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Introduction and Motivation

• the understanding of quantum many-body systems is of central interest in 
condensed matter and high-energy physics 

• collective phases of QCD matter  
are probed in heavy-ion collisions: 
  

relaxation from non-equilibrium to QGP

2

• Tensor Networks (TNs) are representations of 
quantum many-body states in a tensor product basis 

• They capture relevant entanglement properties and 
allow efficient time simulation

⇒ explore thermal quenches of 1D Ising spin chain  
    to extract real-time QFT dynamics
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The quantity we are interested in…

• dynamics in linear response theory: 
 
 
 
 
 
 
 
 
 
 
  

• in Fourier space, time response is governed by structure of             
in complex     plane:

3

�hO(t, x)i =
Z

dt̃ dx̃GR(t� t̃, x� x̃) �J(t̃, x̃)

local operator source of Hamiltonian H

retarded 2-point function at non-zero temperature T = 1/�

GR(t� t̃, x� x̃) = i ✓(t� t̃) Tr
⇣
Z

�1
� e

��H [O(t, x),O(t̃, x̃)]
⌘

�hO(t, p)i = 1p
2⇡

Z 1

�1
d!GR(!, p) �J(�!,�p) e�i! t

GR(!, p)
!
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The quantum Ising model
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The quantum Ising model

4

Ising CFT

E8 theory

integrable

mapping to free fermions
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The quantum Ising model

• the full scaling Ising field theory Hamiltonian in presence of transverse 
and longitudinal perturbations has the form [Rakovszky et al. 2016]:

4

Ising CFT

E8 theory

integrable

mapping to free fermions

H =

Z 1

�1
dx

⇢
1

2⇡


i

2

�
 (x)@

x

 (x)�  ̄(x)@
x

 ̄(x)
�
� iM

h

 ̄(x) (x)

�
+ ḡ�(x)

�

continuum limit: Mh = 2J |1� h|

ḡ = 2
s̄J

15/8g, Mḡ = ⌘̄|ḡ|8/15

�! = F [�J, �Mh, �Mḡ]

N ! 1, �J � 1
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Tensor Networks

• the Hilbert space of a generic quantum state is huge:

5

… a classical simulation for a quantum problem

| i =
X

i1,i2,...,iN

 i1,i2,...,iN |i1i |i2i · · · |iN i , in = 1 . . . d

N-legged tensor:  
exponentially many coefficients  
in N-body Hilbert space: dN
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Tensor Networks

• the Hilbert space of a generic quantum state is huge:

5

… a classical simulation for a quantum problem

| i =
X

i1,i2,...,iN

 i1,i2,...,iN |i1i |i2i · · · |iN i , in = 1 . . . d

N-legged tensor:  
exponentially many coefficients  
in N-body Hilbert space: dN

many-body Hilbert space

Area law states

• ground states of local gapped Hamiltonians satisfy 
Area law for entanglement entropy [Hastings 2007]: 

• Matrix Product States (MPS) as ansätze  
satisfy this by construction [Schollwöck 2011]:

S(L) ⇠ LD�1

 i1,i2,...,iN ⇠
bond dimension � O(Nd�2) parameters

efficient

| i =
X

i1,i2,...,iN

A1
i1A

2
i2 · · ·A

N
iN |i1i |i2i · · · |iN i
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➤ advantages and properties of MPS as TN states: 
 

+ efficient description of wave function for large (!) quantum systems 
+ no sign problem ⇒ application to gauge theories 
+ non-perturbative for Hamiltonian systems 
+ quantum phases, connection to holography and RG, topological order, higher 
dimensions… 

6/15
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+ quantum phases, connection to holography and RG, topological order, higher 
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➤ time evolution: 
 

We use the TEBD algorithm (time-evolving block decimation [Vidal 2004]) to 
construct thermal states and perform real-time evolution. 
 
 
 
Expectation values are calculated as: 
 
 
 
for Pauli matrices                        ,                           ,

6

H =
N�1X

i=1

hi,i+1Trotter decomposition: e�⌧H = e�⌧H
odde�⌧H

even +O(⌧2)

hO[n2]
2 (t)O[n1]

1 (0)i� = Tr
h
U †(t)O[n2]

2 U(t)O[n1]
1 ⇢(�)

i

O
[nj ]
j

= �
nj
x,z

⇢(�) = e��H U(t) = e�itH
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CFT results for correlators

• (1+1)D CFT: 

• massive free fermions (transverse Ising model at zero momentum): 
⇒ two equivalent representations 
 
 
 
 
 
 
 
 
 
+ branch points at physical mass                 ,  lattice UV scale at 
+ complex structures govern relaxation behavior 
+ lowest decaying pole sets thermalization scale 
⇒ holographic interpretation as BH quasi normal modes [Sachs et al. 2002]

7

! = ±p� i 2⇡ T (�+ 2n) for n 2 {0, 1, 2, . . .}

� ̄ = 1 �� =
1

8
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Numerics with MPS

• retarded thermal 2-point function:  
 
  

 
for operators              and            (global transverse perturbation at zero momentum)  
 
 
 
 
 
 
 
 
 
 
 

• transverse magnetization follows from convolution:

8

GR(t� t̃, x� x̃) = i ✓(t� t̃) Tr
⇣
Z

�1
� e

��H [O(t, x),O(t̃, x̃)]
⌘

�
x

(0)

agreement with free fermion  
mapping at criticality

transverse vs. longitudinal  
response function
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Signal analysis with Prony

• represent function as sum of complex exponentials: 

  
 
1.  Determine       independent of       (ESPRIT)  
2.  Fit      by least squares

9

G(t) =
MX

k=1

cke
!kt ck, !k 2 C

!k ck
ck
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⇒ estimation of stability and uncertainty 
of poles from parameter variation in  
Prony and time-shifted analysis window



The integrable QFT limit: MPS results
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�Mh = 0.2 (ferromagnetic), �Mḡ = 0, �J = {2, 4, 8, 12, 16, 32}
N = 100, t = 0 . . . 10
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➤ extracted decaying thermodynamic poles: 
 
 
 
 
 
 
 

11

free fermion calculation MPS simulation

/15

+ good agreement 
with analytical result 
for first pole 
 
+ second pole 
partially identifiable 



➤ extracted decaying thermodynamic poles: 
 
 
 
 
 
 
 

➤ residues consistent with analytical result in continuum limit:

11

free fermion calculation MPS simulation
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+ good agreement 
with analytical result 
for first pole 
 
+ second pole 
partially identifiable 

integrable ferromagneticat criticality



The non-integrable QFT limit: MPS predictions

12

ferromagnetic paramagnetic

⇒ no movement of poles visible within uncertainties 

(zero momentum)
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�Mh = 0.5, �J = {6, 8, 10}, N = 100, t = 0 . . . 10



➤ cross-checks in QFT regime:  
 

identification of nontrivial meson / particle masses and their decay rates of 
perturbed Ising CFT in different vacuum phases 
[Zamolodchikov 2006, 2013; Delfino et al. 2006]
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boundary excitation  
(finite size effect) continuum threshold 2M1



➤ temperature dependence of residues of meson states:
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➤ temperature dependence of residues of meson states:
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SUMMARY
• Tensor network techniques can be used to extract nontrivial real-time 

thermal field theory dynamics.  

• Prony method can be used to numerically evaluate structure of retarded 2-
point function in frequency plane 

• ⇒ agreement with CFT result / free fermions in integrable regime 

• ⇒ no movement of first decaying thermodynamic pole for non-integrable 
perturbations 
⇒ meson / particle masses and decay rates match predictions from Ising QFT 

•  

Outlook: 

• residues of transients in non-integrable regime 

• finite momentum calculations easily possible 

• ⇒ possible change of frequency structure
15/15



BACKUP

16

➤ TNs conventions: 
 
 
 
 
 
 
 

➤ other types of TN states: 
 
 
 
 

upper slide and PEPS from talk „Tensor networks” by Lukasz Cincio; MERA from [arXiv:0707.1454]

PEPS                                     MERA[Verstraete, Cirac 2004] [Vidal 2006]



➤ time evolution: 
 
 
 
 
 
 
 
 
 
 
 

➤ TEBD algorithm to construct thermal states and real-time evolution: 
[Vidal 2004]
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H =
N�1X

i=1

hi,i+1 Trotter decomposition:

e�⌧H = e�⌧h1,2e�⌧h2,3 · · · e�⌧hN�1,N +O(⌧2)

e�⌧H = e�⌧H
odde�⌧H

even +O(⌧2)

⇢0 ⌘ e��H = e��/2H1 · 1e��/2H

⇢(t) = e�itH(t)⇢0e
itH(t) hO[n2]

2 (t)O[n1]
1 (0)i� = Tr

h
U †(t)O[n2]

2 U(t)O[n1]
1 ⇢(�)

i

MPO: Matrix Product Operator 

⇒ operator representation in tensor product basis
N

n · ⌧

e�⌧h

or

e�i ⌧h

MPS

MPO



Signal analysis with Prony

• examples of Prony analyses of the retarded transverse 2-point correlator (from 
numerical evaluation of integral):

18

zero (transverse) mass intermediate mass

large mass



• mapping of the integrable transverse field Ising model  
to massive free fermions: 
 
 
 
 
 

• retarded correlator:

19

H =
X

k

"k(�
†
k�k � 1/2)

"k = 2

p
J2

(1 + h2 � 2h cos k)

G(t, p = 0) =

Z ⇡

�⇡
dk

sin(2"kt)

e�"k + 1
f(k)



(other) Things to do with TNs…

20

nonlinear behavior in  
thermal quantum quenches,  
relaxation, thermalization…

meson studies

spatial correlations
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