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Fuchsian and quasi-Fuchsian theory
Every quasi-Fuchsian p: 7m1(X) — SL(2,C) = Sp(2, C) acts prop. disc.
on H3 and on Q, := CP* \ A, C 9H3 = CP! = Lag(C?).

o M,=H3/p2 ¥ xR,

e Q,/p=XtuUyr .

T e
w w ‘ What are ‘quasi-Fuchsian’
A A fg representations in Sp(4,C)?
Fuchsian Case quasi-Fuchsian Case p
Q+
'/ .
g o Question
~_ a ' What is the topology of the
roo5 . quotient Q,/p for
Q, C Lag(C*)?
< A ’
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%
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Symplectic spaces and group

@ Symplectic space (Vk,wrk) (with K =R, C).
e Symplectic group Sp(Vk, wk).
o L C Vi isotropic if L C L*«x and Lagrangian if L = Ltex

Example
o Vo =C*=CO[X, Y] and wc defined by we (X3, Y3) =1 and
we(X2Y, XY?) = -1,
e Sp(Vc,we) = Sp(4,C).
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Symplectic Anosov representations
Definition (Labourie)

p: m(X) — Sp(2n,K) is Q;—Anosov if 3 continuous p—equivariant
£): Doo(m (X)) — P(K?") sit.

(1] §; is dynamics preserving (¥ v € m1(X), f;('yi) = X;IE,y));

(2] §; transverse (¥ t # s, f;(t) and 5;5(5) are transverse);

© + contraction/expansion properties.

Example
e Hitchin reps: conn. comp. of X(7m1(X), Sp(2n,R)) containing
Fuchsian reps m1(X) <5 SL(2, R) 2% Sp(2n, R).
@ Q1—quasi-Hitchin reps: deformation of Hitchin reps
m(T) =5 SL(2, R) 2% Sp(2n, R) — Sp(2n, C) inside
Q1—Anosov reps X, (71(X), Sp(2n, C)).
o deform. of SL(2,R) embeddings; Maximal reps; positive reps; ...
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Properties of (symplectic) Anosov representations

Theorem (Labourie, Guichard-Wienhard)
Given p: m1(X) — Sp(2n,K) Qi—Anosov, then
® p is discrete and faithful.
® p acts proximally on P(K2") (that is, ¥V € m1(X), It x7 € P(K2")
s.t. Yy € P(K2") transverse to xF p(vE")y — x$)

@ the orbit map m1(X) — Sp(2n,K)/K is a quasi-isometrix embedding
wrt the word distance and the Riemannian distance, resp.

In addition, Xq,(m1(X), Sp(2n,K)) is open and Mod(X) acts prop. disc.
on %Ql(ﬂ'l(Z), Sp(2n, K))
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Domain of discontinuity

Given p Q1—Anosov, we have £} Ouo(m1 (X)) — CP" L.
Ve € CP2 1 let Ky = {W € Lag(C2")[¢ ¢ W} C Lag(C?").
Define

Koy = U tetnimemnKee and Qg =Lag(C)\ Ky

Theorem (Guichard—Wienhard)

QQ) is a cocompact domain of discontinuity for the action of p on

Lag(C?") (that is, Qg}j is open and p acts on it freely, properly
discontinuosly and cocompactly).

Question
What is the topology of 95/1) /p?

v
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Main theorem

Conjecture (Dumas-Sanders)

Given p: m(X) — G B—quasi-Hitchin, then QE;'J/,O is a fiber bundle over
a surface with fiber a compact Poincaré duality space.

Dumas - Sanders prove the conjecture for G = SL(3, C).

Theorem (Alessandrini - M. - Wienhard)

Given p: m1(X) — Sp(4,C) Qi1—quasi-Hitchin, then Q&/p is a fiber
bundle over a surface with fiber F and structure group SO(2) and Euler

class 2g — 2. In addition, the fiber F is homeomorphic to a quotient of
(S? x S?)/A,.

The cont. projection Qg1 — H? (which descends to Qg}]/p — ¥) comes
from the study of the space Lag(C*) and its SL(2, C)-orbits.
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SL(2, C)-orbits

First, we study the action of SL(2,C) on Lag(C*).
Recall that C* = C®)[X, Y] and SL(2, C) acts on C* by acting on the
roots of the polynomials.

Consider the Veronese embeddings:

o (1 RP! — CP3 o £2: RP! — Lag(C*)

[a: b] — (bX — aY)3 [a: b] = ((bX —aY)3,(bX — aY)?X).
which can be extended to
o ¢&: CP! — CP3; o ¢&: CP! — Lag(C*).

Recall that V¢ € CP3, K, = {W ¢ Lag(C*)|¢ ¢ W} C Lag(C*).

Question
What are the SL(2, C)-orbits in Lag(C*)?
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SL(2, C)-orbits of Lag(C*)

Proposition

There are 3 SL(2, C)-orbits in Lag(C*):
e Lag(C*)\ Ke = T = {ideal regular hyp. tetrahedra} (open orbit).
o Kgé \ &&(CP*);
o 2(CPY) (closed orbit).

Recall that an ideal hyperbolic tetrahedra is regular <= it has max

volume <= the cross-ratio of its vertices is 1‘%6

Note that Kgé corresponds to “degenerate” ideal regular tetrahedra.
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Sketch of the proof

Ke = Urecm K = {W € Lag(C*) [ I p= (X —Y)* € W}
= {W € Lag(C*) | Vp € W,p(X,Y) = (X = 2Y)q(X, Y)}.
So F: CP! x CP! —» Kq by F([a: b],[c: d]) =

< (bX —aY)3,(bX —aY)’X >=¢&2([a: b]) if[a: b] =[c:d]
{ < (bX —aY)3,(dX — cY)?(bX — aY) > if [a: b] # [c:d]

Remark
K = RP! x CP!.
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Sketch of the proof (summary)

Lag(C*) \ Ka = .

e VW € Lag(C*) \ Kei, 3p € W with a double root. Up to SL(2,C),
we can suppose p = X2Y.
e We study all the Lagrangians containing p = X?Y.

o VW € Lag(C*) \ K 34 p € W with double roots and these 4 roots
form a regular ideal %yperbolic tetrahedra.

O]
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Sketch of the proof (details)

Lag(C*) \ Ko = T.
o VW € Lag(C*), 3p € W s.t.
p(X,Y) = (X —2Y)*(X — z1Y), with z; € CP*.
@ Let zp =0 and z; = o0, so p = X2Y.
Ly2y = {W € Lag(C*) | X2Y € W}
={W = (X2y, X3+ 2y3) | £ c CP!}.

By using the action of SL(2,C), we can assume 2 = 1 and study
W = (X2Y, X3 + Y3). So

Ke, = SL(2,C) - (X?Y, X3 + Y3).
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Sketch of the proof (details)

Lag(C*)\ Ka = T.
o In W =[(X2Y, X3+ Y3)] 34 'special’ polynomials with double
roots. Their associate double and single roots are:

(i) zp =0 and wy = oo;
i) 21 =+v/2 and le—%;
(i) z ==L i3 and w, = L3
)

V4 274 "
(iv) z3 = % and w3 = 12’\‘/5
(Proof: use the notion of discriminant.)
@ The cross ratiois [zg: z1 : 20 : z3] = [wo = wi @ wo @ w3 = 1,9/5.
O
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Main theorem

By sending a tetrahedra into its barycenter (or its degenerations), we
define the cont. projections

Lag(C*) — H? UCP" and Qua — H?,

where

Qa =T U ((CP'\ RP') x RPY) — H® U (CP' \ RP') — H?

Theorem

Given p: m1(X) — Sp(4,C) Qi—Anosov, then Qg})/p is a fiber bundle

over a surface with fiber F and structure group SO(2) and Euler class
2g — 2.

Question
What can we say about the fiber F?
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What can we say about F7?

Theorem
The fiber F is homeomorphic to a quotient of (S x S?)/As.

Let’s describe first S* x S? via mapping cylinders:
o Let M, = T<}(S?) = TY(S?) x [0,1]/(T(S?) x {0} ~ S?) via the
projection p: T*(S?) — S2.
e Then M, Uig M,/ ~ = S? x S2.

T(S?)/As =2 T1o(S?(2,3,3)) (reg. tetrahedra with fixed barycenter).
If we do the same construction replacing T1(S?) with T1°(S?(2, 3, 3)),
we obtain X = (S? x S2)/A,. The fiber F is a quotient of X.
Proposition

The fiber F is not an orbifold and it has 4 singular points: two are cones
over L(3,1)#RP3, and two are cones over L(3,1).
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Theorem (Wolf J.)
There are 6 Sp(4, R)-orbits in Lag(C*):

Ri = {W € Lag(C*) | dim(W N W) = i}.
Then

@ Ro=Hoo U Hi1 U Hoo where H;j = X;; = Sp(4,R)/U(i, )
(open).

o Ry fibers over P(R*) with fiber isomorphic to Xo1 | Xi.0.

e R = Lag(R*) (closed).
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Sketch of the proof
Proof.
0 Ro:
» wc defines a non-degenerate Sp(4, R)—invariant Hermitian form h:
h(v, w) := iwc (v, w);

> Ro=Hoo U H11 U Hoo w/

Hp.q ={W € Ro | hlwxw has signature (p, q)}.

» VW € Ry, then Z = W N W is the complexification of Z’ € P(R*) and
this gives p: R1 — P(R*);

» Let M = Z+«c/Z is a 2—dim. sympl. space. Any W € p~1(Z) is
uniquely determined by Y € Lag(M) s.t. YN'Y = {0}.

© Ry: any W € R; is the complexification of W’ € Lag(R*).
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Ralationship with Q¢

Question
What is the relationship between F and the Sp(4,R)-orbits? }

Sara Maloni Geometry of quasi-Hitchin representations December 9, 2019 17 /19




Introduction Symplectic Anosov representations SL(2, C)-orbits of Lag(C” ology of the quotient Sp(4, R)-orbits End

Open questions

What can we say about the d.o.d. Q C F(C*) for a Fuchsian
representation p: m1(¥X) — SL(2,R) — Sp(4,C)?

What is the connection with Dumas-Sanders’ work? What can we say
for G = Sp(2n, C) or other cases?

What can we say about the quotient of the symmetric space?

What can we say about limit of these representations? Can you
combine punctured Fuchsian groups in order to understand
‘geometrically finite' groups? Are there ‘geometrically infinite' groups?

Can we use other methods to find a fibration?

Sara Maloni Geometry of quasi-Hitchin representations December 9, 2019 18 /19



Sara Maloni Geometry of quasi-Hitchin representations December 9, 2019 19 /19



Introduction Symplectic A representations SL(2, C)-orbits of Lag(C") To g) the quotient Sp(4, R)—orbits End

Cartan decomposition and contraction properties

Let a = {diag(A1,. .-, An, —Any- .., —A1) | A € R} C sp.
Decompose Sp(2n,K) = K exp(a) K. [Problem: not unique!]

Given at = {diag(A1, .-, Any —Ans .-y —A1 | A1 > A2 Ay > 0}, then
Sp(2n,K) = K exp(at) K is unique:
Vg € Sp(2n,K), 3! a; € a™ s.t. kyexp(ag)ka, where

Definition

p: Sp(2n,K) —» a* defined by g — a, is called the Cartan projection of
Sp(2n, K).

Let aj :=€¢j —€j+1 € a* and ap, := 2¢, € a*, where

€; (diag()\l, ce ,)\n, —)\n, ey —)\1)) = )\,’.

p satisfies the contraction property if: V diverging v, € m1(X),
limp 00 i (1(p(7n))) = 0.
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