(e)}$
(CK4) For any vertex v and any color $i, p_{v}=\sum s_{e} s_{e}^{*}$.

$$
e: d(e)=i, r(e)=v
$$

Universality

Recall: $C^{*}(\Lambda)$ is the universal C^{*}-algebra generated by $\left\{p_{v}, s_{e}\right\}$ satisfying the Cuntz-Krieger relations.

Universality

Recall: $C^{*}(\Lambda)$ is the universal C^{*}-algebra generated by $\left\{p_{v}, s_{e}\right\}$ satisfying the Cuntz-Krieger relations.
That is, if we have any family of projections and partial isometries $\left\{Q_{v}, T_{e}\right\}$ satisfying (CK1)-(CK4) - a Cuntz-Krieger family - then there is a surjective $*$-homomorphism $\pi: C^{*}(\Lambda) \rightarrow C^{*}\left(\left\{Q_{v}, T_{e}\right\}\right)$.

Universality

Recall: $C^{*}(\Lambda)$ is the universal C^{*}-algebra generated by $\left\{p_{v}, s_{e}\right\}$ satisfying the Cuntz-Krieger relations.
That is, if we have any family of projections and partial isometries $\left\{Q_{v}, T_{e}\right\}$ satisfying (CK1)-(CK4) - a Cuntz-Krieger family - then there is a surjective $*$-homomorphism $\pi: C^{*}(\Lambda) \rightarrow C^{*}\left(\left\{Q_{v}, T_{e}\right\}\right)$.

Theorem (Kumjian-Pask; "Gauge-invariant uniqueness theorem")

Let Λ be a k-graph. There is a continuous action α of \mathbb{T}^{k} on $C^{*}(\Lambda)$, satisfying

$$
\alpha_{z}\left(s_{e}\right)=z_{i} s_{e}
$$

if e is an edge of color i. If $\pi\left(p_{v}\right) \neq 0$ for all v, and there is also an action β of \mathbb{T}^{k} on $C^{*}\left(\left\{Q_{v}, T_{e}\right\}\right)$ such that

$$
\pi \circ \alpha=\beta \circ \pi
$$

then π is an isomorphism.

Example and notation

Example and notation

Factorization rule: $f_{1} e=e f_{2}, \quad f_{2} e=e f_{1}$.

Example and notation

Factorization rule: $f_{1} e=e f_{2}, \quad f_{2} e=e f_{1} . \quad C^{*}(\Lambda) \cong \mathcal{O}_{2} \rtimes \mathbb{Z}$

Example and notation

Factorization rule: $f_{1} e=e f_{2}, \quad f_{2} e=e f_{1} . C^{*}(\Lambda) \cong \mathcal{O}_{2} \rtimes \mathbb{Z}$
For $n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$ we write

$$
\Lambda^{n}=\left\{\lambda \in \Lambda: \lambda \text { has } n_{i} \text { edges of color } i\right\} .
$$

Example and notation

Factorization rule: $f_{1} e=e f_{2}, \quad f_{2} e=e f_{1} . \quad C^{*}(\Lambda) \cong \mathcal{O}_{2} \rtimes \mathbb{Z}$
For $n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$ we write

$$
\Lambda^{n}=\left\{\lambda \in \Lambda: \lambda \text { has } n_{i} \text { edges of color } i\right\} .
$$

The factorization rule means this is well defined.

Example and notation

Factorization rule: $f_{1} e=e f_{2}, \quad f_{2} e=e f_{1} . \quad C^{*}(\Lambda) \cong \mathcal{O}_{2} \rtimes \mathbb{Z}$
For $n=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$ we write

$$
\Lambda^{n}=\left\{\lambda \in \Lambda: \lambda \text { has } n_{i} \text { edges of color } i\right\}
$$

The factorization rule means this is well defined.
Note that Λ^{0} is the vertices of Λ.

Sink deletion

Definition

A sink in a k-graph Λ is a vertex which emits no edges of color i, for some i.

Sink deletion

Definition

A sink in a k-graph Λ is a vertex which emits no edges of color i, for some i.

Definition

If $v, w \in \Lambda^{0}$ we say $v \geq w$ if there exists a path $\lambda \in \Lambda$ with $s(\lambda)=v, r(\lambda)=w$.

Sink deletion

Definition

A sink in a k-graph Λ is a vertex which emits no edges of color i, for some i.

Definition

If $v, w \in \Lambda^{0}$ we say $v \geq w$ if there exists a path $\lambda \in \Lambda$ with $s(\lambda)=v, r(\lambda)=w$.

Proposition (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If v is a sink in Λ^{0}, then deleting v, all vertices w such that $w \geq v$, and all incident edges results in a k-graph Λ_{S} such that $C^{*}\left(\Lambda_{S}\right) \sim_{M E} C^{*}(\Lambda)$.

Example of sink deletion

Figure 1. The 1 -skeletons for k-graphs Λ and the resulting Λ_{S} with the $\operatorname{sink} v$ deleted.

Example of sink deletion

Figure 1. The 1 -skeletons for k-graphs Λ and the resulting Λ_{S} with the $\operatorname{sink} v$ deleted.

In this case, $C^{*}(\Lambda) \sim_{M E} C\left(\mathbb{T}^{2}\right) \oplus C\left(\mathbb{T}^{2}\right)$, which we see if we delete the three remaining sinks.

Insplitting

Intuitively, to in-split at a vertex, we make two copies of the vertex; divide up the incoming edges; and duplicate the outgoing edges.

Insplitting

Intuitively, to in-split at a vertex, we make two copies of the vertex; divide up the incoming edges; and duplicate the outgoing edges. With k-graphs, the factorization rule means we have to be careful about how we divide up the incoming edges.

Insplitting

Intuitively, to in-split at a vertex, we make two copies of the vertex; divide up the incoming edges; and duplicate the outgoing edges. With k-graphs, the factorization rule means we have to be careful about how we divide up the incoming edges.

Definition

Fix $v \in \Lambda^{0}$. Partition the edges with range v into two non-empty sets \mathcal{E}_{1} and \mathcal{E}_{2} satisfying the pairing condition: if $f, g \in r^{-1}(v)$ and there exist edges a_{1}, a_{2} such that $f a_{1} \sim g a_{2}$ in Λ, then f and g are contained in the same set.
We define Λ_{l} by $\Lambda_{l}^{0}=\Lambda^{0} \backslash\{v\} \cup\left\{v_{1}, v_{2}\right\}$; importing from Λ all edges not incident on v; edges in \mathcal{E}_{i} have range v_{i}; and making two copies e_{1}, e_{2}, of all edges e with source v.

Insplitting

Intuitively, to in-split at a vertex, we make two copies of the vertex; divide up the incoming edges; and duplicate the outgoing edges. With k-graphs, the factorization rule means we have to be careful about how we divide up the incoming edges.

Definition

Fix $v \in \Lambda^{0}$. Partition the edges with range v into two non-empty sets \mathcal{E}_{1} and \mathcal{E}_{2} satisfying the pairing condition: if $f, g \in r^{-1}(v)$ and there exist edges a_{1}, a_{2} such that $f a_{1} \sim g a_{2}$ in Λ, then f and g are contained in the same set.
We define Λ_{l} by $\Lambda_{l}^{0}=\Lambda^{0} \backslash\{v\} \cup\left\{v_{1}, v_{2}\right\}$; importing from Λ all edges not incident on v; edges in \mathcal{E}_{i} have range v_{i}; and making two copies e_{1}, e_{2}, of all edges e with source v. In Λ_{l}, if e, f are not "duplicated" edges, we have ef $\sim_{I} f^{\prime} e^{\prime}$ iff ef $\sim f^{\prime} e^{\prime}$ in Λ. We define $e_{i} f: \sim f_{l} f^{\prime} e^{\prime}$ if $s\left(e_{i}\right)=v_{i}, f \in \mathcal{E}_{i}$, and ef $\sim f^{\prime} e^{\prime}$ in Λ.

Insplitting

Intuitively, to in-split at a vertex, we make two copies of the vertex; divide up the incoming edges; and duplicate the outgoing edges. With k-graphs, the factorization rule means we have to be careful about how we divide up the incoming edges.

Definition

Fix $v \in \Lambda^{0}$. Partition the edges with range v into two non-empty sets \mathcal{E}_{1} and \mathcal{E}_{2} satisfying the pairing condition: if $f, g \in r^{-1}(v)$ and there exist edges a_{1}, a_{2} such that $f a_{1} \sim g a_{2}$ in Λ, then f and g are contained in the same set.
We define Λ_{l} by $\Lambda_{l}^{0}=\Lambda^{0} \backslash\{v\} \cup\left\{v_{1}, v_{2}\right\}$; importing from Λ all edges not incident on v; edges in \mathcal{E}_{i} have range v_{i}; and making two copies e_{1}, e_{2}, of all edges e with source v. In Λ_{l}, if e, f are not "duplicated" edges, we have ef $\sim_{l} f^{\prime} e^{\prime}$ iff ef $\sim f^{\prime} e^{\prime}$ in Λ. We define $e_{i} f: \sim_{l} f^{\prime} e^{\prime}$ if $s\left(e_{i}\right)=v_{i}, f \in \mathcal{E}_{i}$, and ef $\sim f^{\prime} e^{\prime}$ in Λ.

The pairing condition ensures that we can define the factorization in $\Lambda_{\text {, }}$ by importing the factorization in Λ.

Insplitting examples

Not all k-graphs can be insplit at all vertices; this depends on the factorization rule as well as on the underlying directed graph.

Insplitting examples

Not all k-graphs can be insplit at all vertices; this depends on the factorization rule as well as on the underlying directed graph.

If $e^{i} f^{j}=f^{j} e^{i}$, then Λ cannot be insplit.

Insplitting examples

Not all k-graphs can be insplit at all vertices; this depends on the factorization rule as well as on the underlying directed graph.

If $e^{i} f^{j}=f^{j} e^{i}$, then Λ cannot be insplit. If $e^{i} f^{j}=f^{i} e^{j}$, then take $\mathcal{E}_{1}=\left\{e^{1}, f^{1}\right\}, \mathcal{E}_{2}=\left\{e^{2}, f^{2}\right\}$. Then in Λ_{l}, we have $e_{j}^{i} f_{k}^{j} \sim, f_{j}^{i} e_{k}^{j}$.

Λ_{I}

Insplitting and isomorphism

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)
 If Λ is a row-finite, source-free k-graph then $C^{*}\left(\Lambda_{l}\right) \cong C^{*}(\Lambda)$.

Insplitting and isomorphism

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If Λ is a row-finite, source-free k-graph then $C^{*}\left(\Lambda_{l}\right) \cong C^{*}(\Lambda)$.
Idea: Define a Cuntz-Krieger Λ-family $\left\{Q_{w}, T_{e}\right\}$ in $C^{*}\left(\Lambda_{l}\right)$:

$$
Q_{w}=\left\{\begin{array}{ll}
p_{w}, & w \neq v \\
p_{v_{1}}+p_{v_{2}}, & w=v
\end{array} \quad T_{e}= \begin{cases}s_{e}, & s(e) \neq v \\
s_{e_{1}}+s_{e_{2}}, & s(e)=v\end{cases}\right.
$$

Insplitting and isomorphism

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If Λ is a row-finite, source-free k-graph then $C^{*}\left(\Lambda_{l}\right) \cong C^{*}(\Lambda)$.
Idea: Define a Cuntz-Krieger Λ-family $\left\{Q_{w}, T_{e}\right\}$ in $C^{*}\left(\Lambda_{l}\right)$:

$$
Q_{w}=\left\{\begin{array}{ll}
p_{w}, & w \neq v \\
p_{v_{1}}+p_{v_{2}}, & w=v
\end{array} \quad T_{e}= \begin{cases}s_{e}, & s(e) \neq v \\
s_{e_{1}}+s_{e_{2}}, & s(e)=v\end{cases}\right.
$$

Then show we get an onto map $\psi: C^{*}(\Lambda) \rightarrow C^{*}\left(\Lambda_{l}\right)$.

Insplitting and isomorphism

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If Λ is a row-finite, source-free k-graph then $C^{*}\left(\Lambda_{l}\right) \cong C^{*}(\Lambda)$.
Idea: Define a Cuntz-Krieger Λ-family $\left\{Q_{w}, T_{e}\right\}$ in $C^{*}\left(\Lambda_{l}\right)$:

$$
Q_{w}=\left\{\begin{array}{ll}
p_{w}, & w \neq v \\
p_{v_{1}}+p_{v_{2}}, & w=v
\end{array} \quad T_{e}= \begin{cases}s_{e}, & s(e) \neq v \\
s_{e_{1}}+s_{e_{2}}, & s(e)=v\end{cases}\right.
$$

Then show we get an onto map $\psi: C^{*}(\Lambda) \rightarrow C^{*}\left(\Lambda_{l}\right)$. Use the gauge-invariant uniqueness theorem to prove that $C^{*}\left(\Lambda_{l}\right) \cong C^{*}(\Lambda)$.

Delay

For directed graphs, we delay at an edge e by breaking it into two edges.

Delay

For directed graphs, we delay at an edge e by breaking it into two edges. In k-graphs, this introduces complications.

Delay

For directed graphs, we delay at an edge e by breaking it into two edges. In k-graphs, this introduces complications.
Suppose we want to delay at an edge e in Λ. Set $\mathcal{E}^{1}=\{e\}$.

Delay

For directed graphs, we delay at an edge e by breaking it into two edges. In k-graphs, this introduces complications.
Suppose we want to delay at an edge e in Λ. Set $\mathcal{E}^{1}=\{e\}$. For each edge $e \in \mathcal{E}^{1}$, if ef $\sim f^{\prime} e^{\prime}$, add e^{\prime} to \mathcal{E}^{1}.

For directed graphs, we delay at an edge e by breaking it into two edges. In k-graphs, this introduces complications. Suppose we want to delay at an edge e in Λ. Set $\mathcal{E}^{1}=\{e\}$. For each edge $e \in \mathcal{E}^{1}$, if ef $\sim f^{\prime} e^{\prime}$, add e^{\prime} to \mathcal{E}^{1}. Wash rinse repeat.

Delay

For directed graphs, we delay at an edge e by breaking it into two edges. In k-graphs, this introduces complications.
Suppose we want to delay at an edge e in Λ. Set $\mathcal{E}^{1}=\{e\}$. For each edge $e \in \mathcal{E}^{1}$, if ef $\sim f^{\prime} e^{\prime}$, add e^{\prime} to \mathcal{E}^{1}. Wash rinse repeat.
Note that all edges in \mathcal{E}^{1} are the same color, black say. In Λ_{D}, we will delay at all edges in \mathcal{E}^{1}

Delay

For directed graphs, we delay at an edge e by breaking it into two edges. In k-graphs, this introduces complications.
Suppose we want to delay at an edge e in Λ. Set $\mathcal{E}^{1}=\{e\}$. For each edge $e \in \mathcal{E}^{1}$, if ef $\sim f^{\prime} e^{\prime}$, add e^{\prime} to \mathcal{E}^{1}. Wash rinse repeat.
Note that all edges in \mathcal{E}^{1} are the same color, black say. In Λ_{D}, we will delay at all edges in \mathcal{E}^{1} - for each $e \in \mathcal{E}_{1}$, we add a vertex v_{e}, and replace e with e_{1}, e_{2}.

Delay

Many commuting squares α in Λ have now become rectangles;

Delay

Many commuting squares α in Λ have now become rectangles; add an edge e_{α} for each.

Many commuting squares α in Λ have now become rectangles; add an edge e_{α} for each. If α had black and blue edges, then e_{α} is blue.

Many commuting squares α in Λ have now become rectangles; add an edge e_{α} for each. If α had black and blue edges, then e_{α} is blue.

The factorization in Λ_{D} essentially comes from the factorization in Λ, but there are lots of cases to check.

Delay: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)
 If Λ is a row-finite source-free k-graph, then so is Λ_{D}.

Delay: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)
 If Λ is a row-finite source-free k-graph, then so is Λ_{D}. Moreover, $C^{*}\left(\Lambda_{D}\right) \sim_{M E} C^{*}(\Lambda)$.

Delay: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If Λ is a row-finite source-free k-graph, then so is Λ_{D}. Moreover, $C^{*}\left(\Lambda_{D}\right) \sim_{M E} C^{*}(\Lambda)$.

Proof.
If $C^{*}\left(\Lambda_{D}\right)=C^{*}\left(\left\{p_{v}, s_{e}\right\}\right)$, define

$$
q_{v}=p_{v} \forall v \in \Lambda^{0} ; \quad t_{e}=\left\{\begin{array}{ll}
s_{e}, & e \notin \mathcal{E}^{1} \\
s_{e_{2}} s_{e_{1}}, & e \in \mathcal{E}^{1}
\end{array} .\right.
$$

Delay: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If Λ is a row-finite source-free k-graph, then so is Λ_{D}. Moreover, $C^{*}\left(\Lambda_{D}\right) \sim_{M E} C^{*}(\Lambda)$.

Proof.

If $C^{*}\left(\Lambda_{D}\right)=C^{*}\left(\left\{p_{v}, s_{e}\right\}\right)$, define

$$
q_{v}=p_{v} \forall v \in \Lambda^{0} ; \quad t_{e}= \begin{cases}s_{e}, & e \notin \mathcal{E}^{1} \\ s_{e_{2}} s_{e_{1}}, & e \in \mathcal{E}^{1}\end{cases}
$$

Then $\left\{q_{v}, t_{e}\right\}$ is a Cuntz-Krieger Λ-family in $C^{*}\left(\Lambda_{D}\right)$;

Delay: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If Λ is a row-finite source-free k-graph, then so is Λ_{D}. Moreover, $C^{*}\left(\Lambda_{D}\right) \sim_{M E} C^{*}(\Lambda)$.

Proof.

If $C^{*}\left(\Lambda_{D}\right)=C^{*}\left(\left\{p_{v}, s_{e}\right\}\right)$, define

$$
q_{v}=p_{v} \forall v \in \Lambda^{0} ; \quad t_{e}= \begin{cases}s_{e}, & e \notin \mathcal{E}^{1} \\ s_{e_{2}} s_{e_{1}}, & e \in \mathcal{E}^{1}\end{cases}
$$

Then $\left\{q_{v}, t_{e}\right\}$ is a Cuntz-Krieger Λ-family in $C^{*}\left(\Lambda_{D}\right)$; the gauge-invariant uniqueness theorem tells us $C^{*}(\Lambda) \cong C^{*}\left(\left\{q_{v}, t_{e}\right\}\right)$.

Delay: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

If Λ is a row-finite source-free k-graph, then so is Λ_{D}. Moreover, $C^{*}\left(\Lambda_{D}\right) \sim_{M E} C^{*}(\Lambda)$.

Proof.

If $C^{*}\left(\Lambda_{D}\right)=C^{*}\left(\left\{p_{v}, s_{e}\right\}\right)$, define

$$
q_{v}=p_{v} \forall v \in \Lambda^{0} ; \quad t_{e}= \begin{cases}s_{e}, & e \notin \mathcal{E}^{1} \\ s_{e_{2}} s_{e_{1}}, & e \in \mathcal{E}^{1}\end{cases}
$$

Then $\left\{q_{v}, t_{e}\right\}$ is a Cuntz-Krieger Λ-family in $C^{*}\left(\Lambda_{D}\right)$; the gauge-invariant uniqueness theorem tells us $C^{*}(\Lambda) \cong C^{*}\left(\left\{q_{v}, t_{e}\right\}\right)$. If $p=\sum_{v \in \Lambda^{0}} p_{v}$, then $C^{*}\left(\left\{q_{v}, t_{e}\right\}\right) \cong p C^{*}\left(\Lambda_{D}\right) p$ is a full corner of $C^{*}\left(\Lambda_{D}\right)$.

Reduction

For directed graphs, if all edges with range v have the same source, and $s^{-1}(v)=\{e\}$ with $r(e) \neq v$, we can reduce at v :

Reduction

For directed graphs, if all edges with range v have the same source, and $s^{-1}(v)=\{e\}$ with $r(e) \neq v$, we can reduce at v : basically, delete e.

Reduction

For directed graphs, if all edges with range v have the same source, and $s^{-1}(v)=\{e\}$ with $r(e) \neq v$, we can reduce at v : basically, delete e.

For k-graphs, if

- $r^{-1}(v)$ and $s^{-1}(v)$ both contain a single edge of each color;

Reduction

For directed graphs, if all edges with range v have the same source, and $s^{-1}(v)=\{e\}$ with $r(e) \neq v$, we can reduce at v : basically, delete e.

For k-graphs, if

- $r^{-1}(v)$ and $s^{-1}(v)$ both contain a single edge of each color;
- $\left|s\left(r^{-1}(v)\right)\right|=\left|r\left(s^{-1}(v)\right)\right|=1$;

For directed graphs, if all edges with range v have the same source, and $s^{-1}(v)=\{e\}$ with $r(e) \neq v$, we can reduce at v : basically, delete e.

For k-graphs, if

- $r^{-1}(v)$ and $s^{-1}(v)$ both contain a single edge of each color;
- $\left|s\left(r^{-1}(v)\right)\right|=\left|r\left(s^{-1}(v)\right)\right|=1$;
- If $s(e)=v$ and $e f=f^{\prime} e^{\prime}$ then $s\left(f^{\prime}\right)=e$;

For directed graphs, if all edges with range v have the same source, and $s^{-1}(v)=\{e\}$ with $r(e) \neq v$, we can reduce at v : basically, delete e.

For k-graphs, if

- $r^{-1}(v)$ and $s^{-1}(v)$ both contain a single edge of each color;
- $\left|s\left(r^{-1}(v)\right)\right|=\left|r\left(s^{-1}(v)\right)\right|=1$;
- If $s(e)=v$ and $e f=f^{\prime} e^{\prime}$ then $s\left(f^{\prime}\right)=e$;
then we can reduce at v.

Reduction: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

The k-graph Λ_{R} resulting from reducing at v satisfies $C^{*}\left(\Lambda_{R}\right) \sim_{M E} C^{*}(\Lambda)$.

Reduction: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

The k-graph Λ_{R} resulting from reducing at v satisfies $C^{*}\left(\Lambda_{R}\right) \sim M E C^{*}(\Lambda)$.

Proof.

Pick an edge $f \in s^{-1}(v)$; define a Cuntz-Krieger Λ_{R}-family in $\left.C^{*}(\Lambda)=C^{*}\left\{p_{v}, s_{e}\right\}\right)$ by

$$
q_{v}=p_{v} ; \quad t_{e}= \begin{cases}s_{f} s_{e}, & r(e)=v \\ s_{f}, & r(e) \neq v\end{cases}
$$

Reduction: theorem

Theorem (Eckhardt-Fieldhouse-Gent-G-Gonzales-Pask)

The k-graph Λ_{R} resulting from reducing at v satisfies $C^{*}\left(\Lambda_{R}\right) \sim_{M E} C^{*}(\Lambda)$.

Proof.

Pick an edge $f \in s^{-1}(v)$; define a Cuntz-Krieger $\Lambda_{R^{-}}$-family in $\left.C^{*}(\Lambda)=C^{*}\left\{p_{v}, s_{e}\right\}\right)$ by

$$
q_{v}=p_{v} ; \quad t_{e}= \begin{cases}s_{f} s_{e}, & r(e)=v \\ s_{f}, & r(e) \neq v\end{cases}
$$

Again, check that $C^{*}\left(\left\{q_{v}, t_{e}\right\}\right) \cong C^{*}\left(\Lambda_{R}\right)$, using gauge-invariant uniqueness theorem, and that it's a full corner in $C^{*}(\Lambda)$.

Thanks for listening!

This research was supported by the National Science Foundation.

References I

䍰 M．Boyle and D．Huang，Poset block equivalence of integral matrices，Trans．Amer．Math．Soc． 355.

T．Bates and D．Pask，Flow equivalence of graph algebras， Ergodic Theory Dynam．Systems 24 （2004），no．2，367－382．

目 T．Crisp and D．Gow，Contractible subgraphs and Morita equivalence of graph C^{*}－algebras，Proc．Amer．Math．Soc． 134 （2006），no．7，2003－2013．
S．Eilers，G．Restorff，E．Ruiz，and A．P．W．Sørensen，The complete classification of unital graph C^{*}－algebras：Geometric and strong，arXiv：1611．07120， 2016.

囲 M．Rørdam，Classification of Cuntz－Krieger algebras，K－Theory 9 （1995），no．1，31－58．

