A review of the action principle for hydrodynamics

Amos Yarom

Together with: K. Jensen, N. Pinzani, R. Marjieh

See also: Haehl, Loganayagam, Rangamani
together with Geracie, Narayan, Nizami, Ramirez
and: Crossley, Glorioso, Liu
together with Gao, Rajagopal
and earlier work by: Grozdanov, Polonyi

Schwinger-Keldysh

Given an action, S, we construct

$$
Z=\int D \phi e^{\frac{i}{\hbar} S}
$$

Schwinger-Keldysh

Given an action, S, we construct

$$
Z[A]=\int D \phi e^{\frac{i}{\hbar} S[A]}
$$

Schwinger-Keldysh

Recall that:

$$
\langle 0| \underbrace{J \ldots J}_{n} J|0\rangle \sim \frac{\delta^{n}}{\delta A^{n}} \ln Z[A]
$$

Schwinger-Keldysh

Recall that:

But also

$$
\operatorname{Tr}(e^{-\beta H} \underbrace{J \ldots J}_{n}) \sim \frac{\delta^{n}}{\delta A^{n}} \ln Z_{S K}[A]
$$

Schwinger-Keldysh

Recall that:

$$
\langle 0| \mathcal{T}(\underbrace{J \ldots J}_{n})|0\rangle=\frac{\delta^{n}}{\delta A^{n}} i \ln Z[A]
$$

But also

$$
\operatorname{Tr}(e^{-\beta H} \underbrace{J \ldots J}_{n}) \sim \frac{\delta^{n}}{\delta A^{n}} \ln Z_{S K}[A]
$$

Schwinger-Keldysh

Recall that:

$$
\langle 0| \mathcal{T}(\underbrace{J \ldots J}_{n})|0\rangle=\frac{\delta^{n}}{\delta A^{n}} i \ln Z[A]
$$

But also

$$
\operatorname{Tr}(e^{-\beta H} \underbrace{J \ldots J}_{n}) \sim \frac{\delta^{n}}{\delta A^{n}} i \ln Z_{S K}\left[A_{1}, A_{2}\right]
$$

Schwinger-Keldysh

Recall that:

$$
\langle 0| \mathcal{T}(\underbrace{J \ldots J}_{n})|0\rangle=\frac{\delta^{n}}{\delta A^{n}} i \ln Z[A]
$$

But also

$$
\operatorname{Tr}(e^{-\beta H} \overline{\mathcal{T}}(\underbrace{J \ldots J}_{m}) \mathcal{T}(\underbrace{J \ldots J}_{n}))_{A}=\left.\frac{\delta^{n+m}}{\delta A_{1}^{m} \delta A_{2}^{n}} i \ln Z_{S K}\left[A_{1}, A_{2}\right]\right|_{A_{1}=A_{2}=A}
$$

Schwinger-Keldysh

Recall that:

$$
Z[A]
$$

But also

$$
\operatorname{Tr}\left(e^{-\beta H} \overline{\mathcal{T}}(J \ldots J) \mathcal{T}(J \ldots J)\right)_{A}=\left.\frac{\delta^{n+m}}{\delta A_{1}^{m} \delta A_{2}^{n}} i \ln Z_{S K}\left[A_{1}, A_{2}\right]\right|_{A_{1}=A_{2}=A}
$$

Schwinger-Keldysh

Recall that:

$$
Z[A]=\int D \phi e^{\frac{i}{\hbar} S}
$$

But also

$$
\operatorname{Tr}\left(e^{-\beta H} \overline{\mathcal{T}}(J \ldots J) \mathcal{T}(J \ldots J)\right)_{A}=\left.\frac{\delta^{n+m}}{\delta A_{1}^{m} \delta A_{2}^{n}} i \ln Z_{S K}\left[A_{1}, A_{2}\right]\right|_{A_{1}=A_{2}=A}
$$

Schwinger-Keldysh

Recall that:

$$
Z[A]=\int D \phi e^{\frac{i}{\hbar} S}
$$

But also

$$
Z_{S K}\left[A_{1}, A_{2}\right]=\int D \phi_{1} D \phi_{2} e^{\frac{i}{\hbar}\left(S\left[\phi_{1}, A_{2}\right]-S\left[\phi_{2}, A_{2}\right]\right)}
$$

Schwinger-Keldysh

Recall that:

$$
Z[A]=\int D \phi e^{\frac{i}{\hbar} S}
$$

But also

$$
\begin{aligned}
Z_{S K}\left[A_{1}, A_{2}\right] & =\int D \phi_{1} D \phi_{2} e^{\frac{i}{\hbar}\left(S\left[\phi_{1}, A_{2}\right]-S\left[\phi_{2}, A_{2}\right]\right)} \\
& =\operatorname{Tr}\left(U\left[A_{1}\right] e^{-\beta H} U^{\dagger}\left[A_{2}\right]\right)
\end{aligned}
$$

Schwinger-Keldysh

Recall that:

$$
Z[A]=\int D \phi e^{\frac{i}{\hbar} S}
$$

But also

$$
\begin{aligned}
Z_{S K}\left[A_{1}, A_{2}\right] & =\int D \phi_{1} D \phi_{2} e^{\frac{i}{\hbar}\left(S\left[\phi_{1}, A_{2}\right]-S\left[\phi_{2}, A_{2}\right]\right)} \\
& =\operatorname{Tr}\left(U\left[A_{1}\right] e^{-\beta H} U^{\dagger}\left[A_{2}\right]\right)
\end{aligned}
$$

Schwinger-Keldysh

Recall that:

$$
Z[A] \underset{\frac{n}{\Lambda}<1}{\rightarrow} \int D \xi e^{\frac{i}{\hbar} S_{e f f}}
$$

But also

$$
\begin{aligned}
Z_{S K}\left[A_{1}, A_{2}\right] & =\int D \phi_{1} D \phi_{2} e^{\frac{i}{\hbar}\left(S\left[\phi_{1}, A_{2}\right]-S\left[\phi_{2}, A_{2}\right]\right)} \\
& =\operatorname{Tr}\left(U\left[A_{1}\right] e^{-\beta H} U^{\dagger}\left[A_{2}\right]\right)
\end{aligned}
$$

Schwinger-Keldysh

Recall that:

$$
Z[A]_{\frac{\mu}{\Lambda}<1}^{\rightarrow} \int D \xi e^{\frac{i}{\hbar} S_{e f f}}
$$

But also

$$
Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\mu}{\Lambda} \ll 1}^{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{e f f}}
$$

Schwinger-Keldysh

$$
Z_{S K}\left[A_{1}, A_{2}\right] \underset{\frac{\mu}{\Lambda}<1}{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{e f f}}
$$

Our goal is to find $S_{e f f}$.

Schwinger-Keldysh

$$
Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\mu}{\Lambda}<1}^{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{e f f}}
$$

Our goal is to find $S_{e f f}$.
Symmetries:

Schwinger-Keldysh

$$
Z_{S K}\left[A_{1}, A_{2}\right] \underset{\frac{\mu}{\Lambda}<1}{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{e f f}}
$$

Our goal is to find $S_{e f f}$.

Symmetries:

- Doubled gauge/diff invariance.

$$
Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]
$$

Schwinger-Keldysh

$$
Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\mu}{\Lambda}<1}^{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{e f f}}
$$

Our goal is to find $S_{e f f}$.

Symmetries:

- Doubled gauge/diff invariance.

$$
Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]
$$

- Schwinger-Keldysh symmetry.

$$
Z_{S K}[A, A]=\operatorname{Tr}\left(U[A] e^{-\beta H} U^{\dagger}[A]\right)=1
$$

Schwinger-Keldysh

- Doubled gauge/diff invariance.

$$
Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]
$$

- Schwinger-Keldysh symmetry.

$$
Z_{S K}[A, A]=\operatorname{Tr}\left(U[A] e^{-\beta H} U^{\dagger}[A]\right)=1
$$

- Reality \& positivity

$$
\begin{aligned}
Z_{S K}\left[A_{1}, A_{2}\right]^{*} & =\operatorname{Tr}\left(U^{*}\left[A_{1}^{*}\right] e^{-\beta H^{*}} U^{T}\left[A_{2}^{*}\right]\right) \\
& =\operatorname{Tr}\left(\left(U^{*}\left[A_{1}^{*}\right] e^{-\beta H^{*}} U^{T}\left[A_{2}^{*}\right]\right)^{T}\right) \\
& =Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right]
\end{aligned}
$$

Schwinger-Keldysh

- Doubled gauge/diff invariance.

$$
Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]
$$

- Schwinger-Keldysh symmetry.

$$
Z_{S K}[A, A]=\operatorname{Tr}\left(U[A] e^{-\beta H} U^{\dagger}[A]\right)=1
$$

- Reality \& positivity

$$
Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right]
$$

Schwinger-Keldysh

- Doubled gauge/diff invariance.

$$
Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]
$$

- Schwinger-Keldysh symmetry.

$$
Z_{S K}[A, A]=\operatorname{Tr}\left(U[A] e^{-\beta H} U^{\dagger}[A]\right)=1
$$

- Reality \& positivity

$$
Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1
$$

Schwinger-Keldysh

- Doubled gauge/diff invariance.

$$
Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]
$$

- Schwinger-Keldysh symmetry.

$$
Z_{S K}[A, A]=\operatorname{Tr}\left(U[A] e^{-\beta H} U^{\dagger}[A]\right)=1
$$

- Reality \& positivity

$$
Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1
$$

- KMS (Kubo-Martin-Schwinger)
$\operatorname{Tr}\left(e^{-\beta H} O_{1}\left(t_{1}\right) O_{2}\left(t_{2}\right)\right)=\operatorname{Tr}\left(e^{-\beta H} O_{1}\left(t_{1}\right) e^{\beta H} e^{-\beta H} O_{2}\left(t_{2}\right)\right)=\operatorname{Tr}\left(O_{1}\left(t_{1}+i \beta\right) e^{-\beta H} O_{2}\left(t_{2}\right)\right)$ $=\operatorname{Tr}\left(e^{-\beta H} O_{2}\left(t_{2}\right) O_{1}\left(t_{1}+i \beta\right)\right)$

Schwinger-Keldysh

- Doubled gauge/diff invariance.

$$
Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]
$$

- Schwinger-Keldysh symmetry.

$$
Z_{S K}[A, A]=\operatorname{Tr}\left(U[A] e^{-\beta H} U^{\dagger}[A]\right)=1
$$

- Reality \& positivity

$$
Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1
$$

- KMS (Kubo-Martin-Schwinger)

$$
Z_{S K}\left[A_{1}\left(t_{1}\right), A_{2}\left(t_{2}\right)\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right]
$$

Schwinger-Keldysh

Degrees of freedom.

Schwinger-Keldysh

Degrees of freedom.

- Motivation I (fluid variables)

Schwinger-Keldysh

Degrees of freedom.

- Motivation I (fluid variables)

Euler description of fluids:

Schwinger-Keldysh

Degrees of freedom.

- Motivation I (fluid variables)

Euler description of fluids:

Schwinger-Keldysh

Degrees of freedom.

- Motivation I (fluid variables)

Lagrange description of fluids:

$$
X^{\alpha}\left(\sigma^{0}\right)
$$

Schwinger-Keldysh

Degrees of freedom.

- Motivation I (fluid variables)

Lagrange description of fluids:

Schwinger-Keldysh

Degrees of freedom.

- Motivation I (fluid variables)

Lagrange description of fluids:

Schwinger-Keldysh

Degrees of freedom. $X^{\alpha}\left(\sigma^{0}, \vec{\sigma}\right)$

- Motivation I (fluid variables)

Schwinger-Keldysh

Degrees of freedom. $X^{\alpha}\left(\sigma^{0}, \vec{\sigma}\right)$

- Motivation I (fluid variables)
- Motivation II (fluid equations of motion)

$$
\partial_{\mu} T^{\mu \nu}=0
$$

Schwinger-Keldysh

Degrees of freedom. $X^{\alpha}\left(\sigma^{0}, \vec{\sigma}\right)$

- Motivation I (fluid variables)
- Motivation II (fluid equations of motion)

$$
\partial_{\mu} T^{\mu \nu}=0
$$

We'd like the equations of motion for hydro to be conservation equations.

Schwinger-Keldysh

Degrees of freedom. $X^{\alpha}\left(\sigma^{0}, \vec{\sigma}\right)$

- Motivation I (fluid variables)
- Motivation II (fluid equations of motion)

$$
\partial_{\mu} T^{\mu \nu}=0
$$

We'd like the equations of motion for hydro to be conservation equations.

$$
S=\int d^{d} \sigma \sqrt{-g} L\left(g_{i j}\right)
$$

Schwinger-Keldysh

Degrees of freedom. $X^{\alpha}\left(\sigma^{0}, \vec{\sigma}\right)$

- Motivation I (fluid variables)
- Motivation II (fluid equations of motion)

$$
\partial_{\mu} T^{\mu \nu}=0
$$

We'd like the equations of motion for hydro to be conservation equations.

$$
S=\int d^{d} \sigma \sqrt{-g} L\left(g_{i j}\right) \quad g_{i j}=\partial_{i} X^{\mu} \partial_{j} X^{\nu} g_{\mu \nu}\left(X^{\alpha}\right)
$$

Schwinger-Keldysh

Degrees of freedom. $X^{\alpha}\left(\sigma^{0}, \vec{\sigma}\right)$

- Motivation I (fluid variables)
- Motivation II (fluid equations of motion)

$$
\partial_{\mu} T^{\mu \nu}=0
$$

We'd like the equations of motion for hydro to be conservation equations.

$$
\begin{aligned}
& S=\int d^{d} \sigma \sqrt{-g} L\left(g_{i j}\right) \quad g_{i j}=\partial_{i} X^{\mu} \partial_{j} X^{\nu} g_{\mu \nu}\left(X^{\alpha}\right) \\
& \delta_{X} S=0 \Rightarrow \nabla_{\mu} T^{\mu}{ }_{\nu}=0 \\
&\left(\text { where } T^{\mu \nu}=\partial_{i} X^{\mu} \partial_{j} X^{\nu} T^{i j}\right)
\end{aligned}
$$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\square}{\Lambda} \in 1}^{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
Symmetries:

- $Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]$
- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right]$

Degrees of freedom:

- $X^{\alpha}\left(\sigma^{0}, \vec{\sigma}\right)$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{n}{\Lambda}<1} \rightarrow \int \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
Symmetries:

- $Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]$
- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right]$

Degrees of freedom:

- $X_{1}^{\alpha} \quad X_{2}^{\alpha}$

Schwinger-Keldysh

Degrees of freedom:

- $X_{1}^{\alpha} \quad X_{2}^{\alpha}$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{n}{\Lambda}<1} \rightarrow \int \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
Symmetries:

- $Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]$
- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right]$

Degrees of freedom:

- $X_{1}^{\alpha} \quad X_{2}^{\alpha}$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{n}{\Lambda}<1} \rightarrow \int \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
Symmetries:

- $Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]$
- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right]$

Degrees of freedom:

- $X_{1}^{\alpha} \quad X_{2}^{\alpha}$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\square}{\Lambda}=1}^{\rightarrow} \rightarrow D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\square}{\Lambda}=1}^{\rightarrow} \rightarrow D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right] \rightarrow \underset{\frac{M}{\Lambda}=1}{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

Recall that the KMS symmetry is a \mathbb{Z}_{2} symmetry:

$$
\begin{aligned}
Z_{S K}\left[A_{1}, A_{2}\right] & =Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right] \\
& =Z_{S K}\left[\eta_{A_{1}}^{2} A_{1}\left(t_{1}\right), \eta_{A_{2}}^{2} A_{2}\left(t_{2}+i \beta-i \beta\right)\right]
\end{aligned}
$$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right] \rightarrow \underset{\frac{M}{\Lambda} \neq 1}{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

Recall that the KMS symmetry is a \mathbb{Z}_{2} symmetry:

$$
Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right]
$$

Let us define the action of the \mathbb{Z}_{2} symmetry on fields as K.
$\widetilde{\mathcal{L}}$ is the \mathbb{Z}_{2} transform of $\mathcal{L}: K(\mathcal{L})=\widetilde{\mathcal{L}}$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\square}{\Lambda}=1}^{\rightarrow} \rightarrow D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{\text {eff }}=\int d^{d} \circ d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\square}{\Lambda}=1}^{\rightarrow} \rightarrow D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

- $Z_{S K}[A, A]=1$

Schwinger-Keldysh

SK symmetry:

- $Z_{S K}[A, A]=1$

If we change basis, we find

$$
Z_{S K}\left[\frac{1}{2}\left(A_{1}+A_{2}\right)=A, A_{1}-A_{2}=0\right]=1
$$

Schwinger-Keldysh

SK symmetry:

- $Z_{S K}[A, A]=1$

If we change basis, we find

$$
Z_{S K}\left[\frac{1}{2}\left(A_{1}+A_{2}\right)=A, A_{1}-A_{2}=0\right]=1
$$

Thus:

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3. The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3. The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$

$$
\delta_{g} Z=\int D \phi \delta_{g} e^{i S}
$$

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3.The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$

$$
\begin{aligned}
\delta_{g} Z & =\int D \phi \delta_{g} e^{i S} \\
& =\int D \phi\left(\int d^{d} x \sqrt{-g} \frac{1}{2} \delta_{Q} V^{\mu \nu} \delta g_{\mu \nu}\right) e^{i S}
\end{aligned}
$$

Schwinger-Keldysh

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3.The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$

$$
\begin{aligned}
& \delta_{g} Z=\int D \phi \delta_{g} e^{i S} \\
&=\int D \phi\left(\int d^{d} x \sqrt{-g} \frac{1}{2} \delta_{Q} V^{\mu \nu} \delta g_{\mu \nu}\right) e^{i S} \\
& \delta_{g} S=\int d^{d} x \sqrt{-g} T^{\mu \nu} \delta g_{\mu \nu}
\end{aligned}
$$

Schwinger-Keldysh

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3.The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$

$$
\begin{aligned}
\delta_{g} Z & =\int D \phi \delta_{g} e^{i S} \\
& =\int D \phi\left(\int d^{d} x \sqrt{-g} \frac{1}{2} \delta_{Q} V^{\mu \nu} \delta g_{\mu \nu}\right) e^{i S} \\
& =\int D \phi \delta_{Q}\left(\int d^{d} x \sqrt{-g} \frac{1}{2} V^{\mu \nu} \delta g_{\mu \nu} e^{i S}\right)
\end{aligned}
$$

Schwinger-Keldysh

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3. The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$

$$
\begin{aligned}
\delta_{g} Z & =\int D \phi \delta_{g} e^{i S} \\
& =\int D \phi\left(\int d^{d} x \sqrt{-g} \frac{1}{2} \delta_{Q} V^{\mu \nu} \delta g_{\mu \nu}\right) e^{i S} \\
& =\int D \phi \delta_{Q}\left(\int d^{d} x \sqrt{-g} \frac{1}{2} V^{\mu \nu} \delta g_{\mu \nu} e^{i S}\right) \\
& =0
\end{aligned}
$$

Schwinger-Keldysh

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3.The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$ So a minimal prescription to make $L(\phi)$ topological is:

$$
\text { I. } \mathbb{\beta}=\phi+\theta \psi
$$

Schwinger-Keldysh

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3. The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$

So a minimal prescription to make $L(\phi)$ topological is:
I. $\$=\phi+\theta \psi \quad \theta$ is a fictitious fermonic coordinate in the sense that $\theta^{2}=0$.

Schwinger-Keldysh

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3. The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$ So a minimal prescription to make $L(\phi)$ topological is:
I. $\$=\phi+\theta \psi \quad \theta$ is a fictitious fermonic coordinate
2. $\delta_{Q} \oiint=\frac{\partial}{\partial \theta} \$$ in the sense that $\theta^{2}=0$.

Schwinger-Keldysh

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3.The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$ So a minimal prescription to make $L(\phi)$ topological is:
I. $\mathbb{B}=\phi+\theta \psi \quad \theta$ is a fictitious fermonic coordinate in the sense that $\theta^{2}=0$.
2. $\delta_{Q} \oiint=\frac{\partial}{\partial \theta} \$$
Q is a translation in the θ direction.

Schwinger-Keldysh

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3.The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$ So a minimal prescription to make $L(\phi)$ topological is:
I. $\$=\phi+\theta \psi<\theta$ is a fictitious fermonic coordinate in the sense that $\theta^{2}=0$.
2. $\delta_{Q} \$=\frac{\partial}{\partial \theta} \$$
Q is a translation in the θ direction.
3. $S=\int d \theta d^{d} \sigma L(\$)$

Schwinger-Keldysh

This is a topological symmetry. It is possible to construct topological theories in the following way:
I.A Grassmanian nilpotent operator Q
2. Physical operators (and the action) vanish under Q.
3.The energy momentum tensor is given by: $T^{\mu \nu}=\delta_{Q} V^{\mu \nu}$ So a minimal prescription to make $L(\phi)$ topological is:

$$
\begin{aligned}
& \text { I. } \$=\phi+\theta \psi \\
& \text { 2. } \delta_{Q} \$=\frac{\partial}{\partial \theta} \phi \quad \begin{array}{l}
\theta \text { is a fictitious fermonic coordinate } \\
\text { in the sense that } \theta^{2}=0 .
\end{array} \\
& \text { 3. } S=\int d \theta d^{d} \sigma L(\$) \quad \text { is a translation in the } \theta \text { direction. }
\end{aligned}
$$

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:

Making $L(\phi)$ topological
I. $\Downarrow=\phi+\theta \psi$
2. $Q \oiint=\frac{\partial}{\partial \theta} \rrbracket$
3. $S=\int d \theta d^{d} \sigma L(\$)$

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:

Making $L(\phi)$ topological
I. $\$=\phi+\theta \psi$
2. $Q \phi=\frac{\partial}{\partial \theta} \$$
3. $S=\int d \theta d^{d} \sigma L(\$)$

For the Schwinger-Keldysh theory
I. $\mathbb{X}_{r}=\frac{1}{2}\left(X_{1}+X_{2}\right)+\theta X_{\bar{g}}$

$$
\mathbb{Z}_{a}=X_{g}+\theta\left(X_{1}-X_{2}\right)
$$

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:

Making $L(\phi)$ topological
I. $\beta=\phi+\theta \psi$
2. $Q \$=\frac{\partial}{\partial \theta} \$$
3. $S=\int d \theta d^{d} \sigma L(\$)$

For the Schwinger-Keldysh theory
I. $\mathbb{X}_{r}=\frac{1}{2}\left(X_{1}+X_{2}\right)+\theta X_{\bar{g}}$
$\mathbb{Z}_{a}=X_{g}+\theta\left(X_{1}-X_{2}\right)$
2. $\delta_{Q} \mathcal{K}=\frac{\partial}{\partial \theta} \mathbb{X}$

Schwinger-Keldysh

$$
\left.\frac{\delta^{n}}{\delta\left(A_{1}+A_{2}\right)^{n}} \ln Z_{S K}\right|_{A_{1}-A_{2}=0}=0
$$

This is a topological symmetry. It is possible to construct topological theories in the following way:

Making $L(\phi)$ topological

$$
\text { I. } \phi=\phi+\theta \psi
$$

2. $Q \oiint=\frac{\partial}{\partial \theta} \$$
3. $S=\int d \theta d^{d} \sigma L(\$)$

For the Schwinger-Keldysh theory
I. $\mathbb{K}_{r}=\frac{1}{2}\left(X_{1}+X_{2}\right)+\theta X_{\bar{g}}$

$$
\mathbb{Z}_{a}=X_{g}+\theta\left(X_{1}-X_{2}\right)
$$

2. $\delta_{Q} \mathbb{K}=\frac{\partial}{\partial \theta} \mathbb{K}$
3. $S=\int d \theta d^{d} \sigma L\left(\mathbb{K}_{r}, \mathbb{K}_{a}\right)$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{H_{k}}{\Lambda}=1}^{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{e f f}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{\text {eff }}=\int d^{d} \sigma d \theta d \theta(\mathcal{L}+\widetilde{\mathcal{L}})
$$

- $Z_{S K}[A, A]=1$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right] \rightarrow \underset{\frac{M}{\Lambda} \neq 1}{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \theta(\mathcal{L}+\widetilde{\mathcal{L}})
$$

- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right]$

We find that K and Q do not form a group. We add an extra nilpotent symmetry \bar{Q}.

Schwinger-Keldysh

We find that K and \underline{Q} do not form a group. We add an extra nilpotent symmetry \bar{Q}.

Recall:

$$
\mathbb{X}_{a}=X_{g}+\theta\left(X_{1}-X_{2}\right) \quad \mathbb{X}_{r}=\frac{1}{2}\left(X_{1}+X_{2}\right)+\theta X_{\bar{g}}
$$

Schwinger-Keldysh

We find that K and \underline{Q} do not form a group. We add an extra nilpotent symmetry \bar{Q}.

Now:

$$
\mathbb{X}=X_{r}+\theta X_{\bar{g}}+\bar{\theta} X_{g}+\bar{\theta} \theta X_{a}
$$

Schwinger-Keldysh

We find that K and Q do not form a group. We add an extra nilpotent symmetry \bar{Q}.

Now:

$$
\mathbb{X}=X_{r}+\theta X_{\bar{g}}+\bar{\theta} X_{g}+\bar{\theta} \theta X_{a}
$$

and:

$$
\delta_{Q}=\frac{\partial}{\partial \theta} \quad \delta_{\bar{Q}}=\frac{\partial}{\partial \bar{\theta}}+i \theta £_{\beta}
$$

Schwinger-Keldysh

We find that K and Q do not form a group. We add an extra nilpotent symmetry \bar{Q}.

Now:

$$
\mathbb{X}=X_{r}+\theta X_{\bar{g}}+\bar{\theta} X_{g}+\bar{\theta} \theta X_{a}
$$

and:

$$
\delta_{Q}=\frac{\partial}{\partial \theta} \quad \delta_{\bar{Q}}=\frac{\partial}{\partial \bar{\theta}}+i \theta £_{\beta}
$$

$$
\text { Recall } \rho=e^{-\beta H} \text { or } \rho=e^{\beta^{i} P_{i}}
$$

$$
\text { and we define, e.g., } £_{\beta} \phi=\beta^{i} \partial_{i} \phi
$$

Schwinger-Keldysh

We find that K and Q do not form a group. We add an extra nilpotent symmetry \bar{Q}.

Now:

$$
\mathbb{X}=X_{r}+\theta X_{\bar{g}}+\bar{\theta} X_{g}+\bar{\theta} \theta X_{a}
$$

and:

$$
\delta_{Q}=\frac{\partial}{\partial \theta} \quad \delta_{\bar{Q}}=\frac{\partial}{\partial \bar{\theta}}+i \theta £_{\beta}
$$

and:

$$
S=\int d \theta d^{d} \sigma L\left(\mathbb{X}_{r}, \mathbb{X}_{a}\right)
$$

Schwinger-Keldysh

We find that K and Q do not form a group. We add an extra nilpotent symmetry \bar{Q}.

Now:

$$
\mathbb{X}=X_{r}+\theta X_{\bar{g}}+\bar{\theta} X_{g}+\bar{\theta} \theta X_{a}
$$

and:

$$
\delta_{Q}=\frac{\partial}{\partial \theta} \quad \delta_{\bar{Q}}=\frac{\partial}{\partial \bar{\theta}}+i \theta £_{\beta}
$$

and:

$$
S=\int d \theta d \bar{\theta} L(\mathbb{X})
$$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\square}{\Lambda}=1}^{\rightarrow} \rightarrow D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

We find that K and Q do not form a group. We add an extra nilpotent symmetry \bar{Q}.

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\square}{\Lambda}=1}^{\rightarrow} \rightarrow D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathfrak{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{n_{k}}{\Lambda}=1}^{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{e f f}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\begin{gathered}
\mathcal{L}=\sqrt{-g} \mathcal{L}\left(g_{i j}, \beta^{i}\right) \\
\mathfrak{g}_{i j}=\frac{1}{2}\left(g_{1 i j}(\mathbb{X})+g_{2 i j}(\mathbb{X})\right)+\bar{\theta} \theta\left(g_{1 i j}\left(X_{r}\right)-g_{2 i j}\left(X_{r}\right)\right) \\
g_{1 / 2} i j(X)=\partial_{i} X^{\mu} \partial_{j} X^{\nu} g_{1 / 2 \mu \nu}(X)
\end{gathered}
$$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{\square}{\Lambda}=1}^{\rightarrow} \rightarrow D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {eff }}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\begin{gathered}
\mathcal{L}=\sqrt{-g} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right) \\
\mathfrak{g}_{i j}=\frac{1}{2}\left(g_{1 i j}(\mathcal{X})^{\star}+g_{2 i j}(\mathbb{X})\right)+\bar{\theta} \theta\left(g_{1 i j}\left(X_{r}\right)-g_{2 i j}\left(X_{r}\right)\right) \\
g_{1 / 2} i j(X)=\partial_{i} X^{\mu} \partial_{j} X^{\nu} g_{1 / 2 \mu \nu}(X)
\end{gathered}
$$

Schwinger-Keldysh $Z_{S K}\left[A_{1}, A_{2}\right]_{\frac{H_{k}}{\Lambda}=1}^{\rightarrow} \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{e f f}}$

Our goal is to find $S_{e f f}$.
End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathscr{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

In addition we impose

$$
\operatorname{Im} S_{e f f} \geq 0
$$

due to

$$
\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1
$$

Schwinger-Keldysh

End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Example:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} P\left(-\beta^{i} \mathfrak{g}_{i j} \beta^{j}\right)
$$

Schwinger-Keldysh

End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Example:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} P\left(-\beta^{i} \mathfrak{g}_{i j} \beta^{j}\right) \quad T^{-2}=-\beta^{i} \mathfrak{g}_{i j} \beta^{j}
$$

Schwinger-Keldysh

End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Example:

$$
\mathcal{L}=\sqrt{-g} P(T) \quad T^{-2}=-\beta^{i} \mathfrak{g}_{i j} \beta^{j}
$$

Schwinger-Keldysh

End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Example:

$$
\mathcal{L}=\sqrt{-g} P(T) \quad T^{-2}=-\beta^{i} \mathfrak{g}_{i j} \beta^{j}
$$

Leads to:

$$
T^{i j}=\epsilon u^{i} u^{j}+\left(g^{i j}+u^{i} u^{j}\right) P
$$

Schwinger-Keldysh

End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Example:

$$
\mathcal{L}=\sqrt{-g} P(T) \quad T^{-2}=-\beta^{i} \mathfrak{g}_{i j} \beta^{j}
$$

Leads to:

$$
T^{i j}=\epsilon u^{i} u^{j}+\left(g^{i j}+u^{i} u^{j}\right) P
$$

where:

$$
\epsilon=\frac{\partial P}{\partial T} T-P
$$

Schwinger-Keldysh

End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Example:

$$
\mathcal{L}=\sqrt{-g} P(T)
$$

Leads to:

$$
T^{i j}=\epsilon u^{i} u^{j}+\left(g^{i j}+u^{i} u^{j}\right) P
$$

where:

$$
\epsilon=\frac{\partial P}{\partial T} T-P \quad T \beta^{i}=u^{i} \quad u^{i} u_{i}=-1
$$

Schwinger-Keldysh

End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Example:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} P(T)
$$

Schwinger-Keldysh

End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{G}} \mathcal{L}\left(\mathscr{g}_{i j}, \beta^{i}\right)
$$

Example:

$$
\mathcal{L}=\sqrt{-\mathbb{g}}\left(P-\eta \mathscr{G}^{i k} \mathbb{g}^{j l} D_{\theta} \mathscr{G}_{i j} D_{\bar{\theta}} \mathbb{G}_{k l}\right)
$$

Schwinger-Keldysh

End result:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Example:

$$
\mathcal{L}=\sqrt{-\mathbb{g}}\left(P-\eta \mathfrak{g}^{i k} \mathbb{g}^{j l} D_{\theta \mathbb{G}_{i j}} D_{\bar{\theta} \mathscr{G}_{k l}}\right)
$$

Leads to:

$$
T^{i j}=\epsilon u^{i} u^{j}+\left(g^{i j}+u^{i} u^{j}\right) P-\eta \sigma^{i j}
$$

Summary

$$
Z_{S K}\left[A_{1}, A_{2}\right] \rightarrow \int D \xi_{1} D \xi_{2} e^{\frac{i}{\hbar} S_{\text {位 }}}
$$

Our goal is to find $S_{e f f}$.
Symmetries:

- $Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]$
- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right]$

Degrees of freedom:

- $X_{1}^{\alpha} \quad X_{2}^{\alpha}$

Summary

We found:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathscr{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Outlook

- Generalizations
- Chaos
- Stochastic noise
- AdS/CFT
- Classification \& constraints
- Hidden symmetries

Generalizations

- Generalizations to other fluids

- Non relativistic fluids
- Superfluids
- Anomalies (Glorioso, Liu and Rajagopal 2017, Jensen, Marjieh, Pinzani-Fokeeva, AY, 2017)
- Magneto hydrodynamics via 2-form fields (Glorioso and Son 2018)

Generalizations

- Generalizations to other fluids
- Non relativistic fluids
- Superfluids
- Anomalies (Glorioso, Liu and Rajagopal 2017, Jensen, Marjieh, Pinzani-Fokeeva, AY, 2017)
- Magneto hydrodynamics via 2-form fields (Glorioso and Son 2018)
- Generalizations to out of equilibrium systems
- Floquet systems (Glorioso, Gromov, Ryu, 2019)

Generalizations

- Generalizations to other fluids
- Non relativistic fluids
- Superfluids
- Anomalies (Glorioso, Liu and Rajagopal 2017, Jensen, Marjieh, Pinzani-Fokeeva, AY, 2017)
- Magneto hydrodynamics via 2-form fields (Glorioso and Son 2018)
- Generalizations to out of equilibrium systems
- Floquet systems (Glorioso, Gromov, Ryu, 2019)
- Generalizations to more contours
- Classification (Loganayagam, 2019)

Outlook

- Generalizations
- Chaos
- Stochastic noise
- AdS/CFT
- Classification \& constraints
- Hidden symmetries

Chaos

Chaos can be characterised by

$$
\operatorname{Tr}\left(e^{-\beta H}[V(t), W(0)]^{2}\right) \sim e^{\lambda t}
$$

where

$$
\lambda \leq \lambda_{\max }=2 \pi T
$$

(Maldacena, Shenker, Stanford, 2019)

Chaos

Chaos can be characterised by

$$
\operatorname{Tr}\left(e^{-\beta H}[V(t), W(0)]^{2}\right) \sim e^{\lambda t}
$$

where

$$
\lambda \leq \lambda_{\max }=2 \pi T
$$

(Maldacena, Shenker, Stanford, 2019)

It is possible to compute these 4-pt functions via Schwinger Keldysh theory?

Outlook

- Generalizations

- Chaos
- Stochastic noise
- AdS/CFT
- Classification \& constraints
- Hidden symmetries

Stochastic noise

The 'a' type fields in the action encode stochastic noise which, at the quadratic level is Gaussian-like

$$
\begin{aligned}
Z & \sim \int e^{i \int i X_{a}^{2} G\left(X_{r}\right)+\ldots d^{d} x} D X_{a} D X_{r} \\
& \sim \int e^{-\int X_{a}^{2} G\left(X_{r}\right)+\ldots d^{d} x} D X_{a} D X_{r}
\end{aligned}
$$

Stochastic noise

The 'a' type fields in the action encode stochastic noise which, at the quadratic level is Gaussian-like

$$
\begin{aligned}
Z & \sim \int e^{i \int i X_{a}^{2} G\left(X_{r}\right)+\ldots d^{d} x} D X_{a} D X_{r} \\
& \sim \int e^{-\int X_{a}^{2} G\left(X_{r}\right)+\ldots d^{d} x} D X_{a} D X_{r}
\end{aligned}
$$

E.g., in (Chen-Lin, Delacretaz, Hartnoll, 2018) the authors looked at a theory of a single diffusion mode

$$
\mathcal{L}=i T^{2} \kappa\left(\nabla \phi_{a}\right)^{2}-\phi_{a}\left(\dot{\epsilon}-D \nabla^{2} \epsilon\right)+\nabla^{2} \phi_{a}\left(\frac{1}{2} \lambda \epsilon^{2}+\frac{1}{3} \lambda^{\prime} \epsilon^{3}\right)+i c T^{2}\left(\nabla \phi_{a}\right)^{2}\left(\tilde{\lambda} \epsilon+\tilde{\lambda}^{\prime} \epsilon^{2}\right)+\ldots
$$

Stochastic noise

The 'a' type fields in the action encode stochastic noise which, at the quadratic level is Gaussian-like

$$
\begin{aligned}
Z & \sim \int e^{i \int i X_{a}^{2} G\left(X_{r}\right)+\ldots d^{d} x} D X_{a} D X_{r} \\
& \sim \int e^{-\int X_{a}^{2} G\left(X_{r}\right)+\ldots d^{d} x} D X_{a} D X_{r}
\end{aligned}
$$

E.g., in (Chen-Lin, Delacretaz, Hartnoll, 2018) the authors looked at a theory of a single diffusion mode

$$
\mathcal{L}=i T^{2} \kappa\left(\nabla \phi_{a}\right)^{2}-\phi_{a}\left(\dot{\epsilon}-D \nabla^{2} \epsilon\right)+\nabla^{2} \phi_{a}\left(\frac{1}{2} \lambda \epsilon^{2}+\frac{1}{3} \lambda^{\prime} \epsilon^{3}\right)+i c T^{2}\left(\nabla \phi_{a}\right)^{2}\left(\tilde{\lambda} \epsilon+\tilde{\lambda}^{\prime} \epsilon^{2}\right)+\ldots
$$

This was preceded by (Kovtun, Moore, Romatschke, 2014)

Stochastic noise

The 'a' type fields in the action encode stochastic noise which, at the quadratic level is Gaussian-like

$$
\begin{aligned}
Z & \sim \int e^{i \int i X_{a}^{2} G\left(X_{r}\right)+\ldots d^{d} x} D X_{a} D X_{r} \\
& \sim \int e^{-\int X_{a}^{2} G\left(X_{r}\right)+\ldots d^{d} x} D X_{a} D X_{r}
\end{aligned}
$$

E.g., in (Chen-Lin, Delacretaz, Hartnoll, 2018) the authors looked at a theory of a single diffusion mode

$$
\mathcal{L}=i T^{2} \kappa\left(\nabla \phi_{a}\right)^{2}-\phi_{a}\left(\dot{\epsilon}-D \nabla^{2} \epsilon\right)+\nabla^{2} \phi_{a}\left(\frac{1}{2} \lambda \epsilon^{2}+\frac{1}{3} \lambda^{\prime} \epsilon^{3}\right)+i c T^{2}\left(\nabla \phi_{a}\right)^{2}\left(\tilde{\lambda} \epsilon+\tilde{\lambda}^{\prime} \epsilon^{2}\right)+\ldots
$$

This was preceded by (Kovtun, Moore, Romatschke, 2014)

- Validity of hydro ?
- How do 3rd order terms contribute?
-What about noise associated with particular solutions?

Outlook

- Generalizations
- Chaos
- Stochastic noise
- AdS/CFT
- Classification \& constraints
- Hidden symmetries

AdS/CFT

There exist various equivalent prescriptions for computing the Schwinger-Keldysh action in this background, or fluctuations of it.
(Herzog, Son, 2002, Skenderis, Van Reese, 2008, Son, Teaney, 2009, Crossley, Glorioso, Liu, Wang, 2015, de Boer, Heller, Pinzani-Fokeeva, 2015, Glorioso, Crossley, Liu, 2018, de Boer, Heller, Pinzani-Fokeeva, 2018)

AdS/CFT

There exist various equivalent prescriptions for computing the Schwinger-Keldysh action in this background, or fluctuations of it.

```
(Herzog, Son, 2002, Skenderis, Van Reese, 2008, Son, Teaney,
2009, Crossley, Glorioso, Liu, Wang, 2015, de Boer, Heller,
Pinzani-Fokeeva, 2015, Glorioso, Crossley, Liu, 2018, de Boer,
Heller, Pinzani-Fokeeva, 2018)
```

Can we use this to verify the structure of the effective action?

AdS/CFT

There exist various equivalent prescriptions for computing the Schwinger-Keldysh action in this background, or fluctuations of it.

```
(Herzog, Son, 2002, Skenderis, Van Reese, 2008, Son, Teaney,
2009, Crossley, Glorioso, Liu, Wang, 2015, de Boer, Heller,
Pinzani-Fokeeva, 2015, Glorioso, Crossley, Liu, 2018, de Boer,
Heller, Pinzani-Fokeeva, 2018)
```

Can we use this to verify the structure of the effective action?
Can one see the ghosts in the Schwinger Keldysh action? (Gau, Glorioso, Liu, 2018)

AdS/CFT

There exist various equivalent prescriptions for computing the Schwinger-Keldysh action in this background, or fluctuations of it.

```
(Herzog, Son, 2002, Skenderis, Van Reese, 2008, Son, Teaney,
2009, Crossley, Glorioso, Liu, Wang, 2015, de Boer, Heller,
Pinzani-Fokeeva, 2015, Glorioso, Crossley, Liu, 2018, de Boer,
Heller, Pinzani-Fokeeva, 2018)
```

Can we use this to verify the structure of the effective action?
Can one see the ghosts in the Schwinger Keldysh action? (Gau, Glorioso, Liu, 2018)
Can one find a prescription which is independent of the background geometry?

Outlook

- Generalizations
- Chaos
- Stochastic noise
- AdS/CFT
- Classification \& constraints
- Hidden symmetries

Classification and constraints

Without an effective action, hydro can be thought of as a phenomenological theory:

Classification and constraints

Without an effective action, hydro can be thought of as a phenomenological theory:

- Write down the most general constitutive relations:

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P \eta^{\mu \nu}+\ldots
$$

Classification and constraints

Without an effective action, hydro can be thought of as a phenomenological theory:

- Write down the most general constitutive relations:

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P \eta^{\mu \nu}+\ldots
$$

- Choose a frame:

$$
T^{\mu \nu} u_{\mu}=-\epsilon u^{\nu}
$$

Classification and constraints

Without an effective action, hydro can be thought of as a phenomenological theory:

- Write down the most general constitutive relations:

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P \eta^{\mu \nu}+\ldots
$$

- Choose a frame:

$$
T^{\mu \nu} u_{\mu}=-\epsilon u^{\nu}
$$

- Impose a local version of the second law:

$$
\epsilon+P=\frac{\partial P}{\partial T} T \quad \quad \eta \geq 0
$$

Classification and constraints

Without an effective action, hydro can be thought of as a phenomenological theory:

- Write down the most general constitutive relations:

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P \eta^{\mu \nu}+\ldots
$$

- Choose a frame:

$$
T^{\mu \nu} u_{\mu}=-\epsilon u^{\nu}
$$

- Impose a local version of the second law:

$$
\epsilon+P=\frac{\partial P}{\partial T} T \quad \eta \geq 0
$$

- Impose the Onsager relations:

Classification and constraints

Without an effective action, hydro can be thought of as a phenomenological theory:

- Write down the most general constitutive relations:

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P \eta^{\mu \nu}+\ldots
$$

- Choose a frame:

$$
T^{\mu \nu} u_{\mu}=-\epsilon u^{\nu}
$$

- Impose a local version of the second law:

$$
\epsilon+P=\frac{\partial P}{\partial T} T \quad \quad \eta \geq 0
$$

- Impose the Onsager relations:

Are there more constraints? How does local entropy production arise?

Classification and constraints

Are there more constraints? How does local entropy production arise?
Recall:

- $Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]$
- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-t_{2}-i \beta\right)\right]$

Classification and constraints

Are there more constraints? How does local entropy production arise?
Recall:

- $Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]$
- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-\iota_{2}-\imath \beta\right)\right]$

Classification and constraints

Are there more constraints? How does local entropy production arise?
Recall:

- $Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]$
- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-\iota_{2}-\imath \beta\right)\right]$

Boundedness implies

$$
\operatorname{Im}\left(S_{e f f}\right) \geq 0
$$

Classification and constraints

Are there more constraints? How does local entropy production arise?
Recall:

- $Z_{S K}\left[A_{1}+d \Lambda_{1}, A_{2}\right]=Z_{S K}\left[A_{1}, A_{2}+d \Lambda_{2}\right]=Z_{S K}\left[A_{1}, A_{2}\right]$
- $Z_{S K}[A, A]=1$
- $Z_{S K}\left[A_{1}, A_{2}\right]^{*}=Z_{S K}\left[A_{2}^{*}, A_{1}^{*}\right] \quad\left|Z_{S K}\left[A_{1}, A_{2}\right]\right|^{2} \leq 1$
- $Z_{S K}\left[A_{1}, A_{2}\right]=Z_{S K}\left[\eta_{A_{1}} A_{1}\left(-t_{1}\right), \eta_{A_{2}} A_{2}\left(-\iota_{2}-\imath \beta\right)\right]$

Boundedness implies

$$
\operatorname{Im}\left(S_{e f f}\right) \geq 0
$$

One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{\text {eff }}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.

Consider:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.

Consider:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Note that:

$$
\{Q, \bar{Q}\}=i £_{\beta}
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.

Consider:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

where:

$$
\mathcal{L}=\sqrt{-\mathbb{g}} \mathcal{L}\left(\mathfrak{g}_{i j}, \beta^{i}\right)
$$

Note that:

$$
\{Q, \bar{Q}\}=i £_{\beta}
$$

The current associated with $£_{\beta}$ is the entropy current.

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
Consider:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

The current associated with $£_{\beta}$ is the entropy current:

$$
\nabla_{i} \mathbb{S}^{i}+D_{\theta} \mathbb{S}^{\theta}+D_{\bar{\theta}} \mathbb{S}^{\bar{\theta}}=0
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
Consider:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

The current associated with $£_{\beta}$ is the entropy current:

$$
\nabla_{i} \mathbb{S}^{i}+D_{\theta} \mathbb{S}^{\theta}+D_{\bar{\theta}} \mathbb{S}^{\bar{\theta}}=0
$$

The $\theta=\bar{\theta}=0$ component of this equation is

$$
\nabla_{i} S^{i}+S_{\bar{g}}^{\theta}+S_{g}^{\bar{\theta}}=0
$$

or

$$
\nabla_{i} S^{i}=-S_{\bar{g}}^{\theta}-S_{g}^{\bar{\theta}}
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
Consider:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

The current associated with $£_{\beta}$ is the entropy current:

$$
\nabla_{i} \mathbb{S}^{i}+D_{\theta} \mathbb{S}^{\theta}+D_{\bar{\theta}} \mathbb{S}^{\bar{\theta}}=0
$$

The $\theta=\bar{\theta}=0$ component of this equation is

$$
\nabla_{i} S^{i}+S_{\bar{g}}^{\theta}+S_{g}^{\bar{\theta}}=0
$$

or

$$
\nabla_{i} S^{i}=-S_{\bar{g}}^{\theta}-S_{g}^{\bar{\theta}}
$$

An explicit computation yields:

$$
\operatorname{Im}\left(S_{e f f}\right) \geq 0 \Longrightarrow-\int d^{d} \sigma\left(S_{g}^{\bar{\theta}}+S_{\bar{g}}^{\theta}\right) \geq 0
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
Consider:

$$
S_{e f f}=\int d^{d} \sigma d \theta d \bar{\theta}(\mathcal{L}+\widetilde{\mathcal{L}})
$$

The current associated with $£_{\beta}$ is the entropy current:

$$
\nabla_{i} \mathbb{S}^{i}+D_{\theta} \mathbb{S}^{\theta}+D_{\bar{\theta}} \mathbb{S}^{\bar{\theta}}=0
$$

The $\theta=\bar{\theta}=0$ component of this equation is

$$
\nabla_{i} S^{i}+S_{\bar{g}}^{\theta}+S_{g}^{\bar{\theta}}=0
$$

or

$$
\nabla_{i} S^{i}=-S_{\bar{g}}^{\theta}-S_{g}^{\bar{\theta}}
$$

An explicit computation yields:

$$
\operatorname{Im}\left(S_{e f f}\right) \geq 0 \Longrightarrow-\int d^{d} \sigma\left(S_{g}^{\bar{\theta}}+S_{\bar{g}}^{\theta}\right) \geq 0
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
But $\partial_{\mu} S^{\mu} \geq 0$ is not sufficient to set $\operatorname{Im}\left(S_{e f f}\right) \geq 0$.

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
But $\partial_{\mu} S^{\mu} \geq 0$ is not sufficient to set $\operatorname{Im}\left(S_{e f f}\right) \geq 0$.

$$
\operatorname{Im}\left(S_{e f f}\right)=0 \quad \nabla_{\mu} S^{\mu}=0 \quad \text { Non dissipative }
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
But $\partial_{\mu} S^{\mu} \geq 0$ is not sufficient to set $\operatorname{Im}\left(S_{e f f}\right) \geq 0$.

$$
\begin{array}{lll}
\operatorname{Im}\left(S_{e f f}\right)=0 & \nabla_{\mu} S^{\mu}=0 & \text { Non dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu} \geq 0 & \text { Dissipative }
\end{array}
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
But $\partial_{\mu} S^{\mu} \geq 0$ is not sufficient to set $\operatorname{Im}\left(S_{e f f}\right) \geq 0$.

$$
\begin{array}{lll}
\operatorname{Im}\left(S_{e f f}\right)=0 & \nabla_{\mu} S^{\mu}=0 & \\
\text { Non dissipative } \\
\operatorname{Im}\left(S_{\text {eff }}\right) \geq 0 & \nabla_{\mu} S^{\mu} \geq 0 & \text { Dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu}=0 & \\
\text { Exceptional (Pseudo-dissipative) }
\end{array}
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
But $\partial_{\mu} S^{\mu} \geq 0$ is not sufficient to set $\operatorname{Im}\left(S_{e f f}\right) \geq 0$.

$$
\begin{array}{lll}
\operatorname{Im}\left(S_{e f f}\right)=0 & \nabla_{\mu} S^{\mu}=0 & \text { Non dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu} \geq 0 & \text { Dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu}=0 & \text { Exceptional (Pseudo-dissipative) }
\end{array}
$$

e.g.,

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P g^{\mu \nu}+\gamma^{-}\left(\left(u^{\mu} u^{\nu}+g^{\mu \nu}\right) \sigma^{2}-2 \nabla_{\alpha} u^{\alpha} \sigma^{\mu \nu}\right)
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
But $\partial_{\mu} S^{\mu} \geq 0$ is not sufficient to set $\operatorname{Im}\left(S_{e f f}\right) \geq 0$.

$$
\begin{array}{lll}
\operatorname{Im}\left(S_{e f f}\right)=0 & \nabla_{\mu} S^{\mu}=0 & \text { Non dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu} \geq 0 & \text { Dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu}=0 & \text { Exceptional (Pseudo-dissipative) }
\end{array}
$$

e.g.,

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P g^{\mu \nu}+\gamma^{-}\left(\left(u^{\mu} u^{\nu}+g^{\mu \nu}\right) \sigma^{2}-2 \nabla_{\alpha} u^{\alpha} \sigma^{\mu \nu}\right)
$$

We find:

$$
J_{S}^{\mu}=s u^{\mu}
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
But $\partial_{\mu} S^{\mu} \geq 0$ is not sufficient to set $\operatorname{Im}\left(S_{e f f}\right) \geq 0$.

$$
\begin{array}{lll}
\operatorname{Im}\left(S_{e f f}\right)=0 & \nabla_{\mu} S^{\mu}=0 & \text { Non dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu} \geq 0 & \text { Dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu}=0 & \text { Exceptional (Pseudo-dissipative) }
\end{array}
$$

e.g.,

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P g^{\mu \nu}+\gamma^{-}\left(\left(u^{\mu} u^{\nu}+g^{\mu \nu}\right) \sigma^{2}-2 \nabla_{\alpha} u^{\alpha} \sigma^{\mu \nu}\right)
$$

We find:

$$
J_{S}^{\mu}=s u^{\mu}
$$

But positivity of the effective action implies:

$$
\gamma^{-}=0
$$

Classification and constraints

Boundedness implies $\operatorname{Im}\left(S_{e f f}\right) \geq 0$. One can show that, as a result, $\partial_{\mu} S^{\mu} \geq 0$.
But $\partial_{\mu} S^{\mu} \geq 0$ is not sufficient to set $\operatorname{Im}\left(S_{e f f}\right) \geq 0$.

$$
\begin{array}{lll}
\operatorname{Im}\left(S_{e f f}\right)=0 & \nabla_{\mu} S^{\mu}=0 & \text { Non dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu} \geq 0 & \text { Dissipative } \\
\operatorname{Im}\left(S_{e f f}\right) \geq 0 & \nabla_{\mu} S^{\mu}=0 & \text { Exceptional (Pseudo-dissipative) }
\end{array}
$$

e.g.,

$$
T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}+P g^{\mu \nu}+\gamma^{-}\left(\left(u^{\mu} u^{\nu}+g^{\mu \nu}\right) \sigma^{2}-2 \nabla_{\alpha} u^{\alpha} \sigma^{\mu \nu}\right)
$$

- Are there better examples?
- Is there a geometric interpretation in AdS/CFT?

Hidden symmetries

- Generalizations
- Chaos
- Stochastic noise
- AdS/CFT
- Classification \& constraints
- Hidden symmetries

Hidden symmetries

The Navier Stokes equations are given by:

$$
\begin{aligned}
& \partial_{t} \vec{v}+\vec{v} \cdot \vec{\nabla} \vec{v}+\vec{\nabla} p=\frac{1}{R} \nabla^{2} \vec{v} \\
& \vec{\nabla} \cdot \vec{v}=0
\end{aligned}
$$

Hidden symmetries

The Navier Stokes equations are given by:

$$
\begin{aligned}
& \partial_{t} \vec{v}+\vec{v} \cdot \vec{\nabla} \vec{v}+\vec{\nabla} p=\frac{1}{R} \nabla^{2} \vec{v} \\
& \vec{\nabla} \cdot \vec{v}=0
\end{aligned}
$$

From these it follows that

$$
\partial_{t} E=-\frac{1}{R} \Omega
$$

with

$$
\begin{aligned}
& E=\frac{1}{2} \int v^{2} d^{d} x \quad \Omega=\frac{1}{2} \int \omega_{i j} \omega^{i j} d^{d} x \\
& \omega_{i j}=\partial_{i} v_{j}-\partial_{j} v_{i}
\end{aligned}
$$

Hidden symmetries

The energy equation is

$$
\partial_{t} E=-\frac{1}{R} \Omega
$$

with

$$
E=\frac{1}{2} \int v^{2} d^{d} x \quad \Omega=\frac{1}{2} \int \omega_{i j} \omega^{i j} d^{d} x \quad \omega_{i j}=\partial_{i} v_{j}-\partial_{j} v_{i}
$$

Phenomenologically and numerically one finds that (the dissipative anomaly)

$$
\lim _{R \rightarrow \infty} \frac{1}{R} \Omega \neq 0
$$

Hidden symmetries

The energy equation is

$$
\partial_{t} E=-\frac{1}{R} \Omega
$$

with

$$
E=\frac{1}{2} \int v^{2} d^{d} x \quad \Omega=\frac{1}{2} \int \omega_{i j} \omega^{i j} d^{d} x \quad \omega_{i j}=\partial_{i} v_{j}-\partial_{j} v_{i}
$$

Phenomenologically and numerically one finds that (the dissipative anomaly)

$$
\lim _{R \rightarrow \infty} \frac{1}{R} \Omega \neq 0
$$

This leads to Kolmogorov's theory where energy is dissipated at small scales.

Hidden symmetries

The energy equation is

$$
\partial_{t} E=-\frac{1}{R} \Omega
$$

with

$$
E=\frac{1}{2} \int v^{2} d^{d} x \quad \Omega=\frac{1}{2} \int \omega_{i j} \omega^{i j} d^{d} x \quad \omega_{i j}=\partial_{i} v_{j}-\partial_{j} v_{i}
$$

Phenomenologically and numerically one finds that (the dissipative anomaly)

$$
\lim _{R \rightarrow \infty} \frac{1}{R} \Omega \neq 0
$$

Taking a closer look:

$$
\partial_{t} \Omega=\int \omega_{j i} \omega_{k}^{i} \sigma^{k j} d^{d} x-\frac{1}{R} \int \partial_{k} \omega_{i j} \partial^{k} \omega^{i j}
$$

Hidden symmetries

The energy equation is

$$
\partial_{t} E=-\frac{1}{R} \Omega
$$

with

$$
E=\frac{1}{2} \int v^{2} d^{d} x \quad \Omega=\frac{1}{2} \int \omega_{i j} \omega^{i j} d^{d} x \quad \omega_{i j}=\partial_{i} v_{j}-\partial_{j} v_{i}
$$

Phenomenologically and numerically one finds that (the dissipative anomaly)

$$
\lim _{R \rightarrow \infty} \frac{1}{R} \Omega \neq 0
$$

Taking a closer look:

$$
d=2
$$

$$
\partial_{t} \Omega=\int \omega_{\omega_{j i} \omega^{i} \sigma^{k j} d^{d}} x-\frac{1}{R} \int \partial_{k} \omega_{i j} \partial^{k} \omega^{i j}
$$

Hidden symmetries

The energy equation is

$$
\partial_{t} E=-\frac{1}{R} \Omega
$$

Taking a closer look:

$$
\partial_{t} \Omega=\int \frac{d=2}{\omega_{j i} \omega^{2} d^{d}} x-\frac{1}{R} \int \partial_{k} \omega_{i j} \partial^{k} \omega^{i j}
$$

So in 2 dimensions we have, for large R ,

$$
\partial_{t} E=0 \quad \partial_{t} \Omega=-\frac{1}{R} P
$$

which leads to the inverse cascade picture.

Hidden symmetries

Is there an analog of enstrophy in relativistic flow?

Hidden symmetries

Is there an analog of enstrophy in relativistic flow?
For conformal, uncharged fluids,

$$
J^{\mu}=\frac{\Omega_{\alpha \beta} \Omega^{\alpha \beta}}{T^{2}} u^{\mu}
$$

with

$$
\Omega_{\alpha \beta}=\partial_{\alpha}\left(T u_{\beta}\right)-\partial_{\beta}\left(T u_{\alpha}\right)
$$

satisfies

$$
\partial_{\mu} J^{\mu}=\mathcal{O}\left(\partial^{4}\right)
$$

Hidden symmetries

For conformal, uncharged fluids,

$$
J^{\mu}=\frac{\Omega_{\alpha \beta} \Omega^{\alpha \beta}}{T^{2}} u^{\mu} \quad \partial_{\mu} J^{\mu}=\mathcal{O}\left(\partial^{4}\right)
$$

We can generalise this to other equations of state by looking for symmetries of the effective action:

$$
S=\int \sqrt{-g} P(T, \mu) d^{d+1} \sigma
$$

Hidden symmetries

For conformal, uncharged fluids,

$$
J^{\mu}=\frac{\Omega_{\alpha \beta} \Omega^{\alpha \beta}}{T^{2}} u^{\mu} \quad \partial_{\mu} J^{\mu}=\mathcal{O}\left(\partial^{4}\right)
$$

We can generalise this to other equations of state by looking for symmetries of the effective action:

$$
S=\int \sqrt{-g} P(T, \mu) d^{d+1} \sigma
$$

In 2 spatial dimensions one finds that

$$
\begin{aligned}
& \delta X^{\mu}=\frac{\Omega^{2}}{T s^{2}} u^{\mu}-\frac{2}{s p^{\prime}} P^{\mu \alpha}\left(2 \nabla_{\nu} \Omega^{\nu}{ }_{\alpha}+\frac{\Theta E_{\alpha}}{p^{\prime}}+2 \Omega_{\nu \alpha} a^{\nu}+\frac{2}{s}\left(\frac{\partial s}{\partial T} \nabla_{\nu} T+\frac{\partial s}{\partial \mu} \nabla_{\nu} \mu\right) \Omega_{\alpha}{ }^{\nu}\right) \\
& \delta C=-\frac{\mu \Omega^{2}}{s^{2} T}
\end{aligned}
$$

with

$$
P=p(T f(\mu / T))
$$

Hidden symmetries

More generally, we can generalise this to other equations of state by looking for symmetries of the effective action:

$$
S=\int \sqrt{-g} P(T, \mu) d^{d+1} \sigma
$$

In 2 spatial dimensions one finds that

$$
\begin{aligned}
& \delta X^{\mu}=\frac{\Omega^{2}}{T s^{2}} u^{\mu}-\frac{2}{s p^{\prime}} P^{\mu \alpha}\left(2 \nabla_{\nu} \Omega^{\nu}{ }_{\alpha}+\frac{\Theta E_{\alpha}}{p^{\prime}}+2 \Omega_{\nu \alpha} a^{\nu}+\frac{2}{s}\left(\frac{\partial s}{\partial T} \nabla_{\nu} T+\frac{\partial s}{\partial \mu} \nabla_{\nu} \mu\right) \Omega_{\alpha}{ }^{\nu}\right) \\
& \delta C=-\frac{\mu \Omega^{2}}{s^{2} T}
\end{aligned}
$$

with

$$
P=p(T f(\mu / T))
$$

is a symmetry. The associated current is

$$
J^{\mu}=\frac{\Omega^{2}}{s} u^{\mu} \quad \Omega_{\alpha \beta}=\partial_{\alpha}\left(T f(\mu / T) u_{\beta}\right)-\partial_{\beta}\left(T f(\mu / T) u_{\alpha}\right)
$$

Outlook

- Generalizations
- Chaos
- Stochastic noise
- AdS/CFT
- Classification \& constraints
- Hidden symmetries

