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Fuchsian and quasi-Fuchsian theory
Every quasi-Fuchsian ρ : π1(Σ) −→ SL(2,C) ∼= Sp(2,C) acts prop. disc.
on H3 and on Ωρ := CP1 \ Λρ ⊂ ∂H3 = CP1 ∼= Lag(C2).

Mρ = H3/ρ ∼= Σ× R;

Ωρ/ρ ∼= Σ+ t Σ−.

The �-equivariance of this retraction is easy to see, as hitting the whole picture by an
element of � doesn’t change the convex hull of the limit set, and if y in the closest point
in C⇤ to x then �y is the closest point in C⇤ to �x. If K ⇢ ⌦ is compact, then r(K)
is compact, and lies in the interior of H3. If �K \ K 6= ? for infinitely many �’s, then
�(r(K)) \ r(K) = r(�(K)) \ r(K) 6= ? for infinitely many �, which is a contradiction.

We now have that � acts properly discontinuously on H3 [ ⌦, and H3 [ ⌦/� = M , a
manifold with boundary. ⌦/� = @M is called the conformal boundary at infinity: as
PSL2(C) acts conformally on the boundary sphere bC, ⌦/� comes with the structure of a
Riemann surface. Note that M is not necessarily compact.

Limit sets of Surface Groups-

Let � be a surface group. If � ⇢ PSL2(R) preserves a copy of H2 inside H3, then in non-
elementary cases the limit set is a circle, and the group is a Fuchsian group. The domain
of discontinuity is a disjoint union of two disks, ⌦+ and ⌦�, and H2/� is conformally
equivalent to both ⌦+/� and ⌦�/� (the retraction r is in fact conformal in the case when
C⇤ is a totally geodesic disc).

As a more interesting case, we can consider the case when the limit set is a general Jordan
curve. This is the called the quasi-Fuchsian case. A Jordan curve still separates the sphere
into two discs, and in fact ⌦+/� and ⌦�/� will still be homeomorphic to a single surface
S, and M ' S ⇥ [0, 1] ' C⇤/�.
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Fuchsian Case quasi-Fuchsian Case

One can show that a group that is bi-Lipschitz equivalent to a Fuchsian group is quasi-
Fuchsian. Furthermore, Ber’s simultaneous uniformization theorem gives that there is a
one-to-one correspondence between quasi-Fuchsian groups considered up to an appropri-
ate equivalence and pairs of points (X,Y ) in Teichmüller space, the space of hyperbolic
structures on X and Y. A central question that will be addressed in these lectures is how
information about the pair (X, Y ) gives information about the quasi-Fuchsian groups and
its quotient manifold.
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Simultaneous Uniformization and Limits of Kleinian Groups
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•Simultaneous Uniformization and Quasi-Fuchsian Groups

Bers’ simultaneous uniformization theorem gives that for two hyperbolic structures X and
Y on a given surface S, there is a quasi-Fuchsian group �(X,Y ) such that the quotient by
�(X,Y ) of the Riemann sphere minus the limit set ⇤ is X [ Y . Let Q(X, Y ) denote the
3-manifold H3/�(X,Y ).
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In fact, the simultaneous uniformization theorem gives that for two conformal structures
X and Y there exist infinitely many subgroups of PSL2(C) as above. Not only do we get
to specify the hyperbolic structures on the boundary but also an isomorphism between the
fundamental groups of the two boundary surfaces. In order to describe this more clearly,
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Question

What are ‘quasi-Fuchsian’
representations in Sp(4,C)?

Question

What is the topology of the
quotient Ωρ/ρ for
Ωρ ⊂ Lag(C4)?

Sara Maloni Geometry of quasi-Hitchin representations December 9, 2019 2 / 19



Introduction Symplectic Anosov representations SL(2,C)–orbits of Lag(C4) Topology of the quotient Sp(4,R)–orbits End

Symplectic spaces and group

Symplectic space (VK, ωK) (with K = R,C).

Symplectic group Sp(VK, ωK).

L ⊂ VK isotropic if L ⊂ L⊥ωK and Lagrangian if L = L⊥ωK .

Example

VC = C4 = C(3)[X ,Y ] and ωC defined by ωC(X 3,Y 3) = 1 and
ωC(X 2Y ,XY 2) = −1

3 .

Sp(VC, ωC) ∼= Sp(4,C).
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Symplectic Anosov representations
Definition (Labourie)

ρ : π1(Σ) −→ Sp(2n,K) is Q1–Anosov if ∃ continuous ρ–equivariant
ξ1
ρ : ∂∞(π1(Σ)) −→ P(K2n) s.t.

1 ξ1
ρ is dynamics preserving (∀ γ ∈ π1(Σ), ξ1

ρ(γ±) = x±ρ(γ));

2 ξ1
ρ transverse (∀ t 6= s, ξ1

ρ(t) and ξ1
ρ(s) are transverse);

3 + contraction/expansion properties.

Example

Hitchin reps: conn. comp. of X(π1(Σ), Sp(2n,R)) containing

Fuchsian reps π1(Σ)
d. f.−−→ SL(2,R)

irred.−−−→ Sp(2n,R).

Q1–quasi-Hitchin reps: deformation of Hitchin reps

π1(Σ)
d. f.−−→ SL(2,R)

irred.−−−→ Sp(2n,R) −→ Sp(2n,C) inside
Q1–Anosov reps XQ1(π1(Σ),Sp(2n,C)).

deform. of SL(2,R) embeddings; Maximal reps; positive reps; ...
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Properties of (symplectic) Anosov representations

Theorem (Labourie, Guichard-Wienhard)

Given ρ : π1(Σ) −→ Sp(2n,K) Q1–Anosov, then

ρ is discrete and faithful.

ρ acts proximally on P(K2n) (that is, ∀γ ∈ π1(Σ), ∃x+
γ , x

−
γ ∈ P(K2n)

s.t. ∀y ∈ P(K2n) transverse to x∓γ ρ(γ±n)y −→ x±γ ).

the orbit map π1(Σ) −→ Sp(2n,K)/K is a quasi-isometrix embedding
wrt the word distance and the Riemannian distance, resp.

In addition, XQ1(π1(Σ),Sp(2n,K)) is open and Mod(Σ) acts prop. disc.
on XQ1(π1(Σ),Sp(2n,K)).
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Domain of discontinuity
Given ρ Q1–Anosov, we have ξ1

ρ : ∂∞(π1(Σ)) −→ CP2n−1.

∀` ∈ CP2n−1 let K` = {W ∈ Lag(C2n)|` ⊂W } ⊂ Lag(C2n).

Define

Kξ1
ρ

=
⋃

t∈∂∞(π1(Σ))Kξ1
ρ(t) and Ωξ1

ρ
= Lag(C2n) \ Kξ1

ρ

Theorem (Guichard–Wienhard)

Ωξ1
ρ

is a cocompact domain of discontinuity for the action of ρ on

Lag(C2n) (that is, Ωξ1
ρ

is open and ρ acts on it freely, properly

discontinuosly and cocompactly).

Question

What is the topology of Ωξ1
ρ
/ρ?
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Main theorem

Conjecture (Dumas-Sanders)

Given ρ : π1(Σ) −→ G B–quasi-Hitchin, then Ωξiρ
/ρ is a fiber bundle over

a surface with fiber a compact Poincaré duality space.

Dumas - Sanders prove the conjecture for G = SL(3,C).

Theorem (Alessandrini - M. - Wienhard)

Given ρ : π1(Σ) −→ Sp(4,C) Q1–quasi-Hitchin, then Ωξ1
ρ
/ρ is a fiber

bundle over a surface with fiber F and structure group SO(2) and Euler
class 2g − 2. In addition, the fiber F is homeomorphic to a quotient of
(S2 × S2)/A4.

The cont. projection Ωξ1
ρ
−→ H2 (which descends to Ωξ1

ρ
/ρ −→ Σ) comes

from the study of the space Lag(C4) and its SL(2,C)–orbits.
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SL(2,C)–orbits

First, we study the action of SL(2,C) on Lag(C4).

Recall that C4 = C(3)[X ,Y ] and SL(2,C) acts on C4 by acting on the
roots of the polynomials.

Consider the Veronese embeddings:

ξ1 : RP1 −→ CP3

[a : b] 7→ (bX − aY )3

ξ2 : RP1 −→ Lag(C4)

[a : b] 7→ 〈(bX − aY )3, (bX − aY )2X 〉.
which can be extended to

ξ1
C : CP1 −→ CP3; ξ2

C : CP1 −→ Lag(C4).

Recall that ∀` ∈ CP3, K` = {W ∈ Lag(C4)|` ⊂W } ⊂ Lag(C4).

Question

What are the SL(2,C)–orbits in Lag(C4)?
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SL(2,C)–orbits of Lag(C4)

Proposition

There are 3 SL(2,C)–orbits in Lag(C4):

Lag(C4) \ Kξ1
C
∼= T = {ideal regular hyp. tetrahedra} (open orbit).

Kξ1
C
\ ξ2

C(CP1);

ξ2
C(CP1) (closed orbit).

Recall that an ideal hyperbolic tetrahedra is regular ⇐⇒ it has max

volume ⇐⇒ the cross-ratio of its vertices is 1−i
√

3
2 .

Note that Kξ1
C

corresponds to “degenerate” ideal regular tetrahedra.
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Sketch of the proof

Kξ1
C
∼= CP1 × CP1.

Kξ1
C

= ∪t∈CP1Kξ1
C(t) = {W ∈ Lag(C4) | ∃ p = (X − z0Y )3 ∈W }

= {W ∈ Lag(C4) | ∀p ∈W , p(X ,Y ) = (X − z0Y )q(X ,Y )}.

So F : CP1 × CP1
∼=−→ Kξ1

C
by F ([a : b], [c : d ]) =

{
< (bX − aY )3, (bX − aY )2X >= ξ2

C([a : b]) if [a : b] = [c : d ]
< (bX − aY )3, (dX − cY )2(bX − aY ) > if [a : b] 6= [c : d ]

Remark

Kξ1
∼= RP1 × CP1.
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Sketch of the proof (summary)

Lag(C4) \ Kξ1
C
∼= T.

∀W ∈ Lag(C4) \ Kξ1
C
, ∃p ∈W with a double root. Up to SL(2,C),

we can suppose p = X 2Y .

We study all the Lagrangians containing p = X 2Y .

∀W ∈ Lag(C4) \ Kξ1
C
∃4 p ∈W with double roots and these 4 roots

form a regular ideal hyperbolic tetrahedra.
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Sketch of the proof (details)

Lag(C4) \ Kξ1
C
∼= T.

∀W ∈ Lag(C4), ∃p ∈W s.t.
p(X ,Y ) = (X − z0Y )2(X − z1Y ), with zi ∈ CP1.

Let z0 = 0 and z1 =∞, so p = X 2Y .
LX 2Y = {W ∈ Lag(C4) | X 2Y ∈W }
= {W = 〈X 2Y ,X 3 + b

aY
3〉 | ba ∈ CP1}.

By using the action of SL(2,C), we can assume b
a = 1 and study

W = 〈X 2Y ,X 3 + Y 3〉. So

Kξ1
C

= SL(2,C) · 〈X 2Y ,X 3 + Y 3〉.
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Sketch of the proof (details)

Lag(C4) \ Kξ1
C
∼= T.

In W = [〈X 2Y ,X 3 + Y 3〉] ∃ 4 ‘special’ polynomials with double
roots. Their associate double and single roots are:

(i) z0 = 0 and w0 =∞;
(ii) z1 = 3

√
2 and w1 = − 1

3√4
;

(iii) z2 = −1−i
√

3
3√4

and w2 = 1+i
√

3
2 3√4

;

(iv) z3 = −1+i
√

3
3√4

and w3 = 1−i
√

3
2 3√4

.

(Proof: use the notion of discriminant.)

The cross ratio is [z0 : z1 : z2 : z3] = [w0 : w1 : w2 : w3] = 1−i
√

3
2 .
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Main theorem
By sending a tetrahedra into its barycenter (or its degenerations), we
define the cont. projections

Lag(C4) −→ H3 ∪ CP1 and Ωξ1 −→ H2,

where

Ωξ1 = T ∪
(
(CP1 \ RP1)× RP1

)
−→ H3 ∪ (CP1 \ RP1) −→ H2

Theorem

Given ρ : π1(Σ) −→ Sp(4,C) Q1–Anosov, then Ωξ1
ρ
/ρ is a fiber bundle

over a surface with fiber F and structure group SO(2) and Euler class
2g − 2.

Question

What can we say about the fiber F?
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What can we say about F?

Theorem

The fiber F is homeomorphic to a quotient of (S2 × S2)/A4.

Let’s describe first S2 × S2 via mapping cylinders:

Let Mp = T≤1(S2) = T1(S2)× [0, 1]/(T1(S2)× {0} ∼ S2) via the
projection p : T1(S2) −→ S2.

Then Mp tid Mp/ ∼ ∼= S2 × S2.

T1(S2)/A4
∼= T1,orb(S2(2, 3, 3)) (reg. tetrahedra with fixed barycenter).

If we do the same construction replacing T1(S2) with T1,orb(S2(2, 3, 3)),
we obtain X = (S2 × S2)/A4. The fiber F is a quotient of X .

Proposition

The fiber F is not an orbifold and it has 4 singular points: two are cones
over L(3, 1)#RP3, and two are cones over L(3, 1).
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Sp(4,R)–orbits

Theorem (Wolf J.)

There are 6 Sp(4,R)–orbits in Lag(C4):

Ri = {W ∈ Lag(C4) | dim(W ∩W ) = i}.

Then

R0 = H2,0
⋃ H1,1

⋃ H0,2 where Hi ,j
∼= Xi ,j = Sp(4,R)/U(i , j)

(open).

R1 fibers over P(R4) with fiber isomorphic to X0,1
⋃

X1,0.

R2
∼= Lag(R4) (closed).
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Sketch of the proof

Proof.
1 R0:

I ωC defines a non-degenerate Sp(4,R)–invariant Hermitian form h:

h(v ,w) := iωC(v ,w);

I R0 = H2,0

⋃ H1,1

⋃ H0,2 w/

Hp,q = {W ∈ R0 | h|W×W has signature (p, q)}.

2 R1:

I ∀W ∈ R1, then Z = W ∩W is the complexification of Z ′ ∈ P(R4) and
this gives p : R1 −→ P(R4);

I Let M = Z⊥ωC /Z is a 2–dim. sympl. space. Any W ∈ p−1(Z ′) is
uniquely determined by Y ∈ Lag(M) s.t. Y ∩ Y = {0}.

3 R2: any W ∈ R2 is the complexification of W ′ ∈ Lag(R4).
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Ralationship with Ωξ1

Question

What is the relationship between F and the Sp(4,R)–orbits?
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Open questions

What can we say about the d.o.d. Ω ⊂ F(C4) for a Fuchsian
representation ρ : π1(Σ) −→ SL(2,R) −→ Sp(4,C)?

What is the connection with Dumas-Sanders’ work? What can we say
for G = Sp(2n,C) or other cases?

What can we say about the quotient of the symmetric space?

What can we say about limit of these representations? Can you
combine punctured Fuchsian groups in order to understand
‘geometrically finite’ groups? Are there ‘geometrically infinite’ groups?

Can we use other methods to find a fibration?
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End
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Cartan decomposition and contraction properties

Let a = {diag(λ1, . . . , λn,−λn, . . . ,−λ1) | λi ∈ R} ⊂ sp.
Decompose Sp(2n,K) = K exp(a) K . [Problem: not unique!]

Given a+ = {diag(λ1, . . . , λn,−λn, . . . ,−λ1 | λ1 ≥ λ2 . . . λn ≥ 0}, then
Sp(2n,K) = K exp(a+) K is unique:
∀g ∈ Sp(2n,K),∃! ag ∈ a+ s.t. k1exp(ag )k2, where

Definition

µ : Sp(2n,K) −→ a+ defined by g 7→ ag is called the Cartan projection of
Sp(2n,K).

Let αi := εi − εi+1 ∈ a∗ and αn := 2εn ∈ a∗, where
εi (diag(λ1, . . . , λn,−λn, . . . ,−λ1)) = λi .
ρ satisfies the contraction property if: ∀ diverging γn ∈ π1(Σ),
limn−→∞ αi (µ(ρ(γn))) =∞.
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