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1 — Reminder 11

Definition. A has uniform property T" if for any n there exist pairwise
orthogonal projections p1,...,p, € A N A’ adding up to 14« such that

1
T(ap) = —7(a),  a €A 7T, (A)

Definition. A has complemented partitions of unity (CPoU) if for any family
of positive contractions a1, ...,a, € A and 0 > 0 such that

> sup min{7(a1),...,7(ax)},
T€TL(A)

there exist pairwise orthogonal positive elements e, ..., e, € A, N A’ such
that
T (Z ei> =1, T(pia;) < 67(pi), 7€ Tu(A).
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Theorem (C-Evington-Tikuisis-White-Winter)
Let A be separable nuclear with 7'(A) non-empty and compact. TFAE

(i) A has CPoU,
(ii) for all n € N there is a unital embedding M,, — AY N A,
(iii) A has uniform property T'.

Sketch of the proof
(iii)==(i) Use a stronger version of CPAP (Hirshberg-Kirchberg-White,
Brown-Carrion-White)

A

A
R ach

we produce elements p1,...,pr € AY N A’ that almost witness CPoU but
are not orthogonal. With uniform property I", we can replace them with
orthogonal elements p1, ..., p, that witness CPoU.
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The Toms—Winter Conjecture.
Let A be separable simple nuclear unital infinite dimensional. TFAE

(i) dimp,c A < o0,
(i) Awz=4,
(iii) A has strict comparison.

Progress
o (i)==(ii) Winter
o (ii)=(iii) Rgrdam
e (iii)==(ii) Known for some cases.
Kirchberg, Matui, Sato, Rgrdam, Thiel, Toms, White, Winter, Zhang.
- T(A) Bauer or tight with finite covering dimension
- stable rank one with locally finite nuclear dimension
o (ii)==(i) Known for T'(A) Bauer.
Bosa, Brown, Matui, Sato, Tikuisis, White, Winter.
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Theorem (C-Evington-Tikuisis-White-Winter, C-Evington)
Let A be separable simple nuclear and-unital.

A2 AR Z — dimpuc A < 1.
Corollary. Let A be separable simple nuclear. Then
A2 AR Z < dimy,c A < .

Corollary. Separable simple unital nuclear Z-stable C*-algebras in the UCT
class are classified by their Elliott invariant.

Corollary. Let A be a simple C*-algebra. Then

0 Ais AF
dimp,. A=<1 Ais Z-stable but not AF

oo otherwise
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A®Z 7(a) =~ To(a)

N,

F
Let h € Z be a positive element with spectrum [0, 1]. Then

ida ® h ~gue o) @ h, ida ® (1 —h) Xgueotp@(1—h)

a®@l=a®h+a® (1 —h)=ui(c(a) @ h)u] + uz(c(a) @ (1 — h))us

A A®Z ¢i(x) = ui(o(x) @ hy)u;
"m %@
FoF

— dimp,c A <1
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2 — Sketch of the proof - general case

AR Z 7(a) = To:.(a)

\/ = a—oe(a)

By compactness, there are 71,. .., 7 such that for all 7 € T'(A) there is some
ar, with 7(a;;) < 4. By CPoU, there exist ey1,...,e, € A, N A’ such that

7(>e;) =1 and 7(ejar,) < d7(e;).

AwZ o(x1,...,x) = 3 €ior, (i)

¢ % /61 Oy

T(a—oy(a)) = 27 (eila — onpr(a))) =2 7(eiar) <oT(3 i) =0

As before, using the h + (1 — h) trick, we obtain dimy,c A < 1.
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Theorem (C-Evington- Tikuisis-White)
Let A be a simple separable unital nuclear with T'(A) non-empty. If A has
uniform property I' and strict comparison then A is Z-stable.

Sketch

A has uniform property T’

= M,, — A“ N A’ unitally for all n

= there is c.p.c. order zero ¢ : M,, — A, N A’ such that 7¢(1y,) =1
By Matui-Sato, A ® Z = A.
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Let A be separable simple nuclear unital non-elementary. TFAE
(i) dimpyc A < o0,

(i) A® 2= 4,

(iii) A has strict comparison and uniform property I'.

(iv) dimyuc A < 1.




3 — Outline

© Structure of uniform tracial completions



3 — Uniform tracial completion

XcT) |a

l2,x = sup,cx llall2,-



3 — Uniform tracial completion

XcT)  |a

l2,x = sup,ex |lall2,r

Uniform tracial completions

qr) _ lan) €7(A) [ (an) is || - llar(a) — Cauchy}

{(an) | limy, 00 ”anH2,T(A) =0}



3 — Uniform tracial completion

X cT) |

Uniform tracial completions

qr) _ lan) €7(A) [ (an) is || - llar(a) — Cauchy}
{(an) | limy o0 ”anH2,T(A) =0}
o% _ lan) €£7(4) | (an) is || - [l2.x — Cauchy}
{(an) [ limy o0 [|anll2,x = 0}



3 — Uniform tracial completion

X CcT(A)

Uniform tracial completions

T _ {(an) € £°(A) | (an) is || - ||l2;7(a) — Cauchy}
{(an) | limy o0 lanll2,ra) = 0}
a° = {(an) € £°(A) | (an) is || - ||l2,x — Cauchy}
{( ) | limy, 00 ||an||2,X = 0}

Ultrapowers of uniform tracial completions

(A7) =2 (A7) /it@n) | Jim Jlanllox = 0}



3 — Uniform tracial completion

X CcT(A)

Uniform tracial completions

qr) _ lan) €7(A) [ (an) is || - llar(a) — Cauchy}
{(an) | limy o0 ”anH2,T(A) =0}
o% _ lan) €£7(4) | (an) is || - [l2.x — Cauchy}
{(an) [ limy o0 [|anll2,x = 0}

Ultrapowers of uniform tracial completions

(A7) =2 (A7) /it@n) | Jim Jlanllox = 0}

By a Kaplansky density type argument

aem (A)
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a:T(B*) — T(A) be a continuous affine map. Then there is a
*-homomorphism ® : A — B“ (which is unital when A is unital) such that

To® =qa(r), TeT(BY).

Uniqueness theorem

Let A be a separable nuclear C*-algebra and B a separable nuclear finite
C*-algebra with uniform property I with T'(B) non-empty and compact. Let
¢, : A — B“ be *~homomorphisms such that

Top=10v, TeT(BY).

Then ¢ and v are unitarily equivalent in B“.
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Theorem (C-Evington- Tikuisis-White)
Let A and B be nuclear, separable with uniform property I" such that their
trace spaces are non-empty and compact. Let a : T'(B) — T'(A) be an affine

homeomorphism. Then there is a *-isomorphism & AT L BT guch
that

To® = a(r), T € T(B).
Corollary

Let A be nuclear, separable with uniform property I' and T'(A) non-empty

and compact. Then AT (2,T(A))-AFD, i.e. there is a simple unital
AF-algebra B such that
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Corollary
Let A be nuclear, separable with uniform property I' and T'(A) non-empty
and compact. Then there exists an inductive limit of the form

REM O pons P2 peng 3, 4 p

such that A7 ~ BT®).

Remark
The inductive limit is induced by the decomposition of T'(A) as inverse limit
decomposition of finite dimensional simplices.
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Thank you!
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