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1. Computing with infinite linear groups: set up

How to represent a group in computer?

Main methods:

Permutations.

Matrices over finite fields.

Generators and relations.

Why linear groups?

- Commonly used representation of groups in group theory and its
applications in mathematics and further afield.

- Convenient and efficient way to represent groups in computer.
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Main challenges

Fundamental algorithmic problems are undecidable.

Complexity issues.

Lack of methods.

Aim

- Design practical methods, algorithms, and software for computing
with linear groups over an arbitrary infinite field.

- Solution of mathematical problems by computer experiments.
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How to represent a linear group in computer?

Methods:

- Finite set of matrices: finitely generated groups.

- Finite set of polynomials: linear algebraic groups.

How to represent a finitely generated linear group in computer?

Given G = 〈g1, . . . , gr 〉 ≤ GL(n,F), F is a (infinite) field.

Aim: symbolic representation of G over an arbitrary infinite field.

Method: G is defined over a finitely generated extension of the prime
subfield of F.

Examples: main fields.

1. Q and algebraic number fields.

2. L = P(x1, . . . , xm), P is a number field or Fq.

3. A finite extension of L.
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Method of finite approximation: congruence homomorphism
techniques.

Given G = 〈S〉. Then G ≤ GL(n,R) for a finitely generated integral
domain R ⊆ F determined by the entries of matrices in S ∪ S−1.

Theorem. The group G is residually finite. Moreover, G is approximated
by matrix groups of degree n over finite fields R/ρ, ρ is maximal.

Reason: R is approximated by finite fields R/ρ, i.e. for any non-zero a ∈ R
there exists a maximal ideal ρ which does not contain a.

Notation: Given an ideal ρ ⊆ R, define the congruence homomorphism
ϕρ : GL(n,R)→ GL(n,R/ρ).

kerϕρ := Γρ (principal congruence subgroup).

G ∩ Γρ := Gρ (congruence subgroup).
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Method for computing (computer realization of finite approximation):

Reduction to, e.g., finite fields via construction of a congruence
homomorphism ϕρ such that Gρ satisfies some special properties.

Advantage: Reduction to computing with matrix groups over finite fields.

Theorem (Wehrfritz et al.). There exists a maximal ideal ρ < R such that
(i) All torsion elements of Γρ are unipotent,i.e. Γρ is torsion-free if
charR = 0.
(ii) If G is solvable-by-finite then Gρ is unipotent-by-abelian.

- We call ϕρ as in the theorem a W-homomorphism.

- We can construct W-homomorphisms for all finitely generated integral
domains R.
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Which algorithms do we need?

1 Recognition algorithms, i.e. testing the type of an input group.

2 Investigation of the structure and properties of the input group.

3 Library of basic functions.
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Algorithms developed: outline.

Testing finiteness: test whether the kernel Gρ of reduction modulo ρ
for a W-homomorphism ϕρ is trivial (if charF = 0).
Full investigation of structure via an isomorphic copy over a finite
field.

Testing virtual solvability (computational realization of the Tits
alternative:) for a W-homomorphism ϕρ test whether Gρ = 〈N〉G is
unipotent-by-abelian.

Testing solvability, (virtual) nilpotency, testing whether the group is
abelian-by-finite, central-by-finite etc. Computing ‘main’ structural
components of a (virtually) solvable group; computing Prüfer rank
and torsion free rank.

N.B. One maximal ideal ρ is enough for the above algorithms; software [1].
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2. Zariski density and computation

2. Zariski density and computation

Further challenges.

Ubiquity of non solvable-by-finite groups: a linear group ‘most likely’
is not solvable-by-finite (see e.g. D. Epstein, 1971; R. Aoun, 2011).

Undecidable basic algorithmic problems, e.g.,

- Membership testing is decidable in finitely generated
solvable-by-finite subgroups of GL(n,Q) (Kopytov, 1968);

- Membership testing is undecidable in SL(4,Z) (Michailova, 1958).

Lack of computational methods: to proceed with
non-solvable-by-finite groups one ideal may not be enough.
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2. Zariski density and computation

Why dense subgroups?

Approach to computing:

Step 1: Each finitely generated linear group H is a subgroup of a
linear algebraic group G; without loss of generality H is (Zariski)
dense in G.
N.B. Algorithms computing Zariski closure exist.

Step 2: H is thin or arithmetic, i.e. |G(R) : H| is infinite or, resp.
finite; here H ≤ G(R) := G ∩GL(n,R).

Algorithms for dense subgroups are in high demand, particularly due
to applications of in number theory, topology, physics, etc.
(cf. P. Sarnak, Notes on thin matrix groups, 2012).

Fundamental algorithmic problems for arithmetic subgroups are known
to be decidable (under some conditions!): Grunewald & Segal, 1980.
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2. Zariski density and computation

Dense and arithmetic subgroups: set up

Set up: G := SL(n,C), R = Z.

ϕm : SL(n,Z)→ SL(n,Zm);

Γm is the kernel of a homomorphism ϕm (principal congruence
subgroup of level m);

cl(H) is the ‘arithmetic closure’ of H (i.e. intersection of arithmetic
overgroups of H);

Level M(H) of H is the level of the (unique) maximal principal
congruence subgroup of cl(H), n ≥ 3.
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2. Zariski density and computation

Scheme of computing.

(i) Test whether H ≤ SL(n,Z) is dense.

(ii) Compute Level(H).

(iii) Investigate H using Level(H) (via congruence homomorphism
technique).
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2. Zariski density and computation

Density testing.

Given a finitely generated H ≤ SL(n,Z), we can test density as follows.

1. Fact: H ≤ SL(n,C) is dense iff H is infinite and ad(H) is absolutely
irreducible.
Output: deterministic density test algorithm (of limited practicality).

2. Monte-Carlo algorithm (I. Rivin): returns true if detects
non-commuting g , h ∈ H such that h is of infinite order and the
Galois group of the characteristic polynomial of g is Sym(n).

3. Further algorithms, i.e. for subgroups of SL(n,Z) containing a
(known) transvection.
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2. Zariski density and computation

Next step: from finite to strong approximation

Questions.

(1) To which extent do congruence images define a linear group H?

(2) Can we compute all congruence images of H?

Exercise. Given

H =

〈[
1 122 11
0 1 0
0 0 1

]
,

[
1 0 0

11 1 12
0 0 1

]
,

[
1 0 0
0 1 0
−10 122 1

]〉
.

Show that
(i) H ≡ SL(3,Z) mod m, ∀m ∈ N.

(ii) H is of infinite index in SL(3,Z).
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2. Zariski density and computation

Theorem. The following are equivalent.

(i) H ≤ SL(n,Z) is dense.

(ii) H surjects onto SL(n, p) for almost all primes p.

(iii) H surjects onto SL(n, p) for some p > 2.

Notation: Π(H) is the set of all primes for which ϕp(H) 6= SL(n, p).

Aim: Given a dense H ≤ SL(n,Z), compute Π(H).
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2. Zariski density and computation

Computer realization of the strong approximation theorem.

Approach (based on B. Weisfeiler’s method). Given Aschbacher classes
C1, . . . ,C9 of maximal subgroups of SL(n, p), find all primes p such that
ϕp(H) is not contained in any group G of Ci , 1 ≤ i ≤ 9.

Fact: Let G ≤ SL(n, p). There exists a function f (n), depending only on
degree n, such that if ad(G ) is absolutely irreducible and |G | > f (n) then
G = SL(n, p).

Method: Find p0 such that for all p ≥ p0, |ϕp(H) > f (n)|, and ad(ϕp(H))
is absolutely irreducible.

N.B. Explicit values of f (n) available for n ≤ 12.

Improved methods: (i) Exclude one-by-one each of Aschbacher classes by
special methods avoiding computing ad(H). Done for n prime, and some
‘small’ values of n.

(ii) Special methods for the case of H containing a (known) transvection.
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2. Zariski density and computation

Computing with dense subgroups

Aim: Given a dense H ≤ SL(n,Z), compute the arithmetic closure cl(H),
i.e. Level(H) := M(H).

Proposition. Dense H surjects onto SL(n, p) iff p does not divide the level
M of H (besides small exceptions for n = 3, 4, p = 2).

Thus, we have that Π(H) is the set of all prime divisors of M(H) (besides
probably p = 2). Hence to compute M(H) for a dense H, we should find
pk ||M for each p ∈ Π(H).

Method: computing in GL(n,Zm); ‘trivial Fitting’ approach.
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2. Zariski density and computation

Computing with arithmetic subgroups

Knowing M we can proceed to algorithms for arithmetic subgroups
(including algorithms for cl(H), H is dense).

Given an arithmetic subgroup H ≤ SL(n,Z), n ≥ 3, we can

(1) Test whether g ∈ SL(n,Z) is contained in H (membership test).

(2) Compute the index |SL(n,Z) : H| (in particular, test whether
H = SL(n,Z)).

(3) Investigate (sub)-normal structure of H.

(4) Test whether u, v ∈ Qn are in the same H-orbit, and computing
generators of StabH(u) (orbit-stabilizer problem).

Method: Computing via reduction to SL(n,ZM).

Remark. Decidability of problems (1), (2) implies that arithmetic
subgroups of SL(n,Z), n ≥ 3, are explicitly given in terms of Grunewald &
Segal.
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3. Applications and experimental results

3. Applications and experimental results

Example.

Given

H =

〈[
0 0 1
1 0 0
0 1 0

]
,

[
1 4 7
0 −2 −3
0 1 1

]〉
.

IsFinite(H);
‘false’
N.B. Generators of H are of finite order.

IsSolvableByFinite(H);
‘false’
IsDense(H);# density test in SL(3,Z).
‘true’
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3. Applications and experimental results

PrimesForDense(H);
Π(H) = {2}

LevelMaxPCS(H); # computing the level M of H.
M = 23

N.B. Now we know cl(H).

Index(H); # computing the index of cl(H) in SL(3,Z).
27 · 7

Question: Is H arithmetic in SL(3,Z) (or, equivalently, H = cl(H))?

Experimental evidence: ‘most likely, H is not arithmetic’

Fact (Long & Reid, 2011): H ∼= ∆(3, 3, 4).

Conclusion: H is not arithmetic; e.g. has a finite quotient isomorphic to
Alt(20) which does not have faithful representation in SL(3, p) for any p.
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3. Applications and experimental results

Experiments

Let Γ := 〈x , y , z | zxz−1 = xy , zyz−1 = yxy〉 (the fundamental group of
the figure-eight knot complement). Put F = 〈x , y〉. Consider the
representation ρk : Γ→ SL(3,Z), k ∈ Z,

ρk(x) =

(
1 −2 3
0 k −1− 2k
0 1 −2

)
, ρk(y) =

( −2− k −1 1
−2− k −2 3
−1 −1 2

)
,

ρk(z) =

(
0 0 1
1 0 −k
0 1 −1− k

)
.

Problem ([Long & Reid, 2011]): what are properties of ρk(Γ)?

Motivation: Does SL(3,Z) have the Howson property? Is SL(3,Z)
coherent?
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3. Applications and experimental results

k M IndexΓ IndexΓ,F

1 2234 21031513 22

6 2231·43 210337·432331·631 2·3·5
7 345·19 263175·13·19231·127 2232

10 223411·37 2143167213·19·37267 22325
15 229·241 26335·97·181·241219441 2·3·19
20 409·421 24335·7·421255897·59221 223·17

Comments: (i) M = Level(ρk(Γ)) = Level(ρk(F )) for all k in the table.

(ii) The congruence images of ρk(F ) modulo M available.

(iii) For k = 1, 6, 10, ρk(Γ) surjects onto SL(3, 2), and does not surjects
onto SL(3, 4).

(iv) Runtime is less than 15 minutes.
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3. Applications and experimental results

Further experiments.

New experimental results for symplectic monodromy groups of
hypergeometric differential equations available. These are 2-generator
dense subgroups of Sp(n,Q) containing a transvection.

Motivation: applications in theoretical physics.

Experimentation is based on our algorithms for subgroups of Sp(n,Z).

Experimental tables provides results (including Level(H) and indices
in Sp(n,Z)) for

(i) n = 4, 151 groups;
(ii) n = 6, 916 groups.

Justification of arithmeticity in a number of cases obtained.

https://arxiv.org/abs/1905.02190
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3. Applications and experimental results

Example. Let

U :=

 1 1 0 0
0 1 0 0
d d 1 0
0 −k −1 1

, T :=

 1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


with d , k ∈ Z. Then G(d , k) = 〈U,T 〉 ≤ Sp(4,Z) is the monodromy
group of a generalized hypergeometric ordinary differential equation.

For 14 pairs (d , k) the group G(d , k) is a monodromy group associated to
Calabi-Yau threefolds.

Problem (D. van Straten et al.).
Find an arithmetic subgroup Ĝ(d , k) of Sp(4,Z) which contains G(d , k),
and compute the index |Sp(4,Z) : Ĝ(d , k)|.
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3. Applications and experimental results

(d , k) M index t(sec)

(1, 3) 2 6 3.910

(1, 2) 2 10 3.306

(2, 3) 8 26 · 3 · 5 4.797

(3, 4) 22 · 32 29 · 35 · 52 7.155

(4, 4) 26 220 · 32 · 5 8.064

(6, 5) 23 · 32 210 · 36 · 52 9.988

(9, 6) 2 · 35 28 · 314 · 52 10.671

(5, 5) 2 · 53 28 · 33 · 58 · 13 10.312

(2, 4) 24 211 · 32 · 5 5.106

(1, 4) 22 25 · 5 3.515

(16, 8) 210 240 · 32 · 5 16.841

(12, 7) 25 · 32 217 · 36 · 52 21.446

(8, 6) 27 224 · 32 · 5 10.771

(4, 5) 25 213 · 3 · 5 7.605
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3. Applications and experimental results

Appendix

1. Magma functions for computing with infinite linear groups:
http://magma.maths.usyd.edu.au/magma/handbook/matrix_

groups_over_infinite_fields.

2. GAP functionality for Zariski dense subgroups:
http://www.math.colostate.edu/~hulpke/arithmetic.g;
Documentation:
https://publications.mfo.de/handle/mfo/1321.

Acknowledgment: Dane Flannery, and Willem de Graaf, Alexander
Hulpke, Eamonn O’Brien.
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