KU LEUVEN

Applications of CPoU and uniform property Gamma Banff International Research Station

Jorge Castillejos

KU Leuven

September 12, 2019

1-Outline

1 Reminder

- 2 The Toms-Winter conjecture
- 3 Structure of uniform tracial completions

We will assume $T(A) \neq \emptyset$ (unless it is not).

We will assume $T(A) \neq \emptyset$ (unless it is not). Trace seminorms

We will assume $T(A) \neq \emptyset$ (unless it is not). Trace seminorms

 $||a||_{2,\tau} = \tau (a^*a)^{1/2}$

We will assume $T(A) \neq \emptyset$ (unless it is not). Trace seminorms

 $||a||_{2,\tau} = \tau (a^* a)^{1/2} \qquad ||a||_{2,T(A)} = \sup_{\tau \in T(A)} ||a||_{2,\tau}$

We will assume $T(A) \neq \emptyset$ (unless it is not). Trace seminorms

 $||a||_{2,\tau} = \tau (a^* a)^{1/2} \qquad ||a||_{2,T(A)} = \sup_{\tau \in T(A)} ||a||_{2,\tau}$

Uniform tracial ultrapower

We will assume $T(A) \neq \emptyset$ (unless it is not). Trace seminorms

$$||a||_{2,\tau} = \tau (a^* a)^{1/2}$$
 $||a||_{2,T(A)} = \sup_{\tau \in T(A)} ||a||_{2,\tau}$

Uniform tracial ultrapower

$$A^{\omega} := \ell^{\infty}(A) / \{(a_n) | \lim_{n \to \omega} ||a_n||_{2, T(A)} = 0 \}$$

We will assume $T(A) \neq \emptyset$ (unless it is not). Trace seminorms

$$||a||_{2,\tau} = \tau (a^* a)^{1/2}$$
 $||a||_{2,T(A)} = \sup_{\tau \in T(A)} ||a||_{2,\tau}$

Uniform tracial ultrapower

$$A^{\omega} := \ell^{\infty}(A) / \{(a_n) | \lim_{n \to \omega} ||a_n||_{2, T(A)} = 0 \}$$

A trace $\tau \in T(A^{\omega})$ is a limit trace if

$$\tau((a_n)) = \lim_{n \to \omega} \tau_n(a_n)$$

for some sequence $(\tau_n) \subset T(A)$.

We will assume $T(A) \neq \emptyset$ (unless it is not). Trace seminorms

$$||a||_{2,\tau} = \tau (a^* a)^{1/2}$$
 $||a||_{2,T(A)} = \sup_{\tau \in T(A)} ||a||_{2,\tau}$

Uniform tracial ultrapower

$$A^{\omega} := \ell^{\infty}(A) / \{(a_n) | \lim_{n \to \omega} ||a_n||_{2, T(A)} = 0 \}$$

A trace $\tau \in T(A^\omega)$ is a limit trace if

$$\tau((a_n)) = \lim_{n \to \omega} \tau_n(a_n)$$

for some sequence $(\tau_n) \subset T(A)$.

 $T_{\omega}(A) = \{ \text{limit traces} \}$

Definition. A has uniform property Γ if for any n there exist pairwise orthogonal projections $p_1, \ldots, p_n \in A^{\omega} \cap A'$ adding up to $1_{A^{\omega}}$ such that

Definition. A has uniform property Γ if for any n there exist pairwise orthogonal projections $p_1, \ldots, p_n \in A^{\omega} \cap A'$ adding up to $1_{A^{\omega}}$ such that

$$\tau(ap_i) = \frac{1}{n}\tau(a), \qquad a \in A, \ \tau \in T_{\omega}(A).$$

Definition. A has uniform property Γ if for any n there exist pairwise orthogonal projections $p_1, \ldots, p_n \in A^{\omega} \cap A'$ adding up to $1_{A^{\omega}}$ such that

$$\tau(ap_i) = \frac{1}{n}\tau(a), \qquad a \in A, \ \tau \in T_{\omega}(A).$$

Definition. A has complemented partitions of unity (CPoU) if for any family of positive contractions $a_1, \ldots, a_k \in A$ and $\delta > 0$ such that

$$\delta > \sup_{\tau \in T_{\omega}(A)} \min\{\tau(a_1), \dots, \tau(a_k)\},\$$

Definition. A has uniform property Γ if for any n there exist pairwise orthogonal projections $p_1, \ldots, p_n \in A^{\omega} \cap A'$ adding up to $1_{A^{\omega}}$ such that

$$\tau(ap_i) = \frac{1}{n}\tau(a), \qquad a \in A, \ \tau \in T_{\omega}(A).$$

Definition. A has complemented partitions of unity (CPoU) if for any family of positive contractions $a_1, \ldots, a_k \in A$ and $\delta > 0$ such that

$$\delta > \sup_{\tau \in T_{\omega}(A)} \min\{\tau(a_1), \dots, \tau(a_k)\},\$$

there exist pairwise orthogonal projections $p_1,\ldots,p_k\in A^\omega\cap A'$ which sum to 1_{A^ω} and have

$$\tau(p_i a_i) \le \delta \tau(p_i), \quad i = 1, \dots, n, \ \tau \in T_\omega(A).$$

Definition. A has uniform property Γ if for any n there exist pairwise orthogonal projections $p_1, \ldots, p_n \in A^{\omega} \cap A'$ adding up to $1_{A^{\omega}}$ such that

$$\tau(ap_i) = \frac{1}{n}\tau(a), \qquad a \in A, \ \tau \in T_{\omega}(A).$$

Definition. A has complemented partitions of unity (CPoU) if for any family of positive contractions $a_1, \ldots, a_k \in A$ and $\delta > 0$ such that

$$\delta > \sup_{\tau \in T_{\omega}(A)} \min\{\tau(a_1), \dots, \tau(a_k)\},\$$

there exist pairwise orthogonal positive elements $e_1, \ldots, e_k \in A_\omega \cap A'$ such that

$$\tau\left(\sum e_i\right) = 1, \qquad \tau(p_i a_i) \le \delta \tau(p_i), \quad \tau \in T_{\omega}(A).$$

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^\omega \cap A'$,

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$,

(iii) A has uniform property Γ .

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE

(i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^\omega \cap A'$,

(iii) A has uniform property Γ .

Sketch of the proof

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$,

(iii) A has uniform property Γ .

Sketch of the proof

(i)⇒(ii)

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$, (iii) A has uniform property Γ .

Sketch of the proof

 $(i) \Longrightarrow (ii)$ $M_{ au} := \pi_{ au}(A)''$ is an injective II₁ vNa

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$, (iii) A has uniform property Γ .

Sketch of the proof

 $(i) \Longrightarrow (ii)$

 $M_{\tau} := \pi_{\tau}(A)''$ is an injective II₁ vNa $\Rightarrow M_{\tau} \overline{\otimes} \mathcal{R} \cong M_{\tau}$

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$, (iii) A has uniform property Γ .

Sketch of the proof

 $(i) \Longrightarrow (ii)$

 $M_{\tau} := \pi_{\tau}(A)''$ is an injective II₁ vNa $\Rightarrow M_{\tau} \overline{\otimes} \mathcal{R} \cong M_{\tau}$ \Rightarrow There exists unital embedding $\phi_{\tau}: M_n \to M_{\tau}^{\omega} \cap M_{\tau}'$

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$, (iii) A has uniform property Γ .

Sketch of the proof

 $(i) \Longrightarrow (ii)$

 $M_{\tau} := \pi_{\tau}(A)''$ is an injective II₁ vNa $\Rightarrow M_{\tau} \overline{\otimes} \mathcal{R} \cong M_{\tau}$ \Rightarrow There exists unital embedding $\phi_{\tau}: M_n \to M_{\tau}^{\omega} \cap M_{\tau}'$ By compactness of T(A), we work with a finite set of traces τ_1, \ldots, τ_k

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

```
(ii) for all n \in \mathbb{N} there is a unital embedding M_n \hookrightarrow A^{\omega} \cap A',
(iii) A has uniform property \Gamma.
```

Sketch of the proof

 $(i) \Longrightarrow (ii)$

 $M_{\tau} := \pi_{\tau}(A)''$ is an injective II₁ vNa $\Rightarrow M_{\tau} \overline{\otimes} \mathcal{R} \cong M_{\tau}$ \Rightarrow There exists unital embedding $\phi_{\tau}: M_n \to M_{\tau}^{\omega} \cap M_{\tau}'$ By compactness of T(A), we work with a finite set of traces τ_1, \ldots, τ_k $\stackrel{\mathsf{CPoU}}{\Rightarrow} \phi: M_n \to A^{\omega} \cap A'$ given by $\phi = \sum_{i=1}^k p_i \phi_{\tau_i}$ is a unital embedding.

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$, (iii) A has uniform property Γ .

Sketch of the proof

 $(i) \Longrightarrow (ii)$

 $M_{\tau} := \pi_{\tau}(A)''$ is an injective II₁ vNa $\Rightarrow M_{\tau} \overline{\otimes} \mathcal{R} \cong M_{\tau}$ \Rightarrow There exists unital embedding $\phi_{\tau}: M_n \to M_{\tau}^{\omega} \cap M_{\tau}'$ By compactness of T(A), we work with a finite set of traces τ_1, \ldots, τ_k $\stackrel{\mathsf{CPoU}}{\Rightarrow} \phi: M_n \to A^{\omega} \cap A'$ given by $\phi = \sum_{i=1}^k p_i \phi_{\tau_i}$ is a unital embedding. $(ii) \Longrightarrow (iii)$

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$, (iii) A has uniform property Γ .

Sketch of the proof

 $(i) \Longrightarrow (ii)$

 $M_{\tau} := \pi_{\tau}(A)''$ is an injective II₁ vNa $\Rightarrow M_{\tau} \overline{\otimes} \mathcal{R} \cong M_{\tau}$ \Rightarrow There exists unital embedding $\phi_{\tau}: M_n \to M_{\tau}^{\omega} \cap M_{\tau}'$ By compactness of T(A), we work with a finite set of traces τ_1, \ldots, τ_k $\stackrel{\mathsf{CPoU}}{\Rightarrow} \phi: M_n \to A^{\omega} \cap A'$ given by $\phi = \sum_{i=1}^k p_i \phi_{\tau_i}$ is a unital embedding. (ii)⇒(iii)

 $\phi: M_n \to A^\omega \cap A'$ unital embedding

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE (i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$, (iii) A has uniform property Γ .

Sketch of the proof

 $(i) \Longrightarrow (ii)$

 $M_{\tau} := \pi_{\tau}(A)''$ is an injective II₁ vNa $\Rightarrow M_{\tau} \overline{\otimes} \mathcal{R} \cong M_{\tau}$ \Rightarrow There exists unital embedding $\phi_{\tau}: M_n \to M_{\tau}^{\omega} \cap M_{\tau}'$ By compactness of T(A), we work with a finite set of traces τ_1, \ldots, τ_k $\stackrel{\mathsf{CPoU}}{\Rightarrow} \phi: M_n \to A^{\omega} \cap A'$ given by $\phi = \sum_{i=1}^k p_i \phi_{\tau_i}$ is a unital embedding. $(ii) \Longrightarrow (iii)$ $\phi: M_n \to A^\omega \cap A'$ unital embedding $\Rightarrow \phi(e_{11}), \ldots, \phi(e_{nn})$ witness uniform property Γ .

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE

(i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$,

(iii) A has uniform property Γ .

Sketch of the proof

 $(iii) \Longrightarrow (i)$

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE $\langle u\rangle$

(i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$,

(iii) A has uniform property Γ .

Sketch of the proof

(iii) \Longrightarrow (i) Use a stronger version of CPAP (Hirshberg-Kirchberg-White, Brown-Carrion-White)

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE $\langle u\rangle$

(i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$,

(iii) A has uniform property Γ .

Sketch of the proof

(iii) \Longrightarrow (i) Use a stronger version of CPAP (Hirshberg-Kirchberg-White, Brown-Carrion-White)

we produce elements $\hat{p}_1, \ldots, \hat{p}_k \in A^{\omega} \cap A'$ that almost witness CPoU but are not orthogonal.

Theorem (C-Evington-Tikuisis-White-Winter)

Let A be separable nuclear with T(A) non-empty and compact. TFAE $\langle u\rangle$

(i) A has CPoU,

(ii) for all $n \in \mathbb{N}$ there is a unital embedding $M_n \hookrightarrow A^{\omega} \cap A'$,

(iii) A has uniform property Γ .

Sketch of the proof

(iii) \Longrightarrow (i) Use a stronger version of CPAP (Hirshberg-Kirchberg-White, Brown-Carrion-White)

we produce elements $\hat{p}_1, \ldots, \hat{p}_k \in A^{\omega} \cap A'$ that almost witness CPoU but are not orthogonal. With uniform property Γ , we can replace them with orthogonal elements p_1, \ldots, p_k that witness CPoU.

1 Reminder

2 The Toms-Winter conjecture

3 Structure of uniform tracial completions
The Toms-Winter Conjecture.

The Toms-Winter Conjecture.

Let A be separable simple nuclear unital infinite dimensional. TFAE (i) $\dim_{\rm nuc} A < \infty$,

The Toms-Winter Conjecture.

- (i) $\dim_{\operatorname{nuc}} A < \infty$, (ii) $A \otimes \mathcal{T} \simeq A$
- $(\mathsf{ii}) A \otimes \mathcal{Z} \cong A,$

The Toms-Winter Conjecture.

- (i) $\dim_{\mathrm{nuc}} A < \infty$,
- (ii) $A \otimes \mathcal{Z} \cong A$,
- (iii) A has strict comparison.

The Toms-Winter Conjecture.

- (i) $\dim_{\mathrm{nuc}} A < \infty$,
- $(\mathsf{ii}) A \otimes \mathcal{Z} \cong A,$
- (iii) A has strict comparison.
 - Progress

The Toms-Winter Conjecture.

- (i) $\dim_{\mathrm{nuc}} A < \infty$,
- (ii) $A \otimes \mathcal{Z} \cong A$,
- (iii) A has strict comparison.
 - Progress
 - (i)⇒(ii) Winter

The Toms-Winter Conjecture.

Let \boldsymbol{A} be separable simple nuclear unital infinite dimensional. TFAE

- (i) $\dim_{\mathrm{nuc}} A < \infty$,
- (ii) $A \otimes \mathcal{Z} \cong A$,
- (iii) A has strict comparison.

- (i)⇒(ii) Winter
- (ii)⇒⇒(iii) Rørdam

The Toms-Winter Conjecture.

Let \boldsymbol{A} be separable simple nuclear unital infinite dimensional. TFAE

- (i) $\dim_{\mathrm{nuc}} A < \infty$,
- $(\mathsf{ii}) A \otimes \mathcal{Z} \cong A,$
- (III) A has strict comparison.

- (i) \Longrightarrow (ii) Winter
- (ii)⇒(iii) Rørdam
- (iii)⇒(ii) Known for some cases. Kirchberg, Matui, Sato, Rørdam, Thiel, Toms, White, Winter, Zhang.

The Toms-Winter Conjecture.

Let \boldsymbol{A} be separable simple nuclear unital infinite dimensional. TFAE

- (i) $\dim_{\mathrm{nuc}} A < \infty$,
- $(\mathsf{ii}) A \otimes \mathcal{Z} \cong A,$
- (III) A has strict comparison.

- (i) \Longrightarrow (ii) Winter
- (ii)⇒(iii) Rørdam
- (iii)⇒(ii) Known for some cases. Kirchberg, Matui, Sato, Rørdam, Thiel, Toms, White, Winter, Zhang.
 - T(A) Bauer or tight with finite covering dimension
 - stable rank one with locally finite nuclear dimension

The Toms-Winter Conjecture.

Let \boldsymbol{A} be separable simple nuclear unital infinite dimensional. TFAE

- (i) $\dim_{\mathrm{nuc}} A < \infty$,
- $(\mathsf{ii}) A \otimes \mathcal{Z} \cong A,$
- (III) A has strict comparison.

- (i)⇒(ii) Winter
- (ii)⇒(iii) Rørdam
- (iii)⇒(ii) Known for some cases. Kirchberg, Matui, Sato, Rørdam, Thiel, Toms, White, Winter, Zhang.
 - T(A) Bauer or tight with finite covering dimension
 - stable rank one with locally finite nuclear dimension
- (ii)⇒(i) Known for T(A) Bauer. Bosa, Brown, Matui, Sato, Tikuisis, White, Winter.

<u>2 - (ii)</u>⇒(i)

<u>2 - (ii)⇒(i)</u>

Theorem (C-Evington-Tikuisis-White-Winter) Let A be separable simple nuclear and unital.

Theorem (C-Evington-Tikuisis-White-Winter) Let A be separable simple nuclear and unital.

 $A \cong A \otimes \mathcal{Z} \Longrightarrow \dim_{\mathrm{nuc}} A \leq 1.$

Theorem (C-Evington-Tikuisis-White-Winter, C-Evington) Let A be separable simple nuclear and unital.

 $A \cong A \otimes \mathcal{Z} \Longrightarrow \dim_{\mathrm{nuc}} A \leq 1.$

<u>2 - (ii)⇒(i)</u>

Theorem (C-Evington-Tikuisis-White-Winter, C-Evington) Let A be separable simple nuclear and unital.

 $A \cong A \otimes \mathcal{Z} \Longrightarrow \dim_{\mathrm{nuc}} A \leq 1.$

Corollary. Let A be separable simple nuclear. Then $A \cong A \otimes \mathcal{Z} \iff \dim_{\text{nuc}} A < \infty$.

Theorem (C-Evington-Tikuisis-White-Winter, C-Evington) Let A be separable simple nuclear and unital.

 $A \cong A \otimes \mathcal{Z} \Longrightarrow \dim_{\mathrm{nuc}} A \leq 1.$

Corollary. Let A be separable simple nuclear. Then $A \cong A \otimes \mathcal{Z} \iff \dim_{\text{nuc}} A < \infty$.

Corollary. Separable simple unital nuclear \mathcal{Z} -stable C*-algebras in the UCT class are classified by their Elliott invariant.

Theorem (C-Evington-Tikuisis-White-Winter, C-Evington) Let A be separable simple nuclear and unital.

 $A \cong A \otimes \mathcal{Z} \Longrightarrow \dim_{\mathrm{nuc}} A \leq 1.$

Corollary. Let A be separable simple nuclear. Then $A \cong A \otimes \mathcal{Z} \iff \dim_{\text{nuc}} A < \infty$.

Corollary. Separable simple unital nuclear \mathcal{Z} -stable C*-algebras in the UCT class are classified by their Elliott invariant.

Corollary. Let A be a simple $\mathrm{C}^*\mbox{-algebra}.$ Then

$$\dim_{\text{nuc}} A = \begin{cases} 0 & A \text{ is AF} \\ 1 & A \text{ is } \mathcal{Z}\text{-stable but not AF} \\ \infty & \text{otherwise} \end{cases}$$

$$\tau(a) \approx \tau \sigma \psi(a)$$

$$\tau(a) \approx \tau \sigma \psi(a)$$

Let $h \in \mathcal{Z}$ be a positive element with spectrum [0,1].

$$\tau(a) \approx \tau \sigma \psi(a)$$

Let $h\in \mathcal{Z}$ be a positive element with spectrum [0,1]. Then

 $\mathrm{id}_A \otimes h \approx_{a.u.e} \sigma \psi \otimes h,$

$$\tau(a) \approx \tau \sigma \psi(a)$$

Let $h \in \mathcal{Z}$ be a positive element with spectrum [0,1]. Then

 $\operatorname{id}_A \otimes h \approx_{a.u.e} \sigma \psi \otimes h, \qquad \operatorname{id}_A \otimes (1-h) \approx_{a.u.e} \sigma \psi \otimes (1-h)$

$$\tau(a) \approx \tau \sigma \psi(a)$$

Let $h\in \mathcal{Z}$ be a positive element with spectrum [0,1]. Then

 $\operatorname{id}_A \otimes h \approx_{a.u.e} \sigma \psi \otimes h, \qquad \operatorname{id}_A \otimes (1-h) \approx_{a.u.e} \sigma \psi \otimes (1-h)$

 $a\otimes 1$

$$\tau(a) \approx \tau \sigma \psi(a)$$

Let $h \in \mathcal{Z}$ be a positive element with spectrum [0,1]. Then

 $\mathrm{id}_A \otimes h \approx_{a.u.e} \sigma \psi \otimes h, \qquad \mathrm{id}_A \otimes (1-h) \approx_{a.u.e} \sigma \psi \otimes (1-h)$ $a \otimes 1 = a \otimes h + a \otimes (1-h)$

$$\tau(a) \approx \tau \sigma \psi(a)$$

Let $h \in \mathcal{Z}$ be a positive element with spectrum [0,1]. Then

 $\mathrm{id}_A \otimes h \approx_{a.u.e} \sigma \psi \otimes h, \qquad \mathrm{id}_A \otimes (1-h) \approx_{a.u.e} \sigma \psi \otimes (1-h)$

 $a \otimes 1 = a \otimes h + a \otimes (1 - h) \approx u_1(\sigma \psi(a) \otimes h)u_1^* + u_2(\sigma \psi(a) \otimes (1 - h))u_2^*$

$$\tau(a) \approx \tau \sigma \psi(a)$$

Let $h \in \mathcal{Z}$ be a positive element with spectrum [0,1]. Then

 $\operatorname{id}_A \otimes h \approx_{a.u.e} \sigma \psi \otimes h, \qquad \operatorname{id}_A \otimes (1-h) \approx_{a.u.e} \sigma \psi \otimes (1-h)$

 $a \otimes 1 = a \otimes h + a \otimes (1 - h) \approx u_1(\sigma \psi(a) \otimes h)u_1^* + u_2(\sigma \psi(a) \otimes (1 - h))u_2^*$

$$\phi_i(x) = u_i(\sigma(x) \otimes h_i)u_i^*$$

$$\tau(a) \approx \tau \sigma \psi(a)$$

Let $h \in \mathcal{Z}$ be a positive element with spectrum [0,1]. Then

 $\operatorname{id}_A \otimes h \approx_{a.u.e} \sigma \psi \otimes h, \quad \operatorname{id}_A \otimes (1-h) \approx_{a.u.e} \sigma \psi \otimes (1-h)$

 $a \otimes 1 = a \otimes h + a \otimes (1 - h) \approx u_1(\sigma \psi(a) \otimes h)u_1^* + u_2(\sigma \psi(a) \otimes (1 - h))u_2^*$

$$\phi_i(x) = u_i(\sigma(x) \otimes h_i)u_i^*$$

 $\Longrightarrow \dim_{\mathrm{nuc}} A \leq 1$

$$\tau(a) \approx \tau \sigma_\tau \psi_\tau(a)$$

$$a_{\tau} := a - \sigma_{\tau} \psi_{\tau}(a)$$

By compactness, there are τ_1, \ldots, τ_k such that for all $\tau \in T(A)$ there is some a_{τ_i} with $\tau(a_{\tau_i}) \leq \delta$.

By compactness, there are τ_1, \ldots, τ_k such that for all $\tau \in T(A)$ there is some a_{τ_i} with $\tau(a_{\tau_i}) \leq \delta$. By CPoU, there exist $e_1, \ldots, e_k \in A_\omega \cap A'$ such that

 $\tau(\sum e_i) = 1$ and $\tau(e_i a_{\tau_i}) \leq \delta \tau(e_i)$.

By compactness, there are τ_1, \ldots, τ_k such that for all $\tau \in T(A)$ there is some a_{τ_i} with $\tau(a_{\tau_i}) \leq \delta$. By CPoU, there exist $e_1, \ldots, e_k \in A_\omega \cap A'$ such that

 $\tau(\sum e_i) = 1$ and $\tau(e_i a_{\tau_i}) \leq \delta \tau(e_i)$.

 $\sigma(x_1,\ldots,x_k) = \sum e_i \sigma_{\tau_i}(x_i)$

By compactness, there are τ_1, \ldots, τ_k such that for all $\tau \in T(A)$ there is some a_{τ_i} with $\tau(a_{\tau_i}) \leq \delta$. By CPoU, there exist $e_1, \ldots, e_k \in A_\omega \cap A'$ such that

$$au(\sum e_i) = 1$$
 and $au(e_i a_{ au_i}) \leq \delta au(e_i)$.

 $\sigma(x_1,\ldots,x_k) = \sum e_i \sigma_{\tau_i}(x_i)$

 $\tau(a - \sigma\psi(a))$

By compactness, there are τ_1, \ldots, τ_k such that for all $\tau \in T(A)$ there is some a_{τ_i} with $\tau(a_{\tau_i}) \leq \delta$. By CPoU, there exist $e_1, \ldots, e_k \in A_\omega \cap A'$ such that

 $\tau(\sum e_i) = 1$ and $\tau(e_i a_{\tau_i}) \leq \delta \tau(e_i)$.

 $\sigma(x_1,\ldots,x_k) = \sum e_i \sigma_{\tau_i}(x_i)$

 $\tau(a - \sigma\psi(a)) = \sum \tau \left(e_i(a - \sigma_{\tau_i}\psi_{\tau_i}(a))\right)$

By compactness, there are τ_1, \ldots, τ_k such that for all $\tau \in T(A)$ there is some a_{τ_i} with $\tau(a_{\tau_i}) \leq \delta$. By CPoU, there exist $e_1, \ldots, e_k \in A_\omega \cap A'$ such that

 $\tau(\sum e_i) = 1$ and $\tau(e_i a_{\tau_i}) \leq \delta \tau(e_i)$.

 $\tau(a - \sigma\psi(a)) = \sum \tau \left(e_i(a - \sigma_{\tau_i}\psi_{\tau_i}(a)) \right) = \sum \tau(e_i a_{\tau_i})$

By compactness, there are τ_1, \ldots, τ_k such that for all $\tau \in T(A)$ there is some a_{τ_i} with $\tau(a_{\tau_i}) \leq \delta$. By CPoU, there exist $e_1, \ldots, e_k \in A_\omega \cap A'$ such that

 $\tau(\sum e_i) = 1$ and $\tau(e_i a_{\tau_i}) \leq \delta \tau(e_i)$.

 $\tau(a - \sigma\psi(a)) = \sum \tau \left(e_i(a - \sigma_{\tau_i}\psi_{\tau_i}(a)) \right) = \sum \tau(e_i a_{\tau_i}) \le \delta\tau(\sum e_i)$

By compactness, there are τ_1, \ldots, τ_k such that for all $\tau \in T(A)$ there is some a_{τ_i} with $\tau(a_{\tau_i}) \leq \delta$. By CPoU, there exist $e_1, \ldots, e_k \in A_\omega \cap A'$ such that

$$au(\sum e_i) = 1$$
 and $au(e_i a_{ au_i}) \leq \delta au(e_i)$.

 $\tau(a - \sigma\psi(a)) = \sum \tau \left(e_i(a - \sigma_{\tau_i}\psi_{\tau_i}(a)) \right) = \sum \tau(e_i a_{\tau_i}) \le \delta \tau(\sum e_i) = \delta$
2 – Sketch of the proof - general case

By compactness, there are τ_1, \ldots, τ_k such that for all $\tau \in T(A)$ there is some a_{τ_i} with $\tau(a_{\tau_i}) \leq \delta$. By CPoU, there exist $e_1, \ldots, e_k \in A_\omega \cap A'$ such that

$$au(\sum e_i) = 1$$
 and $au(e_i a_{ au_i}) \leq \delta au(e_i)$.

 $\tau(a - \sigma\psi(a)) = \sum \tau \left(e_i(a - \sigma_{\tau_i}\psi_{\tau_i}(a)) \right) = \sum \tau(e_i a_{\tau_i}) \le \delta \tau(\sum e_i) = \delta$

As before, using the h + (1 - h) trick, we obtain $\dim_{\text{nuc}} A \leq 1$.

Let A be a simple separable unital nuclear with T(A) non-empty. If A has uniform property Γ and strict comparison then A is \mathcal{Z} -stable.

Let A be a simple separable unital nuclear with T(A) non-empty. If A has uniform property Γ and strict comparison then A is \mathcal{Z} -stable.

<u>Sketch</u>

Let A be a simple separable unital nuclear with T(A) non-empty. If A has uniform property Γ and strict comparison then A is \mathcal{Z} -stable.

<u>Sketch</u>

A has uniform property Γ

Let A be a simple separable unital nuclear with T(A) non-empty. If A has uniform property Γ and strict comparison then A is \mathcal{Z} -stable.

<u>Sketch</u>

A has uniform property Γ $\Longrightarrow M_n \hookrightarrow A^\omega \cap A' \text{ unitally for all } n$

Let A be a simple separable unital nuclear with T(A) non-empty. If A has uniform property Γ and strict comparison then A is \mathcal{Z} -stable.

<u>Sketch</u>

- A has uniform property Γ
- $\implies M_n \hookrightarrow A^\omega \cap A'$ unitally for all n
- \implies there is c.p.c. order zero $\phi: M_n \to A_\omega \cap A'$ such that $\tau \phi(1_{M_n}) = 1$

Let A be a simple separable unital nuclear with T(A) non-empty. If A has uniform property Γ and strict comparison then A is \mathcal{Z} -stable.

<u>Sketch</u>

- A has uniform property Γ
- $\implies M_n \hookrightarrow A^\omega \cap A'$ unitally for all n
- \implies there is c.p.c. order zero $\phi: M_n \to A_\omega \cap A'$ such that $\tau \phi(1_{M_n}) = 1$
- By Matui-Sato, $A \otimes \mathcal{Z} \cong A$.

Theorem

Let A be separable simple nuclear unital non-elementary. TFAE (i) $\dim_{nuc} A < \infty$, (ii) $A \otimes \mathcal{Z} \cong A$, (iii) A has strict comparison

Theorem

Let A be separable simple nuclear unital non-elementary. TFAE (i) $\dim_{nuc} A < \infty$, (ii) $A \otimes Z \cong A$, (iii) A has strict comparison and uniform property Γ .

Theorem

```
Let A be separable simple nuclear unital non-elementary. TFAE

(i) \dim_{nuc} A < \infty,

(ii) A \otimes \mathcal{Z} \cong A,

(iii) A has strict comparison and uniform property \Gamma.

(iv) \dim_{nuc} A \leq 1.
```

1 Reminder

- 2 The Toms-Winter conjecture
- 3 Structure of uniform tracial completions

$$X \subset T(A)$$
 $||a||_{2,X} = \sup_{\tau \in X} ||a||_{2,\tau}$

$$X \subset T(A)$$
 $||a||_{2,X} = \sup_{\tau \in X} ||a||_{2,\tau}$

$$\overline{A}^{T(A)} = \frac{\{(a_n) \in \ell^{\infty}(A) \mid (a_n) \text{ is } \| \cdot \|_{2,T(A)} - \mathsf{Cauchy}\}}{\{(a_n) \mid \lim_{n \to \infty} \|a_n\|_{2,T(A)} = 0\}}$$

$$X \subset T(A)$$
 $||a||_{2,X} = \sup_{\tau \in X} ||a||_{2,\tau}$

$$\overline{A}^{T(A)} = \frac{\{(a_n) \in \ell^{\infty}(A) \mid (a_n) \text{ is } \| \cdot \|_{2,T(A)} - \mathsf{Cauchy}\}}{\{(a_n) \mid \lim_{n \to \infty} \|a_n\|_{2,T(A)} = 0\}}$$
$$\overline{A}^X = \frac{\{(a_n) \in \ell^{\infty}(A) \mid (a_n) \text{ is } \| \cdot \|_{2,X} - \mathsf{Cauchy}\}}{\{(a_n) \mid \lim_{n \to \infty} \|a_n\|_{2,X} = 0\}}$$

$$X \subset T(A)$$
 $||a||_{2,X} = \sup_{\tau \in X} ||a||_{2,\tau}$

$$\overline{A}^{T(A)} = \frac{\{(a_n) \in \ell^{\infty}(A) \mid (a_n) \text{ is } \| \cdot \|_{2,T(A)} - \mathsf{Cauchy}\}}{\{(a_n) \mid \lim_{n \to \infty} \|a_n\|_{2,T(A)} = 0\}}$$
$$\overline{A}^X = \frac{\{(a_n) \in \ell^{\infty}(A) \mid (a_n) \text{ is } \| \cdot \|_{2,X} - \mathsf{Cauchy}\}}{\{(a_n) \mid \lim_{n \to \infty} \|a_n\|_{2,X} = 0\}}$$

Ultrapowers of uniform tracial completions

$$\left(\overline{A}^{X}\right)^{\omega} = \ell^{\infty}\left(\overline{A}^{X}\right) / \{(a_{n}) \mid \lim_{n \to \omega} \|a_{n}\|_{2,X} = 0\}$$

$$X \subset T(A)$$
 $||a||_{2,X} = \sup_{\tau \in X} ||a||_{2,\tau}$

$$\overline{A}^{T(A)} = \frac{\{(a_n) \in \ell^{\infty}(A) \mid (a_n) \text{ is } \| \cdot \|_{2,T(A)} - \mathsf{Cauchy}\}}{\{(a_n) \mid \lim_{n \to \infty} \|a_n\|_{2,T(A)} = 0\}}$$
$$\overline{A}^X = \frac{\{(a_n) \in \ell^{\infty}(A) \mid (a_n) \text{ is } \| \cdot \|_{2,X} - \mathsf{Cauchy}\}}{\{(a_n) \mid \lim_{n \to \infty} \|a_n\|_{2,X} = 0\}}$$

Ultrapowers of uniform tracial completions

$$\left(\overline{A}^{X}\right)^{\omega} = \ell^{\infty}\left(\overline{A}^{X}\right) / \{(a_{n}) \mid \lim_{n \to \omega} \|a_{n}\|_{2,X} = 0\}$$

By a Kaplansky density type argument

$$A^{\omega} \cong \left(\overline{A}^{T(A)}\right)^{\omega}.$$

Existence theorem (C-Evington-Tikuisis-White)

Existence theorem (C-Evington-Tikuisis-White)

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ and T(B) non-empty and compact.

Existence theorem (C-Evington-Tikuisis-White)

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ and T(B) non-empty and compact. Let $\alpha: T(B^{\omega}) \to T(A)$ be a continuous affine map.

Existence theorem (C-Evington-Tikuisis-White)

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ and T(B) non-empty and compact. Let $\alpha: T(B^{\omega}) \to T(A)$ be a continuous affine map. Then there is a *-homomorphism $\Phi: A \to B^{\omega}$ (which is unital when A is unital) such that

 $\tau\circ\Phi=\alpha(\tau),\quad \tau\in T(B^{\omega}).$

Existence theorem (C-Evington-Tikuisis-White)

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ and T(B) non-empty and compact. Let $\alpha: T(B^{\omega}) \to T(A)$ be a continuous affine map. Then there is a *-homomorphism $\Phi: A \to B^{\omega}$ (which is unital when A is unital) such that

$$\tau \circ \Phi = \alpha(\tau), \quad \tau \in T(B^{\omega}).$$

Uniqueness theorem

Existence theorem (C-Evington-Tikuisis-White)

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ and T(B) non-empty and compact. Let $\alpha: T(B^{\omega}) \to T(A)$ be a continuous affine map. Then there is a *-homomorphism $\Phi: A \to B^{\omega}$ (which is unital when A is unital) such that

 $\tau \circ \Phi = \alpha(\tau), \quad \tau \in T(B^{\omega}).$

Uniqueness theorem

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ with T(B) non-empty and compact.

Existence theorem (C-Evington-Tikuisis-White)

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ and T(B) non-empty and compact. Let $\alpha: T(B^{\omega}) \to T(A)$ be a continuous affine map. Then there is a *-homomorphism $\Phi: A \to B^{\omega}$ (which is unital when A is unital) such that

 $\tau\circ\Phi=\alpha(\tau),\quad \tau\in T(B^\omega).$

Uniqueness theorem

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ with T(B) non-empty and compact. Let $\phi, \psi: A \to B^{\omega}$ be *-homomorphisms such that

$$\tau \circ \phi = \tau \circ \psi, \quad \tau \in T(B^{\omega}).$$

Existence theorem (C-Evington-Tikuisis-White)

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ and T(B) non-empty and compact. Let $\alpha: T(B^{\omega}) \to T(A)$ be a continuous affine map. Then there is a *-homomorphism $\Phi: A \to B^{\omega}$ (which is unital when A is unital) such that

 $\tau \circ \Phi = \alpha(\tau), \quad \tau \in T(B^{\omega}).$

Uniqueness theorem

Let A be a separable nuclear C*-algebra and B a separable nuclear finite C*-algebra with uniform property Γ with T(B) non-empty and compact. Let $\phi, \psi: A \to B^{\omega}$ be *-homomorphisms such that

$$\tau \circ \phi = \tau \circ \psi, \quad \tau \in T(B^{\omega}).$$

Then ϕ and ψ are unitarily equivalent in B^{ω} .

Theorem (C-Evington-Tikuisis-White)

Let A and B be nuclear, separable with uniform property Γ such that their trace spaces are non-empty and compact. Let $\alpha : T(B) \to T(A)$ be an affine homeomorphism.

Theorem (C-Evington-Tikuisis-White)

Let A and B be nuclear, separable with uniform property Γ such that their trace spaces are non-empty and compact. Let $\alpha: T(B) \to T(A)$ be an affine homeomorphism. Then there is a *-isomorphism $\Phi: \overline{A}^{T(A)} \to \overline{B}^{T(B)}$ such that

$$\tau \circ \Phi = \alpha(\tau), \qquad \tau \in T(B).$$

Theorem (C-Evington-Tikuisis-White)

Let A and B be nuclear, separable with uniform property Γ such that their trace spaces are non-empty and compact. Let $\alpha: T(B) \to T(A)$ be an affine homeomorphism. Then there is a *-isomorphism $\Phi: \overline{A}^{T(A)} \to \overline{B}^{T(B)}$ such that

$$\tau \circ \Phi = \alpha(\tau), \qquad \tau \in T(B).$$

Corollary

Let A be nuclear, separable with uniform property Γ and T(A) non-empty and compact.

Theorem (C-Evington-Tikuisis-White)

Let A and B be nuclear, separable with uniform property Γ such that their trace spaces are non-empty and compact. Let $\alpha: T(B) \to T(A)$ be an affine homeomorphism. Then there is a *-isomorphism $\Phi: \overline{A}^{T(A)} \to \overline{B}^{T(B)}$ such that

$$\tau \circ \Phi = \alpha(\tau), \qquad \tau \in T(B).$$

Corollary

Let A be nuclear, separable with uniform property Γ and T(A) non-empty and compact. Then $\overline{A}^{T(A)}$ is $(2,T(A))\text{-}\mathsf{AFD},$

Theorem (C-Evington-Tikuisis-White)

Let A and B be nuclear, separable with uniform property Γ such that their trace spaces are non-empty and compact. Let $\alpha: T(B) \to T(A)$ be an affine homeomorphism. Then there is a *-isomorphism $\Phi: \overline{A}^{T(A)} \to \overline{B}^{T(B)}$ such that

$$\tau \circ \Phi = \alpha(\tau), \qquad \tau \in T(B).$$

Corollary

Let A be nuclear, separable with uniform property Γ and T(A) non-empty and compact. Then $\overline{A}^{T(A)}$ is (2, T(A))-AFD, i.e. there is a simple unital AF-algebra B such that

$$\overline{A}^{T(A)} \cong \overline{B}^{T(B)}.$$

Corollary

Let A be nuclear, separable with uniform property Γ and T(A) non-empty and compact.

Corollary

Let A be nuclear, separable with uniform property Γ and T(A) non-empty and compact. Then there exists an inductive limit of the form

$$\mathcal{R}^{\oplus n_1} \xrightarrow{\phi_1} \mathcal{R}^{\oplus n_2} \xrightarrow{\phi_2} \mathcal{R}^{\oplus n_3} \xrightarrow{\phi_3} \cdots \cdots \xrightarrow{\phi_1} B$$

Corollary

Let A be nuclear, separable with uniform property Γ and T(A) non-empty and compact. Then there exists an inductive limit of the form

$$\mathcal{R}^{\oplus n_1} \xrightarrow{\phi_1} \mathcal{R}^{\oplus n_2} \xrightarrow{\phi_2} \mathcal{R}^{\oplus n_3} \xrightarrow{\phi_3} \cdots \xrightarrow{\phi_1} B$$
such that $\overline{A}^{T(A)} \cong \overline{B}^{T(B)}$.
Corollary

Let A be nuclear, separable with uniform property Γ and T(A) non-empty and compact. Then there exists an inductive limit of the form

$$\mathcal{R}^{\oplus n_1} \xrightarrow{\phi_1} \mathcal{R}^{\oplus n_2} \xrightarrow{\phi_2} \mathcal{R}^{\oplus n_3} \xrightarrow{\phi_3} \dots \xrightarrow{\phi_1} B$$
such that $\overline{A}^{T(A)} \cong \overline{B}^{T(B)}$.

Remark

The inductive limit is induced by the decomposition of T(A) as inverse limit decomposition of finite dimensional simplices.

A uniformly tracially complete C*-algebra

A uniformly tracially complete C*-algebra is a pair (\mathcal{M}, X)

A uniformly tracially complete C*-algebra is a pair (\mathcal{M}, X) where \mathcal{M} is a unital C*-algebra and $X \subset T(\mathcal{M})$ is a closed face such that

A uniformly tracially complete C*-algebra is a pair (\mathcal{M}, X) where \mathcal{M} is a unital C*-algebra and $X \subset T(\mathcal{M})$ is a closed face such that (i) $\|\cdot\|_{2,X}$ is a norm,

A uniformly tracially complete C*-algebra is a pair (\mathcal{M}, X) where \mathcal{M} is a unital C*-algebra and $X \subset T(\mathcal{M})$ is a closed face such that (i) $\|\cdot\|_{2,X}$ is a norm, (ii) the unit ball of \mathcal{M} is $\|\cdot\|_{2,X}$ -complete.

A uniformly tracially complete C*-algebra is a pair (\mathcal{M}, X) where \mathcal{M} is a unital C*-algebra and $X \subset T(\mathcal{M})$ is a closed face such that (i) $\|\cdot\|_{2,X}$ is a norm, (ii) the unit ball of \mathcal{M} is $\|\cdot\|_{2,X}$ -complete.

Morphisms between uniformly tracially complete C*-algebras (\mathcal{M}, X) and (\mathcal{N}, Y) are unital *-homomorphisms $\varphi : \mathcal{M} \to \mathcal{N}$ such that $\tau \circ \varphi \in X$ for all $\tau \in Y$.

A uniformly tracially complete C*-algebra is a pair (\mathcal{M}, X) where \mathcal{M} is a unital C*-algebra and $X \subset T(\mathcal{M})$ is a closed face such that (i) $\|\cdot\|_{2,X}$ is a norm, (ii) the unit ball of \mathcal{M} is $\|\cdot\|_{2,X}$ -complete.

Morphisms between uniformly tracially complete C*-algebras (\mathcal{M}, X) and (\mathcal{N}, Y) are unital *-homomorphisms $\varphi : \mathcal{M} \to \mathcal{N}$ such that $\tau \circ \varphi \in X$ for all $\tau \in Y$.

Canonical examples of uniformly tracially complete C*-algebras are uniform tracial completions (\overline{A}^X, X) when X is a closed face of T(A).

A uniformly tracially complete C*-algebra is a pair (\mathcal{M}, X) where \mathcal{M} is a unital C*-algebra and $X \subset T(\mathcal{M})$ is a closed face such that (i) $\|\cdot\|_{2,X}$ is a norm, (ii) the unit ball of \mathcal{M} is $\|\cdot\|_{2,X}$ -complete.

Morphisms between uniformly tracially complete C*-algebras (\mathcal{M}, X) and (\mathcal{N}, Y) are unital *-homomorphisms $\varphi : \mathcal{M} \to \mathcal{N}$ such that $\tau \circ \varphi \in X$ for all $\tau \in Y$.

Canonical examples of uniformly tracially complete C*-algebras are uniform tracial completions (\overline{A}^X, X) when X is a closed face of T(A).

Thank you!