From spin chains to real-time thermal field theory using tensor networks

Johannes Knaute

Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Gravity, Quantum Fields \& Information [aei.mpg.de/GQFI]
Collaborators: M.C. Bañuls, M.P. Heller, K. Jansen, V. Svensson
Theoretical Foundations of Relativistic Hydrodynamics, Banff, 26.11.2019

Introduction and Motivation

- the understanding of quantum many-body systems is of central interest in condensed matter and high-energy physics
- collective phases of QCD matter are probed in heavy-ion collisions: relaxation from non-equilibrium to QGP

- Tensor Networks (TNs) are representations of quantum many-body states in a tensor product basis
- They capture relevant entanglement properties and allow efficient time simulation
\Rightarrow explore thermal quenches of 1D Ising spin chain to extract real-time QFT dynamics

The quantity we are interested in...

- dynamics in linear response theory:

$$
\delta\langle\mathcal{O}(t, x)\rangle=\int d \tilde{t} d \tilde{x} G_{R}(t-\tilde{t}, x-\tilde{x}) \delta J(\tilde{t}, \tilde{x})
$$

 source of Hamiltonian H retarded 2-point function at non-zero temperature $T=1 / \beta$

$$
\begin{gathered}
\downarrow \\
G_{R}(t-\tilde{t}, x-\tilde{x})=i \theta(t-\tilde{t}) \operatorname{Tr}\left(Z_{\beta}^{-1} e^{-\beta H}[\mathcal{O}(t, x), \mathcal{O}(\tilde{t}, \tilde{x})]\right)
\end{gathered}
$$

- in Fourier space, time response is governed by structure of $G_{R}(\omega, p)$ in complex ω plane:

$$
\delta\langle\mathcal{O}(t, p)\rangle=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d \omega G_{R}(\omega, p) \delta J(-\omega,-p) e^{-i \omega t}
$$

The quantum Ising model

$$
H=-J\left(\sum_{j=1}^{N-1} \sigma_{z}^{j} \sigma_{z}^{j+1}+h \sum_{j=1}^{N} \sigma_{x}^{j}+g \sum_{j=1}^{N} \sigma_{z}^{j}\right)
$$

longitudinal field

The quantum Ising model

$$
H=-J\left(\sum_{j=1}^{N-1} \sigma_{z}^{j} \sigma_{z}^{j+1}+h \sum_{j=1}^{N} \sigma_{x}^{j}+g \sum_{j=1}^{N} \sigma_{z}^{j}\right)
$$

The quantum Ising model

$$
H=-J\left(\sum_{j=1}^{N-1} \sigma_{z}^{j} \sigma_{z}^{j+1}+h \sum_{j=1}^{N} \sigma_{x}^{j}+g \sum_{j=1}^{N} \sigma_{z}^{j}\right)
$$

- the full scaling Ising field theory Hamiltonian in presence of transverse and longitudinal perturbations has the form [Rakovszky et al. 2016]:

$$
H=\int_{-\infty}^{\infty} d x\left\{\frac{1}{2 \pi}\left[\frac{i}{2}\left(\psi(x) \partial_{x} \psi(x)-\bar{\psi}(x) \partial_{x} \bar{\psi}(x)\right)-i M_{h} \bar{\psi}(x) \psi(x)\right]+\bar{g} \sigma(x)\right\}
$$

continuum limit:

$$
\begin{aligned}
M_{h} & =2 J|1-h| \quad \beta \omega=F\left[\beta J, \beta M_{h}, \beta M_{\bar{g}}\right] \\
\bar{g} & =\frac{2}{\bar{s}} J^{15 / 8} g, M_{\bar{g}}=\bar{\eta}|\bar{g}|^{8 / 15}
\end{aligned}
$$

$N \rightarrow \infty, \beta J \gg 1$

Tensor Networks

- the Hilbert space of a generic quantum state is huge:

$$
\begin{aligned}
&|\Psi\rangle=\sum_{i_{1}, i_{2}, \ldots, i_{N}} \psi_{i_{1}, i_{2}, \ldots, i_{N}}\left|i_{1}\right\rangle\left|i_{2}\right\rangle \cdots\left|i_{N}\right\rangle, \quad i_{n}=1 \ldots d \\
& \begin{array}{l}
\text { N-legged tensor: } \\
\text { exponentially many coefficients } \\
\text { in N-body Hilbert space: } d^{N}
\end{array}
\end{aligned}
$$

Tensor Networks

- the Hilbert space of a generic quantum state is huge:

$$
\begin{array}{ll}
|\Psi\rangle=\sum_{i_{1}, i_{2}, \ldots, i_{N}} \psi_{i_{1}, i_{2}, \ldots, i_{N}}\left|i_{1}\right\rangle\left|i_{2}\right\rangle \cdots\left|i_{N}\right\rangle, \quad i_{n}=1 \ldots d \\
& \begin{array}{l}
\text { N-legged tensor: } \\
\text { exponentially many coefficients } \\
\text { in N-body Hilbert space: } d^{N}
\end{array}
\end{array}
$$

- ground states of local gapped Hamiltonians satisfy Area law for entanglement entropy [Hastings 2007]:

$$
S(L) \sim L^{D-1}
$$

- Matrix Product States (MPS) as ansätze satisfy this by construction [Schollwöck 2011]:

> advantages and properties of MPS as TN states:
+ efficient description of wave function for large (!) quantum systems
+ no sign problem \Rightarrow application to gauge theories
+ non-perturbative for Hamiltonian systems
+ quantum phases, connection to holography and RG, topological order, higher dimensions...
> advantages and properties of MPS as TN states:
+ efficient description of wave function for large (!) quantum systems
+ no sign problem \Rightarrow application to gauge theories
+ non-perturbative for Hamiltonian systems
+ quantum phases, connection to holography and RG, topological order, higher dimensions...
> time evolution:
We use the TEBD algorithm (time-evolving block decimation [Vidal 2004]) to construct thermal states and perform real-time evolution.
Trotter decomposition: $\quad H=\sum_{i=1}^{N-1} h_{i, i+1} \quad e^{-\tau H}=e^{-\tau H_{\text {odd }}} e^{-\tau H_{\text {even }}}+\mathcal{O}\left(\tau^{2}\right)$
Expectation values are calculated as:

$$
\left\langle O_{2}^{\left[n_{2}\right]}(t) O_{1}^{\left[n_{1}\right]}(0)\right\rangle_{\beta}=\operatorname{Tr}\left[U^{\dagger}(t) O_{2}^{\left[n_{2}\right]} U(t) O_{1}^{\left[n_{1}\right]} \rho(\beta)\right]
$$

for Pauli matrices $O_{j}^{\left[n_{j}\right]}=\sigma_{x, z}^{n_{j}}, \quad \rho(\beta)=e^{-\beta H}, \quad U(t)=e^{-i t H}$

CFT results for correlators

- (1+1)D CFT: $\omega= \pm p-i 2 \pi T(\Delta+2 n)$ for $n \in\{0,1,2, \ldots\}$

$$
\Delta_{\bar{\psi} \psi}=1 \quad \Delta_{\sigma}=\frac{1}{8}
$$

- massive free fermions (transverse Ising model at zero momentum):
\Rightarrow two equivalent representations

+ branch points at physical mass $M=2 M_{h}$, lattice UV scale at $8 J-M$
+ complex structures govern relaxation behavior
+ lowest decaying pole sets thermalization scale
\Rightarrow holographic interpretation as BH quasi normal modes [Sachs et al. 2002]

Numerics with MPS

- retarded thermal 2-point function:

$$
G_{R}(t-\tilde{t}, x-\tilde{x})=i \theta(t-\tilde{t}) \operatorname{Tr}\left(Z_{\beta}^{-1} e^{-\beta H}[\mathcal{O}(t, x), \mathcal{O}(\tilde{t}, \tilde{x})]\right)
$$

for operators $\sigma_{x, z}^{N / 2}(t)$ and $\sigma_{x}(0)$ (global transverse perturbation at zero momentum)

transverse vs. longitudinal response function

- transverse magnetization follows from convolution:

$$
\left\langle\sigma_{x}^{N / 2}\right\rangle(t)=\int_{0}^{t} d t^{\prime} G_{R}\left(t^{\prime}\right) h\left(t^{\prime}\right)
$$

Signal analysis with Prony

- represent function as sum of complex exponentials:

$$
G(t)=\sum_{k=1}^{M} c_{k} e^{\omega_{k} t} \quad c_{k}, \omega_{k} \in \mathbb{C}
$$

1. Determine ω_{k} independent of c_{k} (ESPRIT)
2. Fit c_{k} by least squares

\Rightarrow estimation of stability and uncertainty of poles from parameter variation in Prony and time-shifted analysis window

The integrable QFT limit: MPS results

$$
\begin{aligned}
& \beta M_{h}=0.2 \text { (ferromagnetic) }, \quad \beta M_{\bar{g}}=0, \quad \beta J=\{2,4,8,12,16,32\} \\
& N=100, \quad t=0 \ldots 10
\end{aligned}
$$

free fermion calculation

MPS simulation
$\operatorname{Re}(\omega) \beta / 2 \pi$

| 7.5 | 8. | 8.5 | 9 |
| :--- | :--- | :--- | :--- |Jt

The integrable QFT limit: MPS results

$$
\begin{aligned}
& \beta M_{h}=0.2 \text { (ferromagnetic) }, \quad \beta M_{\bar{g}}=0, \quad \beta J=\{2,4,8,12,16,32\} \\
& N=100, \quad t=0 \ldots 10
\end{aligned}
$$

free fermion calculation

MPS simulation

7.5	8.	8.5	9.	9.5	10.
0.	0.5	1.	1.5	2.	2.5

> extracted decaying thermodynamic poles:

> extracted decaying thermodynamic poles:

+ good agreement with analytical result for first pole
+ second pole partially identifiable
> residues consistent with analytical result in continuum limit:

The non-integrable OFT limit: MPS predictions

$$
\beta M_{h}=0.5, \quad \beta J=\{6,8,10\}, \quad N=100, \quad t=0 \ldots 10
$$

\Rightarrow no movement of poles visible within uncertainties
(zero momentum)
> cross-checks in QFT regime:
identification of nontrivial meson / particle masses and their decay rates of perturbed Ising CFT in different vacuum phases
[Zamolodchikov 2006, 2013; Delfino et al. 2006]
ferromagnetic

(finite size effect)
continuum threshold $2 M_{1}$
paramagnetic

> temperature dependence of residues of meson states:

$\beta J=16, \beta M_{h}=2, \beta M_{\bar{g}}=21.7$

- $\beta J=4, \beta M_{h}=0.5, \beta M_{\bar{g}}=5.42$
* $\beta J=2, \beta M_{h}=0.25, \beta M_{\bar{g}}=2.71$
- temperature dependence of residues of meson states:

SUMMARY

- Tensor network techniques can be used to extract nontrivial real-time thermal field theory dynamics.
- Prony method can be used to numerically evaluate structure of retarded 2point function in frequency plane
\Rightarrow agreement with CFT result / free fermions in integrable regime
\Rightarrow no movement of first decaying thermodynamic pole for non-integrable perturbations
\Rightarrow meson / particle masses and decay rates match predictions from Ising QFT

Outlook:

- residues of transients in non-integrable regime
- finite momentum calculations easily possible
\Rightarrow possible change of frequency structure

BACKUP

> TNs conventions:

$$
a \bigcirc \quad a, \text { number }
$$

$$
A \oint_{j}^{i} A_{i j}, \text { matrix }
$$

$$
v \bigcap_{j} v_{j}, \text { vector } \quad T \overbrace{j_{1}} T_{j_{1} j_{2} \cdots j_{N}} \text {, rank-N tensor }
$$

$$
w \oint=A\} \quad \text { contraction, } \quad w_{j}=\sum_{k} v_{k} A_{k j}
$$

> other types of TN states:

> time evolution:

$$
\begin{aligned}
& H=\sum_{i=1}^{N-1} h_{i, i+1} \quad \text { Trotter decomposition: } \\
& e^{-\tau H}=e^{-\tau h_{1,2}} e^{-\tau h_{2,3}} \cdots e^{-\tau h_{N-1, N}}+\mathcal{O}\left(\tau^{2}\right) \\
& \quad e^{-\tau H}=e^{-\tau H_{\text {odd }}} e^{-\tau H_{\text {even }}}+\mathcal{O}\left(\tau^{2}\right)
\end{aligned}
$$

MPS

MPO

MPO: Matrix Product Operator
\Rightarrow operator representation in tensor product basis

- TEBD algorithm to construct thermal states and real-time evolution: [Vidal 2004]

$$
\begin{aligned}
\rho_{0} & \equiv e^{-\beta H}=e^{-\beta / 2 H} \mathbb{1} \cdot \mathbb{1} e^{-\beta / 2 H} \\
\rho(t) & =e^{-i t H(t)} \rho_{0} e^{i t H(t)} \quad\left\langle O_{2}^{\left[n_{2}\right]}(t) O_{1}^{\left[n_{1}\right]}(0)\right\rangle_{\beta}=\operatorname{Tr}\left[U^{\dagger}(t) O_{2}^{\left[n_{2}\right]} U(t) O_{1}^{\left[n_{1}\right]} \rho(\beta)\right]
\end{aligned}
$$

Signal analysis with Prony

- examples of Prony analyses of the retarded transverse 2-point correlator (from numerical evaluation of integral):

large mass

- mapping of the integrable transverse field Ising model to massive free fermions:

$$
\begin{gathered}
H=\sum_{k} \varepsilon_{k}\left(\gamma_{k}^{\dagger} \gamma_{k}-1 / 2\right) \\
\varepsilon_{k}=2 \sqrt{J^{2}\left(1+h^{2}-2 h \cos k\right)}
\end{gathered}
$$

- retarded correlator:

$$
G(t, p=0)=\int_{-\pi}^{\pi} d k \frac{\sin \left(2 \varepsilon_{k} t\right)}{e^{\beta \varepsilon_{k}}+1} f(k)
$$

(other) Things to do with TNs...

nonlinear behavior in thermal quantum quenches, relaxation, thermalization...

spatial correlations

meson studies

(other) Things to do with TNs...

nonlinear behavior in thermal quantum quenches, relaxation, thermalization...

spatial correlations

QFT regime

