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1 � Reminder

We will assume T (A) 6= ∅ (unless it is not).

Trace seminorms

‖a‖2,τ = τ(a∗a)1/2 ‖a‖2,T (A) = sup
τ∈T (A)

‖a‖2,τ

Uniform tracial ultrapower

Aω := `∞(A)/{(an)| lim
n→ω
‖an‖2,T (A) = 0}

A trace τ ∈ T (Aω) is a limit trace if

τ((an)) = lim
n→ω

τn(an)

for some sequence (τn) ⊂ T (A).

Tω(A) = {limit traces}
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1 � Reminder II

De�nition. A has uniform property Γ if for any n there exist pairwise

orthogonal projections p1, . . . , pn ∈ Aω ∩A′ adding up to 1Aω such that

τ(api) =
1

n
τ(a), a ∈ A, τ ∈ Tω(A).

De�nition. A has complemented partitions of unity (CPoU) if for any family

of positive contractions a1, . . . , ak ∈ A and δ > 0 such that

δ > sup
τ∈Tω(A)

min{τ(a1), . . . , τ(ak)},

there exist pairwise orthogonal positive elements e1, . . . , ek ∈ Aω ∩A′ such
that

τ
(∑

ei

)
= 1, τ(piai) ≤ δτ(pi), τ ∈ Tω(A).
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1 � Uniform property Γ vs CPoU

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T (A) non-empty and compact. TFAE

(i) A has CPoU,

(ii) for all n ∈ N there is a unital embedding Mn ↪→ Aω ∩A′,
(iii) A has uniform property Γ.

Sketch of the proof

(iii)=⇒(i) Use a stronger version of CPAP (Hirshberg-Kirchberg-White,

Brown-Carrion-White)

A //

ψ ##

A

F
φ=

∑
φk

;;

we produce elements p̂1, . . . , p̂k ∈ Aω ∩A′ that almost witness CPoU but

are not orthogonal. With uniform property Γ, we can replace them with

orthogonal elements p1, . . . , pk that witness CPoU.
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2 � Regularity conjecture

The Toms�Winter Conjecture.

Let A be separable simple nuclear unital in�nite dimensional. TFAE

(i) dimnucA <∞,

(ii) A⊗Z ∼= A,

(iii) A has strict comparison.

Progress

(i)=⇒(ii) Winter

(ii)=⇒(iii) Rørdam

(iii)=⇒(ii) Known for some cases.
Kirchberg, Matui, Sato, Rørdam, Thiel, Toms, White, Winter, Zhang.

- T (A) Bauer or tight with �nite covering dimension

- stable rank one with locally �nite nuclear dimension

(ii)=⇒(i) Known for T (A) Bauer.
Bosa, Brown, Matui, Sato, Tikuisis, White, Winter.
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2 � (ii)=⇒(i)

Let A be separable simple nuclear and unital.

A ∼= A⊗Z =⇒ dimnucA ≤ 1.

Corollary. Let A be separable simple nuclear. Then

A ∼= A⊗Z ⇐⇒ dimnucA <∞.

Corollary. Separable simple unital nuclear Z-stable C∗-algebras in the UCT

class are classi�ed by their Elliott invariant.

Corollary. Let A be a simple C∗-algebra. Then

dimnucA =


0 A is AF

1 A is Z-stable but not AF
∞ otherwise
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2 � Sketch of the proof - unique trace case

A

ψ ##

// A⊗Z τ(a) ≈ τσψ(a)

F
σ

99

Let h ∈ Z be a positive element with spectrum [0, 1]. Then

idA ⊗ h ≈a.u.e σψ ⊗ h, idA ⊗ (1− h) ≈a.u.e σψ ⊗ (1− h)

a⊗ 1 = a⊗ h+ a⊗ (1− h) ≈ u1(σψ(a)⊗ h)u∗1 + u2(σψ(a)⊗ (1− h))u∗2

A

ψ⊕ψ ""

// A⊗Z φi(x) = ui(σ(x)⊗ hi)u∗i

F ⊕ F
φ1+φ2

::

=⇒ dimnucA ≤ 1
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2 � Sketch of the proof - general case

A

ψτ $$

// A⊗Z τ(a) ≈ τστψτ (a)

Fτ
στ

88

aτ := a− στψτ (a)

By compactness, there are τ1, . . . , τk such that for all τ ∈ T (A) there is some

aτi with τ(aτi) ≤ δ. By CPoU, there exist e1, . . . , ek ∈ Aω ∩A′ such that

τ(
∑
ei) = 1 and τ(eiaτi) ≤ δτ(ei).

A

ψ=⊕ψτi ##

// A⊗Z σ(x1, . . . , xk) =
∑
eiστi(xi)

⊕
Fτi

σ=
∑
eiστi

99

τ(a− σψ(a)) =
∑
τ (ei(a− στiψτi(a))) =

∑
τ(eiaτi) ≤ δτ(

∑
ei) = δ

As before, using the h+ (1− h) trick, we obtain dimnucA ≤ 1.
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aτi with τ(aτi) ≤ δ. By CPoU, there exist e1, . . . , ek ∈ Aω ∩A′ such that

τ(
∑
ei) = 1 and τ(eiaτi) ≤ δτ(ei).

A

ψ=⊕ψτi ##

// A⊗Z σ(x1, . . . , xk) =
∑
eiστi(xi)

⊕
Fτi

σ=
∑
eiστi

99

τ(a− σψ(a))

=
∑
τ (ei(a− στiψτi(a))) =

∑
τ(eiaτi) ≤ δτ(

∑
ei) = δ

As before, using the h+ (1− h) trick, we obtain dimnucA ≤ 1.
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2 � (iii)=⇒(ii)

Theorem (C-Evington-Tikuisis-White)

Let A be a simple separable unital nuclear with T (A) non-empty. If A has

uniform property Γ and strict comparison then A is Z-stable.

Sketch

A has uniform property Γ

=⇒ Mn ↪→ Aω ∩A′ unitally for all n

=⇒ there is c.p.c. order zero φ : Mn → Aω ∩A′ such that τφ(1Mn) = 1

By Matui-Sato, A⊗Z ∼= A.
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2 � The Toms-Winter conjecture

Theorem

Let A be separable simple nuclear unital non-elementary. TFAE

(i) dimnucA <∞,

(ii) A⊗Z ∼= A,

(iii) A has strict comparison and uniform property Γ.

(iv) dimnucA ≤ 1.
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3 � Outline

1 Reminder

2 The Toms�Winter conjecture

3 Structure of uniform tracial completions



3 � Uniform tracial completion

X ⊂ T (A) ‖a‖2,X = supτ∈X ‖a‖2,τ

Uniform tracial completions

A
T (A)

=
{(an) ∈ `∞(A) | (an) is ‖ · ‖2,T (A) − Cauchy}

{(an) | limn→∞ ‖an‖2,T (A) = 0}

A
X

=
{(an) ∈ `∞(A) | (an) is ‖ · ‖2,X − Cauchy}

{(an) | limn→∞ ‖an‖2,X = 0}

Ultrapowers of uniform tracial completions(
A
X
)ω

= `∞
(
A
X
)
/{(an) | lim

n→ω
‖an‖2,X = 0}

By a Kaplansky density type argument

Aω ∼=
(
A
T (A)

)ω
.
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3 � Classi�cation

Existence theorem (C-Evington-Tikuisis-White)

Let A be a separable nuclear C∗-algebra and B a separable nuclear �nite

C*-algebra with uniform property Γ and T (B) non-empty and compact. Let

α : T (Bω)→ T (A) be a continuous a�ne map. Then there is a
∗-homomorphism Φ : A→ Bω (which is unital when A is unital) such that

τ ◦ Φ = α(τ), τ ∈ T (Bω).

Uniqueness theorem

Let A be a separable nuclear C∗-algebra and B a separable nuclear �nite

C*-algebra with uniform property Γ with T (B) non-empty and compact. Let

φ, ψ : A→ Bω be ∗-homomorphisms such that

τ ◦ φ = τ ◦ ψ, τ ∈ T (Bω).

Then φ and ψ are unitarily equivalent in Bω.
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3 � Classi�cation II

Theorem (C-Evington-Tikuisis-White)

Let A and B be nuclear, separable with uniform property Γ such that their

trace spaces are non-empty and compact. Let α : T (B)→ T (A) be an a�ne

homeomorphism. Then there is a ∗-isomorphism Φ : A
T (A) → B

T (B)
such

that

τ ◦ Φ = α(τ), τ ∈ T (B).

Corollary

Let A be nuclear, separable with uniform property Γ and T (A) non-empty

and compact. Then A
T (A)

is (2, T (A))-AFD, i.e. there is a simple unital

AF-algebra B such that

A
T (A) ∼= B

T (B)
.
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3 � Structure of tracial completions

Corollary

Let A be nuclear, separable with uniform property Γ and T (A) non-empty

and compact.

Then there exists an inductive limit of the form

R⊕n1
φ1−→ R⊕n2

φ2−→ R⊕n3
φ3−→ . . .

φ1−→ B

such that A
T (A) ∼= B

T (B)
.

Remark

The inductive limit is induced by the decomposition of T (A) as inverse limit

decomposition of �nite dimensional simplices.
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3 � A new class of C*-algebras?

De�nition

A uniformly tracially complete C*-algebra is a pair (M, X) whereM is a

unital C*-algebra and X ⊂ T (M) is a closed face such that

(i) ‖ · ‖2,X is a norm,

(ii) the unit ball ofM is ‖ · ‖2,X -complete.

Morphisms between uniformly tracially complete C*-algebras (M, X) and
(N , Y ) are unital ∗-homomorphisms ϕ :M→N such that τ ◦ ϕ ∈ X for all

τ ∈ Y .

Canonical examples of uniformly tracially complete C*-algebras are uniform

tracial completions (A
X
, X) when X is a closed face of T (A).
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Thank you!
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