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If you don’t know anything about relativistic hydrodyna-
mics, you can try learning about it from classic textbooks. 

The classics: Hydrodynamics is the dynamics of 
conserved densities, so the equations must include 

@↵T
↵� = 0 , @↵J

↵ = 0

Question: What exactly are these              ? 

That’s where the classic textbooks will differ.

T↵� , J↵

What is relativistic hydrodynamics?



Open Landau-Lifshitz “Fluid mechanics”

Tµ⌫ = p⌘µ⌫ + (✏+p)uµu⌫ + ⌧µ⌫ ,

Jµ = nuµ + ⌫µ ,

Open Weinberg* “Gravitation and cosmology”

Tµ⌫ = p⌘µ⌫ + (✏+p)uµu⌫ + (qµu⌫+q⌫uµ) + ⌧µ⌫ ,

Jµ = nuµ ,

*This formulation of hydrodynamics is due to Eckart (1940)

is transverse & traceless, contains the viscosities 
is transverse, contains charge conductivity

is transverse & traceless, contains the viscosities  
is transverse, contains heat conductivity

⌧µ⌫

⌧µ⌫

⌫µ

qµ



The equations look different, so what?

Both Landau-Lifshitz’ and Eckart’s equations predict that: 

  a) thermal equilibrium does not exist 

  b) things propagate faster than light
Hiscock, Lindblom, 1984
Hiscock, Lindblom, 1987

Let’s shut up and calculate: solve for linear perturbations 
of the thermal equilibrium state. Easy!

https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1103/PhysRevD.35.3723


What exactly is the problem?

Perturbations e-iωt+ik·x, solve hydro equations: ω=ω(k) 

Gapless modes: ω(k→0)=0, b/c of conserved charges. 
These correspond to normal hydrodynamics (sound etc). 

But the equations also predict gapped modes ω(k→0)≠0, 
moreover with Im(ω)>0. These are unphysical modes. 

These “fake” modes are outside of the validity regime of 
the low-energy hydro approximation. These are UV modes. 

But if you want to actually solve the hydro equations in 
practice, these unphysical modes ruin predictability: 
cutoff-scale physics messes up the infrared behavior.



How is the problem fixed?

So the classic-textbook hydrodynamics is not what you 
solve in practice e.g. to study the quark-gluon plasma. 

Most popular fix is the Israel-Stewart theory: the hydro 
equations are coupled to extra UV degrees of freedom, 
which in turn kill the unphysical UV modes. 

These extra degrees of freedom are the dynamical stresses 
and heat fluxes, in addition to the dynamical T, uα, μ. 

The extra degrees of freedom of the Israel-Stewart theory 
play the role of a UV regulator. Note that in the non-
relativistic Navier-Stokes eq-s, no UV regulator is needed.



Bemfica, Disconzi, Noronha, arXiv:1708.06255

Can one find a regulator of hydrodynamics that does not 
involve introducing extra UV degrees of freedom?  

E.g. in field theory, the Pauli-Villars regularization introdu-
ces extra UV degrees of freedom, but dimreg does not. 

In a CFT, it is possible to have a sensible relativistic hydro-
dynamics whose only dynamical variables are T and uα, 
and no extra UV degrees of freedom.

Other regulators?

Claim: Regardless of CFT, there is a sensible relativistic 
hydrodynamics whose only variables are T, uα, μ, and no 
extra UV d.o.f. You need to choose a suitable out-of-
equilibrium definition of T, uα, μ. PK, arXiv:1907.08191

Bemfica, Disconzi, Noronha, arXiv:1907.12695 

https://arxiv.org/abs/1708.06255
https://arxiv.org/abs/1907.08191
https://arxiv.org/abs/1907.12695


Two pillars of classical hydrodynamics

Symmetry: @↵T
↵� [T, u�, µ] = 0 , @↵J

↵[T, u�, µ] = 0

Note:              are always well-defined microscopically. 
But:                are only well-defined in equilibrium. 

There are many ways to define               out of equilibrium. 
This is why Landau-Lifshitz and Eckart’s eq-s are different.

T↵� , J↵

T, u�, µ

T, u�, µ

Derivative expansion: Locality, as in any effective theory

Both Landau-Lifshitz and Eckart equations only keep O(∂1) 
terms. This is the physics of viscosity and heat conduction.

T
↵�

, J
↵ = O(@0) +O(@1) +O(@2) + . . .



To repeat: 

In general, out of equilibrium, the notions of “local 
rest frame”, “local isotropy” etc are ambiguous, 
and are a matter of pure convention/taste.



How to write Tαβ and Jα in terms of T,uλ,μ

J0 = charge density, Ji = charge current,  
T00 = energy density, Tii = pressure, Tij = stress, 
T0i = momentum density/energy current

In rest frame:

Write covariantly:

timelike unit vector uµ, the energy-momentum tensor and the current may be decomposed as

Tµ⌫ = Euµu⌫ + P�µ⌫ + (Qµu⌫ +Q
⌫uµ) + T

µ⌫ , (2a)

Jµ = Nuµ + J
µ , (2b)

where Q
µ, T µ⌫ , and J

µ are transverse to u, and T
µ⌫ is symmetric and traceless. Specifically,

E ⌘ uµu⌫T
µ⌫ , P ⌘

1

d
�µ⌫T

µ⌫ , Qµ ⌘ ��µ↵u�T
↵� , (3a)

Tµ⌫ ⌘
1

2

✓
�µ↵�⌫� +�⌫↵�µ� �

2

d
�µ⌫�↵�

◆
T↵� , (3b)

N ⌘ �uµJ
µ , Jµ ⌘ �µ↵J

↵ , (3c)

where �↵�
⌘ g↵� + u↵u� projects onto the space orthogonal to u↵. The decompositions (2)

are just identities, true for any symmetric tensor Tµ⌫ and any vector Jµ. In hydrodynamics,

one writes E , P, Qµ, T µ⌫ , N , and J
µ as a derivative expansion. To zeroth order in derivatives,

there are two scalars, T and µ, no transverse vectors, and no transverse traceless 2-tensors.

To first order in derivatives, there are three scalars, Ṫ , @�u�, and µ̇, where the dot stands

for u�@�. There are also three transverse vectors, �⇢�@�T , u̇⇢, and �⇢�@�µ. There is one

transverse traceless symmetric tensor, �µ⌫ = �µ⇢�⌫�(@⇢u� + @�u⇢ �
2
3g⇢�@�u

�). Thus to first

order in derivatives we have

E = ✏+ "1Ṫ /T + "2@�u
� + "3u

�@�(µ/T ) +O(@2) , (4a)

P = p+ ⇡1Ṫ /T + ⇡2@�u
� + ⇡3u

�@�(µ/T ) +O(@2) , (4b)

Q
µ = ✓1u̇

µ + ✓2/T �µ�@�T + ✓3�
µ�@�(µ/T ) +O(@2) , (4c)

T
µ⌫ = �⌘�µ⌫ +O(@2) , (4d)

N = n+ ⌫1Ṫ /T + ⌫2@�u
� + ⌫3u

�@�(µ/T ) +O(@2) , (4e)

J
µ = �1u̇

µ + �2/T �µ�@�T + �3�
µ�@�(µ/T ) +O(@2) , (4f)

where O(@n) denotes terms with n or more derivatives of the hydrodynamic variables. The

factors of 1/T are inserted for notational convenience. At zero-derivative order, the constitu-

tive relations are determined by the three apriori independent parameters ✏, p, and n which

in general all depend on T and µ. As usual, p is the pressure, ✏ is the energy density, and n

is the charge density. At one-derivative order, there are sixteen apriori independent transport

coe�cients (seven for uncharged fluids) "1,2,3, ⇡1,2,3, ✓1,2,3, ⌫1,2,3, �1,2,3, and ⌘, which in gen-

eral all depend on T and µ. Not all of them are genuine one-derivative transport coe�cients

though. As we will see shortly, there are in fact only three genuine one-derivative transport

coe�cients.
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                            spatial projector,                                   , J ·u = Q·u = T ·u = 0�↵� = g↵� + u↵u� T ↵
↵ = 0

E ,P,Q↵, T ↵� ,N ,J ↵Hydrodynamics:                              must be written 
in terms of T,uλ,μ
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derivative expansion in terms of  
scalars made out of T, uα, μ, ∂α 

derivative expansion in terms of  
transverse vectors made out of T, uα, μ, ∂α 

derivative expansion in terms of  
transverse traceless tensors made out of T, uα, μ, ∂α 



How to write Tαβ and Jα in terms of T,uλ,μ

@�u
� u�@�(µ/T )u�@�TO(∂) scalars: 

O(∂) transverse vectors: �µ�@�T �µ�@�(µ/T )

O(∂) transverse traceless tensors: �µ⌫

u�@�u
µ

Such terms are of course not new. The new thing is to 
understand their implications for stability and causality.



Simple analogy: EFT

S = ∫ d4x (a(∂μφ)2 + bφ2 + cφ4)

1) Identify the low-energy variables 

2) Write down all the terms allowed by the symmetry, 

3) Do this up to a given dimension, e.g.:

4) Constrain the coefficients a,b,c so that the physics 
    is sensible, e.g.        for stability of the vacuumc < 0



Do the same in hydro

1)   Identify the low-energy variables: T, u𝛼, 𝜇  

2)   Write down all possible terms in the constitutive 
      relations consistent with the symmetry 

3)   Do this up to a given order (say, 1-st order) in the  
      derivative expansion 

4)   Constrain the coefficients so that the physics is  
      sensible, e.g. demand stability of equilibrium 
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E = ✏+ "1Ṫ /T + "2@�u
� + "3u

�@�(µ/T ) +O(@2) , (4a)
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N = n+ ⌫1Ṫ /T + ⌫2@�u
� + ⌫3u

�@�(µ/T ) +O(@2) , (4e)

J
µ = �1u̇

µ + �2/T �µ�@�T + �3�
µ�@�(µ/T ) +O(@2) , (4f)

where O(@n) denotes terms with n or more derivatives of the hydrodynamic variables. The

factors of 1/T are inserted for notational convenience. At zero-derivative order, the constitu-

tive relations are determined by the three apriori independent parameters ✏, p, and n which

in general all depend on T and µ. As usual, p is the pressure, ✏ is the energy density, and n

is the charge density. At one-derivative order, there are sixteen apriori independent transport

coe�cients (seven for uncharged fluids) "1,2,3, ⇡1,2,3, ✓1,2,3, ⌫1,2,3, �1,2,3, and ⌘, which in gen-

eral all depend on T and µ. Not all of them are genuine one-derivative transport coe�cients

though. As we will see shortly, there are in fact only three genuine one-derivative transport

coe�cients.

5
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Connection to the Landau frame

ℰ = ϵ(T, μ) + fℰ(∂T, ∂μ, ∂u)

𝒩 = n(T, μ) + f𝒩(∂T, ∂μ, ∂u)

𝒬μ = 𝒬μ(∂T, ∂μ, ∂u) }
Redefine hydro fields by O(∂) corrections:

uμ
L ≡ uμ + δuμ , TL ≡ T + δT , μL ≡ μ + δμ

Landau frame: 
choose 𝛿T, 𝛿u, 𝛿𝜇 
such that 

ℰL = ϵ(TL, μL) ,

𝒬μ
L = 0

𝒩L = n(TL, μL) ,
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Connection to the Landau frame

uμ = uμ
L −

1
ϵ + p (θ1

·uμ + θ2
Δμα∂αT

T ) + O(∂2)

T = TL −
1

∂ϵ/∂T (ε1
·T/T + ε2 ∂⋅u) + O(∂2)

Can loosely interpret θ1, ε1 as relaxation times to  
Landau-frame variables.



Connection to the Landau frame

Conversely, if you happen to know           from the exact 
for uncharged fluids, then you find         by:  

uμ
L , TL Tμν
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uμ, T
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N = n+ ⌫1Ṫ /T + ⌫2@�u
� + ⌫3u

�@�(µ/T ) +O(@2) , (4e)

J
µ = �1u̇

µ + �2/T �µ�@�T + �3�
µ�@�(µ/T ) +O(@2) , (4f)

where O(@n) denotes terms with n or more derivatives of the hydrodynamic variables. The

factors of 1/T are inserted for notational convenience. At zero-derivative order, the constitu-

tive relations are determined by the three apriori independent parameters ✏, p, and n which

in general all depend on T and µ. As usual, p is the pressure, ✏ is the energy density, and n

is the charge density. At one-derivative order, there are sixteen apriori independent transport

coe�cients (seven for uncharged fluids) "1,2,3, ⇡1,2,3, ✓1,2,3, ⌫1,2,3, �1,2,3, and ⌘, which in gen-

eral all depend on T and µ. Not all of them are genuine one-derivative transport coe�cients

though. As we will see shortly, there are in fact only three genuine one-derivative transport

coe�cients.

5

timelike unit vector uµ, the energy-momentum tensor and the current may be decomposed as

Tµ⌫ = Euµu⌫ + P�µ⌫ + (Qµu⌫ +Q
⌫uµ) + T

µ⌫ , (2a)

Jµ = Nuµ + J
µ , (2b)

where Q
µ, T µ⌫ , and J

µ are transverse to u, and T
µ⌫ is symmetric and traceless. Specifically,

E ⌘ uµu⌫T
µ⌫ , P ⌘

1

d
�µ⌫T

µ⌫ , Qµ ⌘ ��µ↵u�T
↵� , (3a)

Tµ⌫ ⌘
1

2

✓
�µ↵�⌫� +�⌫↵�µ� �

2

d
�µ⌫�↵�

◆
T↵� , (3b)

N ⌘ �uµJ
µ , Jµ ⌘ �µ↵J

↵ , (3c)

where �↵�
⌘ g↵� + u↵u� projects onto the space orthogonal to u↵. The decompositions (2)

are just identities, true for any symmetric tensor Tµ⌫ and any vector Jµ. In hydrodynamics,

one writes E , P, Qµ, T µ⌫ , N , and J
µ as a derivative expansion. To zeroth order in derivatives,

there are two scalars, T and µ, no transverse vectors, and no transverse traceless 2-tensors.

To first order in derivatives, there are three scalars, Ṫ , @�u�, and µ̇, where the dot stands
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though. As we will see shortly, there are in fact only three genuine one-derivative transport

coe�cients.
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P = p+ ⇡1Ṫ /T + ⇡2@�u
� + ⇡3u

�@�(µ/T ) +O(@2) , (4b)

Q
µ = ✓1u̇

µ + ✓2/T �µ�@�T + ✓3�
µ�@�(µ/T ) +O(@2) , (4c)

T
µ⌫ = �⌘�µ⌫ +O(@2) , (4d)
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Use field redefinitions and on-shell relations to push all  
red terms except π2, η, θ1=θ2 to O(∂2).

u̇µ ⌘ u�@�u
µ

Eckart frame



The fact that you can push most O(∂1) terms to O(∂2) 
doesn’t mean that you have to. Let us keep all of 
them for now i.e. use the “most general frame”.



The choice of frame is not important from the point of view of 
the derivative expansion, or for classifying the transport 
coefficients. However, it is important from the point of view of 
the hydro equations themselves.  

After all, the hydrodynamic equations (with the constitutive 
relations truncated at one-derivative order), when written in 
different frames, give rise to different differential equations.  

The choice of frame may potentially affect such things as the 
well-posedness of the initial value problem for these partial 
differential equations, or lead to fictitious instabilities of the 
equilibrium state. 

Does it matter?



Now let’s talk about the constraints on the  
1-derivative transport coefficients



Constraints: extensivity in equilibrium
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P = p+ ⇡1Ṫ /T + ⇡2@�u
� + ⇡3u

�@�(µ/T ) +O(@2) , (4b)

Q
µ = ✓1u̇

µ + ✓2/T �µ�@�T + ✓3�
µ�@�(µ/T ) +O(@2) , (4c)

T
µ⌫ = �⌘�µ⌫ +O(@2) , (4d)
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Constraints: positive viscosity and conductivity
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Tµ⌫ = Euµu⌫ + P�µ⌫ + (Qµu⌫ +Q
⌫uµ) + T

µ⌫ , (2a)

Jµ = Nuµ + J
µ , (2b)

where Q
µ, T µ⌫ , and J

µ are transverse to u, and T
µ⌫ is symmetric and traceless. Specifically,

E ⌘ uµu⌫T
µ⌫ , P ⌘

1

d
�µ⌫T

µ⌫ , Qµ ⌘ ��µ↵u�T
↵� , (3a)

Tµ⌫ ⌘
1

2

✓
�µ↵�⌫� +�⌫↵�µ� �

2

d
�µ⌫�↵�

◆
T↵� , (3b)

N ⌘ �uµJ
µ , Jµ ⌘ �µ↵J

↵ , (3c)

where �↵�
⌘ g↵� + u↵u� projects onto the space orthogonal to u↵. The decompositions (2)

are just identities, true for any symmetric tensor Tµ⌫ and any vector Jµ. In hydrodynamics,

one writes E , P, Qµ, T µ⌫ , N , and J
µ as a derivative expansion. To zeroth order in derivatives,

there are two scalars, T and µ, no transverse vectors, and no transverse traceless 2-tensors.

To first order in derivatives, there are three scalars, Ṫ , @�u�, and µ̇, where the dot stands

for u�@�. There are also three transverse vectors, �⇢�@�T , u̇⇢, and �⇢�@�µ. There is one

transverse traceless symmetric tensor, �µ⌫ = �µ⇢�⌫�(@⇢u� + @�u⇢ �
2
3g⇢�@�u

�). Thus to first

order in derivatives we have

E = ✏+ "1Ṫ /T + "2@�u
� + "3u

�@�(µ/T ) +O(@2) , (4a)

P = p+ ⇡1Ṫ /T + ⇡2@�u
� + ⇡3u

�@�(µ/T ) +O(@2) , (4b)

Q
µ = ✓1u̇

µ + ✓2/T �µ�@�T + ✓3�
µ�@�(µ/T ) +O(@2) , (4c)

T
µ⌫ = �⌘�µ⌫ +O(@2) , (4d)

N = n+ ⌫1Ṫ /T + ⌫2@�u
� + ⌫3u

�@�(µ/T ) +O(@2) , (4e)

J
µ = �1u̇

µ + �2/T �µ�@�T + �3�
µ�@�(µ/T ) +O(@2) , (4f)

where O(@n) denotes terms with n or more derivatives of the hydrodynamic variables. The

factors of 1/T are inserted for notational convenience. At zero-derivative order, the constitu-

tive relations are determined by the three apriori independent parameters ✏, p, and n which

in general all depend on T and µ. As usual, p is the pressure, ✏ is the energy density, and n

is the charge density. At one-derivative order, there are sixteen apriori independent transport

coe�cients (seven for uncharged fluids) "1,2,3, ⇡1,2,3, ✓1,2,3, ⌫1,2,3, �1,2,3, and ⌘, which in gen-

eral all depend on T and µ. Not all of them are genuine one-derivative transport coe�cients

though. As we will see shortly, there are in fact only three genuine one-derivative transport

coe�cients.
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Ṫ ⌘ u�@�T

Genuine O(∂) transport coefficients: 
   Shear viscosity: 𝜂 
   Bulk viscosity: combination of 𝜀1,2,3, 𝜋1,2,3, 𝜈1,2,3  
   Charge/heat conductivity: combination of 𝛾1,3, 𝜃1,3 

u̇µ ⌘ u�@�u
µ



Now comes the most important slide



Constraints: stability and causality

In the space of 𝜀1,2,3, 𝜋1,2,3, 𝜃1,2,3, 𝜈1,2,3, 𝛾1,2,3, 𝜂 there is a sub-
space where hydro is stable and causal. It is necessary to 
keep 𝜀1, 𝜋1, 𝜃1, 𝜈1, 𝛾1 non-zero, positive, and bounded from 
below. PK, arXiv:1907.08191

Bemfica, Disconzi, Noronha, arXiv:1907.12695 

https://arxiv.org/abs/1907.08191
https://arxiv.org/abs/1907.12695


Minimal stable and causal uncharged hydro

ℰ = ϵ + ε1
·T/T + O(∂2)

𝒫 = p + π1
·T/T + (−ζ + v2

s (π1 − v2
s ε1)) ∂⋅u + O(∂2)

𝒬μ = θ ( ·uμ +
1
T

Δμλ∂λT) + O(∂2)

𝒯μν = − ησμν + O(∂2)

Tμν = ℰuμuν + 𝒫Δμν + 𝒬μuν + 𝒬νuμ + 𝒯μν

Three parameters                           besides ε1(T ), π1(T ), θ(T ) η(T ), ζ(T )



Linear perturbations, uniform moving fluid

Im!(k) 6 0

lim
k!1

Re !(k)

k
< 1

Stability:

Causality:

Lorentz covariance gives no simple relations between ω(k) 
at v=0 and ω′(k′) at v≠0 unless ω(k) is linear. 

If causality is not satisfied for the fluid at rest, then the 
uniformly moving fluid will have unstable modes.



Example: shear waves in a moving fluid, small k

!(k) = k·v � i⌘

✏+ p

p
1�v2 (k2 �

�
k·v)2

�
+O(k3)

!(k) =
i(✏+p)

p
1�v2

⌘v2 � ✓
+O(k·v)

gapless, stable

gapped, stable for θ>η only!

E.g. the Landau-Lifshitz frame sets θ=0, predicts instability

✓ ⌘ ✓1 = ✓2



Example: shear waves in a static fluid, large k

causal for θ>η only!

E.g. the Landau-Lifshitz frame sets θ=0, predicts acausality

ω(k) = ± (η/θ)1/2 |k |



Figure 3: Constraints on the transport coe�cients ✓ and "1 obtained by demanding that the

sound-channel modes for the fluid at rest are stable and causal. For illustrative purposes, we

have taken "2 = 0, ⇡1/�s = 3/v2s . The stability region is shaded with a colour corresponding

to a given value of vs. The stability region is larger for smaller vs. Left: the region where

all modes are stable. Right: the region where all modes are stable and the short-wavelength

modes are causal, limk!1 |!(k)/k| < 1. In the right plot, the origin "1 = ✓ = 0 is always

outside the stability region.

where v2s ⌘ @p0/@✏0 is the speed of sound, �s ⌘
4
3⌘ + ⇣ sets the damping of sound waves, and

w0 ⌘ ✏0 + p0 as before.13 More generally, Fsound(v0 6=0) can be obtained by Lorentz boosting

the four-vector (!,k) in the above Fsound(v0=0), as in Eq. (4.1). If we measure ! and k

in units of w0/�s, the stability of the sound-channel eigenmodes is determined by only four

dimensionless parameters: "1,2/�s, ⇡1/�s, and ✓/�s. We will assume that the equation of state

is such that the speed of sound is less than the speed of light, 0 < vs < 1.

To get a sense of the sound-channel stability constraints, let us look at the fluid at rest

first, i.e. v0 = 0. At small k, there are two sound waves, and two gapped modes:

!(k) = ±vs|k|�
i

2

�s
✏0+p0

k2 +O(k3) , (4.9)

!(k) = �i
✏0+p0
v2s"1

+O(k2) , !(k) = �i
✏0+p0

✓
+O(k2) . (4.10)

Clearly, stability in the sound channel requires

�s > 0 , "1 > 0 , ✓ > 0 . (4.11)

At arbitrary k, we have to study the zeroes of (4.8). Setting ! = i� in Eq. (4.8) gives rise

13 The coe�cient ⇡2 has been traded for the bulk viscosity ⇣, according to the formula in footnote 8.
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Stable and causal frames for uncharged fluids
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origin is excluded

Plot for

PK, arXiv:1907.08191

γs ≡
4
3

η + ζ

https://arxiv.org/abs/1907.08191
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Figure 2: Real and imaginary parts of the shear channel eigenfrequencies, shown for v0 = 0.9

and ✓/⌘ = 2, for di↵erent angles 0 6 � 6 ⇡/2 of the wave vector k with respect to v0. Each

colour corresponds to a given value of � (blue corresponds to � = 0, purple to � = ⇡/2),

k ⌘ |k|, and w0 ⌘ (✏0+p0). At small k, the gapless and the gapped modes (4.4), (4.5) are

clearly visible. At large k, the modes follow a linear dispersion relation ! = cshear(�)k, with

the velocity cshear(�) determined by Eq. (4.7). The dashed lines denote the light cone ! = ±k.

is responsible for the instability is outside of the validity regime of the hydrodynamic ap-

proximation, and therefore its physical predictions should not be trusted. Nevertheless, it is

important that Im!(k) < 0 is true for all modes, both gapless and gapped, in order to ensure

that the hydrodynamic equations have predictive power at macroscopic times.

At large k, the modes follow a linear dispersion relation, ! = cshear(�)k, where � is the

angle between v0 and k. The velocity cshear determined by
�
✓�v20⌘

�
c2shear � 2v0 cos� (✓�⌘) cshear + v20

�
✓ cos2 �+ ⌘ sin2 �

�
� ⌘ = 0 , (4.7)

with |v0| < 1. The solutions are real and bounded by

|cshear| <
1 + |v0|(✓/⌘)1/2

|v0|+ (✓/⌘)1/2
< 1 ,

for ✓ > ⌘. As an illustration, the dispersion relations in the shear channel are plotted in Fig. 2,

with ! and |k| in units of (✏0+p0)/⌘.

A short exercise shows that the condition (4.6) guarantees that the solutions of (4.3) have

Im!(k) 6 0 for all k. Thus Eq. (4.6) is the stability criterion for shear-channel fluctuations

in first-order relativistic hydrodynamics.

4.2 Sound channel

We now come to sound-channel oscillations. In the sound channel, the eigenfrequencies !(k)

are determined by the zeroes of

Fsound(v0=0,!,k) = v2s"1✓ !
4 + iw0(v

2
s"1+✓)!3

� ik2w0
�
�s + v4s"1 + v2s✓

�
!

�
�
w2
0 + k2v2s

�
v4s"

2
1 + �s"1 + ("2+⇡1)(✓�v2s"1) + "2⇡1

��
!2

+ k2v2s
�
w2
0 + k2✓(v2s("2+⇡1�v2s"1)� �s)

�
, (4.8)
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Typical plots of ω(k) in the stable region
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Figure 5: Real and imaginary parts of the sound channel eigenfrequencies, shown for v0 = 0.9,

and di↵erent angles 0 6 � 6 ⇡/2 of the wave vector k with respect to v0. Each colour

corresponds to a given value of � (blue corresponds to � = 0, purple to � = ⇡/2), k ⌘ |k|,

and w0 ⌘ (✏0+p0). For illustrative purposes, the speed of sound is taken as vs = 0.5, and

the values of the transport coe�cients were taken as follows: v2s"1/�s = 3, ✓/�s = 4, "2 = 0,

⇡1/�s = 3/v2s . The dashed lines denote the light cone ! = ±k. The values of "1 and ✓ are

inside the stability region of Fig. 3 (right), near the boundary of the stability region.

For any finite value of the shear viscosity ⌘>0 this excludes a finite neighbourhood of "1=✓=0,

as indicated in Fig. 3, right. The Landau-Lifshitz hydrodynamics of uncharged fluids sets

"1 = ✓ = 0, and therefore predicts that the thermal equilibrium state at v0 6= 0 is unstable.

The stability criteria become particularly simple for hydrodynamics of conformal theories.

For uncharged fluids, conformal symmetry in 3+1 dimensions implies that

"1 = 3⇡1 , "2 = 3⇡2 , ⇡1 = 3⇡2 , (4.22)

see Appendix B. The speed of sound is vs = 1/
p
3, and the bulk viscosity vanishes. Thus

there are only three independent one-derivative transport coe�cients, which can be taken as

⇡1, ✓, and ⌘. The equilibrium state is stable if

1�
3⌘

✓
�

⌘

⇡1
> 0 , ⇡1 > 4⌘ . (4.23)

This agrees with the conditions found in Ref. [19]. It order to satisfy (4.23), it is su�cient

to take ✓ > 4⌘, ⇡1 > 4⌘ in order to ensure the stability and causality of first-order conformal

hydrodynamics.

5 Discussion

In this paper we have studied linear perturbations of the thermal equilibrium state in rela-

tivistic hydrodynamics. In a Lorentz-covariant theory, if the fluctuations are not causal [in

the sense of violating Eq. (3.2)], they are also unstable. Our focus was on first-order hy-

drodynamics. The theory is “first-order” in the sense that our constitutive relations (2.2)
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Entropy current

one-derivative 
contribution

Using the contraction (A.6), the divergence of the canonical entropy current is

T@µS
µ
canon = �(E � ✏)

Ṫ

T
� (P � p)@�u

�
�

 
@µT

T
+

uµṪ

T
+ u̇µ

!
Qµ �

1

2
�µ⌫T

µ⌫ .

So far we haven’t said anything about the constitutive relations. Now let us substitute the

definitions of the transport coe�cients in (2.4), which gives

T@µS
µ
canon =� "1

 
Ṫ

T

!2

� ⇡2
⇣
@�u

�
⌘2

� ✓2
(�µ↵@↵T )(�µ�@�T )

T 2
� ✓1u̇

µu̇µ +
⌘

2
�µ⌫�

µ⌫

� ("2 + ⇡1)
Ṫ

T
@�u

�
� (✓1 + ✓2)

u̇µ�µ⌫@⌫T

T
. (A.7)

In the right-hand side of (A.7), each square in the first line is positive semi-definite.15 On

the other hand, the terms in the second line in (A.7) can be of either sign. A non-negative

entropy production @µS
µ
canon > 0 for an arbitrary fluid flow amounts to ⌘ > 0, together with

demanding that the matrices

Ms ⌘

 
�"1 �

1
2("2 + ⇡1)

�
1
2("2 + ⇡1) �⇡2

!
, Mv ⌘

 
�✓1 �

1
2(✓1 + ✓2)

�
1
2(✓1 + ✓2) �✓2

!
(A.8)

are positive semi-definite. Demanding that the principal minors are non-negative, it is easy to

see that Mv is positive semi-definite only if ✓1 = ✓2 6 0. Similarly, Ms is positive semi-definite

only if "1 6 0, ⇡2 6 0, and 4"1⇡2 � ("2 + ⇡1)2 > 0.

One may be tempted to take these constraints on "1,2, ⇡1,2, ✓1,2 at face value. However,

doing so would be incorrect. These constraints follow by demanding that @µS
µ
canon > 0 for

all solutions to the first-order hydrodynamic equations, both physical (small gradients) and

not (large gradients). If the entropy current is to have a physical interpretation, one can only

legitimately insist that @µS
µ
canon > 0 is true for physical solutions only. Put di↵erently, we have

found that a frame-independent entropy current constrains frame-dependent quantities such

as "1, so something is amiss with the argument. In order to fix the problem, the derivative

expansion has to be implemented for the on-shell quantities in the right-hand side of Eq. (A.7).

Recall that @µS
µ
canon > 0 is only supposed to be true for flows that satisfy first-order hydro
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So far we haven’t said anything about the constitutive relations. Now let us substitute the

definitions of the transport coe�cients in (2.4), which gives

T@µS
µ
canon =� "1

 
Ṫ
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In the right-hand side of (A.7), each square in the first line is positive semi-definite.15 On
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are positive semi-definite. Demanding that the principal minors are non-negative, it is easy to
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on-shell

TSμ
canon = puμ − Tμνuν , ∂μSμ

canon = − Tμν
(1) ∂μ( uν

T )

η > 0 , θ1 = θ2 ⩽ 0 , ε1 ⩽ 0 , π2 ⩽ 0 , 4ε1π2 − (ε2 + π1)2 ⩾ 0
Positive only if

😕

+O(@3)

on-shell
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are positive semi-definite. Demanding that the principal minors are non-negative, it is easy to

see that Mv is positive semi-definite only if ✓1 = ✓2 6 0. Similarly, Ms is positive semi-definite

only if "1 6 0, ⇡2 6 0, and 4"1⇡2 � ("2 + ⇡1)2 > 0.

One may be tempted to take these constraints on "1,2, ⇡1,2, ✓1,2 at face value. However,

doing so would be incorrect. These constraints follow by demanding that @µS
µ
canon > 0 for

all solutions to the first-order hydrodynamic equations, both physical (small gradients) and

not (large gradients). If the entropy current is to have a physical interpretation, one can only

legitimately insist that @µS
µ
canon > 0 is true for physical solutions only. Put di↵erently, we have

found that a frame-independent entropy current constrains frame-dependent quantities such
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Entropy current

one-derivative 
contribution

on-shell
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Ṫ

T
@�u

�
� (✓1 + ✓2)

u̇µ�µ⌫@⌫T

T
. (A.7)

In the right-hand side of (A.7), each square in the first line is positive semi-definite.15 On

the other hand, the terms in the second line in (A.7) can be of either sign. A non-negative

entropy production @µS
µ
canon > 0 for an arbitrary fluid flow amounts to ⌘ > 0, together with

demanding that the matrices

Ms ⌘

 
�"1 �

1
2("2 + ⇡1)

�
1
2("2 + ⇡1) �⇡2

!
, Mv ⌘

 
�✓1 �

1
2(✓1 + ✓2)

�
1
2(✓1 + ✓2) �✓2

!
(A.8)

are positive semi-definite. Demanding that the principal minors are non-negative, it is easy to

see that Mv is positive semi-definite only if ✓1 = ✓2 6 0. Similarly, Ms is positive semi-definite

only if "1 6 0, ⇡2 6 0, and 4"1⇡2 � ("2 + ⇡1)2 > 0.

One may be tempted to take these constraints on "1,2, ⇡1,2, ✓1,2 at face value. However,

doing so would be incorrect. These constraints follow by demanding that @µS
µ
canon > 0 for

all solutions to the first-order hydrodynamic equations, both physical (small gradients) and

not (large gradients). If the entropy current is to have a physical interpretation, one can only

legitimately insist that @µS
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canon > 0 is true for physical solutions only. Put di↵erently, we have

found that a frame-independent entropy current constrains frame-dependent quantities such
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on-shell

this combination is ζ

η > 0 , ζ > 0
It had to be like this b/c on-shell and up to O(∂2) the theory 
is just the standard first-order hydro 



Conclusions

Do what we’ve always been taught to do in field theory: 
write down every term allowed by the symmetry, then 
you will find a 1-st order relativistic hydro that is stable 
and causal, and only uses the same variables as the 
non-relativistic Navier-Stokes equations. 

I only talked about linear stability and causality. One can 
show that the non-linear hydro equations in the general 
frame are causal, well-posed, and can be coupled to 
Einstein’s equations Bemfica, Disconzi, Noronha, arXiv:1907.12695 

https://arxiv.org/abs/1907.12695


What’s next for the stable-frame hydro?

Viable numerical schemes? 

Heavy-ion applications? 

How does it compare with the Israel-Stewart hydro? 

Compare the new hydro to AdS/CFT evolution of Tμν? 

What happens at O(∂2)? See also David’s talk yesterday.



Thank you!


