Zariski density and computing with linear groups J

Alla Detinko

Banff International Research Station

11 December 2019



1. Computing with infinite linear groups: set up

How to represent a group in computer?

Main methods:
@ Permutations.
@ Matrices over finite fields.

@ Generators and relations.

Why linear groups?

- Commonly used representation of groups in group theory and its
applications in mathematics and further afield.

- Convenient and efficient way to represent groups in computer.
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Main challenges

@ Fundamental algorithmic problems are undecidable.
o Complexity issues.

@ Lack of methods.

Aim

- Design practical methods, algorithms, and software for computing
with linear groups over an arbitrary infinite field.

- Solution of mathematical problems by computer experiments.
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How to represent a linear group in computer?

Methods:

- Finite set of matrices: finitely generated groups.
- Finite set of polynomials: linear algebraic groups.

How to represent a finitely generated linear group in computer?

Given G = (g1,...,8) < GL(n,F), F is a (infinite) field.

Aim: symbolic representation of G over an arbitrary infinite field.
Method: G is defined over a finitely generated extension of the prime
subfield of F.

Examples: main fields.

1. Q and algebraic number fields.
2. L=P(x1,...,Xm), P is a number field or F,.
3. A finite extension of L.
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Method of finite approximation: congruence homomorphism
techniques. J

Given G = (S). Then G < GL(n, R) for a finitely generated integral
domain R C T determined by the entries of matrices in S U S™1.

Theorem. The group G is residually finite. Moreover, G is approximated
by matrix groups of degree n over finite fields R/p, p is maximal. J

Reason: R is approximated by finite fields R/p, i.e. for any non-zero a € R
there exists a maximal ideal p which does not contain a.

Notation: Given an ideal p C R, define the congruence homomorphism
¢, : GL(n, R) — GL(n, R/p).
o kery, =T, (principal congruence subgroup).

e GNTI,:= G, (congruence subgroup).
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Method for computing (computer realization of finite approximation):

Reduction to, e.g., finite fields via construction of a congruence
homomorphism ¢, such that G, satisfies some special properties.

Advantage: Reduction to computing with matrix groups over finite fields.
Theorem (Wehrfritz et al.). There exists a maximal ideal p < R such that
(i) All torsion elements of ', are unipotent,i.e. ', is torsion-free if

char R = 0.
(i) If G is solvable-by-finite then G, is unipotent-by-abelian.

- We call ¢, as in the theorem a W-homomorphism.

- We can construct W-homomorphisms for all finitely generated integral
domains R.
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Which algorithms do we need?

@ Recognition algorithms, i.e. testing the type of an input group.
@ Investigation of the structure and properties of the input group.

© Library of basic functions.
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Algorithms developed: outline.

o Testing finiteness: test whether the kernel G, of reduction modulo p
for a W-homomorphism ¢, is trivial (if char[F = 0).
Full investigation of structure via an isomorphic copy over a finite
field.

e Testing virtual solvability (computational realization of the Tits
alternative:) for a W-homomorphism ¢, test whether G, = (N)
unipotent-by-abelian.

Gis

e Testing solvability, (virtual) nilpotency, testing whether the group is
abelian-by-finite, central-by-finite etc. Computing ‘main’ structural
components of a (virtually) solvable group; computing Priifer rank
and torsion free rank.

N.B. One maximal ideal p is enough for the above algorithms; software [1].
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2. Zariski density and computation

2. Zariski density and computation

Further challenges.

@ Ubiquity of non solvable-by-finite groups: a linear group ‘most likely’
is not solvable-by-finite (see e.g. D. Epstein, 1971; R. Aoun, 2011).
@ Undecidable basic algorithmic problems, e.g.,

- Membership testing is decidable in finitely generated
solvable-by-finite subgroups of GL(n, Q) (Kopytov, 1968);

- Membership testing is undecidable in SL(4,Z) (Michailova, 1958).

o Lack of computational methods: to proceed with
non-solvable-by-finite groups one ideal may not be enough.

Alla Detinko @ BIRS  Zariski density and computing with linear groups



2. Zariski density and computation

Why dense subgroups? )

@ Approach to computing:

Step 1: Each finitely generated linear group H is a subgroup of a
linear algebraic group G; without loss of generality H is (Zariski)
dense in G.

N.B. Algorithms computing Zariski closure exist.

Step 2: H is thin or arithmetic, i.e. |G(R) : H| is infinite or, resp.
finite; here H < G(R) := G N GL(n, R).

@ Algorithms for dense subgroups are in high demand, particularly due
to applications of in number theory, topology, physics, etc.
(cf. P. Sarnak, Notes on thin matrix groups, 2012).

@ Fundamental algorithmic problems for arithmetic subgroups are known
to be decidable (under some conditions!): Grunewald & Segal, 1980.
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2. Zariski density and computation

Dense and arithmetic subgroups: set up J

Set up: G := SL(n,C), R =Z.
® ©m:SL(n,Z) — SL(n, Zpm);

@ [, is the kernel of a homomorphism ¢, (principal congruence
subgroup of level m);

e cl(H) is the ‘arithmetic closure’ of H (i.e. intersection of arithmetic
overgroups of H);

o Level M(H) of H is the level of the (unique) maximal principal
congruence subgroup of ¢/(H), n > 3.
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2. Zariski density and computation

Scheme of computing.
i) Test whether H < SL(n,Z) is dense.
i) Compute Level(H).

i
iii) Investigate H using Level(H) (via congruence homomorphism
echnique).

(
(
(
t
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2. Zariski density and computation

Density testing. )

Given a finitely generated H < SL(n,Z), we can test density as follows.

1. Fact: H < SL(n,C) is dense iff H is infinite and ad(H) is absolutely
irreducible.
Output: deterministic density test algorithm (of limited practicality).

2. Monte-Carlo algorithm (I. Rivin): returns true if detects
non-commuting g, h € H such that h is of infinite order and the
Galois group of the characteristic polynomial of g is Sym(n).

3. Further algorithms, i.e. for subgroups of SL(n,Z) containing a
(known) transvection.
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2. Zariski density and computation

Next step: from finite to strong approximation )

Questions.
(1) To which extent do congruence images define a linear group H?
(2) Can we compute all congruence images of H?

Exercise. Given

1 122 11 0 0 1 0 O
H:<[0 1 0],[1112],[0 1 o]>.
0 O 1 0 0 1 —-10 122 1
Show that
(i) H=SL(3,Z) mod m, Vm € N.

(i) H is of infinite index in SL(3, Z).
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2. Zariski density and computation

Theorem. The following are equivalent.
(i) H < SL(n,Z) is dense.
(ii) H surjects onto SL(n, p) for almost all primes p.

(iii) H surjects onto SL(n, p) for some p > 2.
Notation: T1(H) is the set of all primes for which ¢,(H) # SL(n, p).

Aim: Given a dense H < SL(n,Z), compute (H).
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2. Zariski density and computation

Computer realization of the strong approximation theorem. )

Approach (based on B. Weisfeiler's method). Given Aschbacher classes
Ci, ..., Cy of maximal subgroups of SL(n, p), find all primes p such that
©p(H) is not contained in any group G of C;, 1 </ <09.

Fact: Let G < SL(n, p). There exists a function f(n), depending only on
degree n, such that if ad(G) is absolutely irreducible and |G| > f(n) then
G = SL(n, p).

Method: Find pg such that for all p > po, |¢p(H) > f(n)|, and ad(vp(H))
is absolutely irreducible.

N.B. Explicit values of f(n) available for n < 12.

Improved methods: (i) Exclude one-by-one each of Aschbacher classes by
special methods avoiding computing ad(H). Done for n prime, and some
‘small’ values of n.

(ii) Special methods for the case of H containing a (known) transvection.
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2. Zariski density and computation

Computing with dense subgroups

Aim: Given a dense H < SL(n,Z), compute the arithmetic closure c/(H),
i.e. Level(H) := M(H).

Proposition. Dense H surjects onto SL(n, p) iff p does not divide the level
M of H (besides small exceptions for n = 3,4, p = 2).

Thus, we have that M(H) is the set of all prime divisors of M(H) (besides
probably p = 2). Hence to compute M(H) for a dense H, we should find
pX||M for each p € M(H).

Method: computing in GL(n,Zp,); ‘trivial Fitting' approach.
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2. Zariski density and computation

Computing with arithmetic subgroups |

Knowing M we can proceed to algorithms for arithmetic subgroups
(including algorithms for c/(H), H is dense).

Given an arithmetic subgroup H < SL(n,Z), n > 3, we can

(1) Test whether g € SL(n,Z) is contained in H (membership test).
(2) Compute the index |SL(n,Z) : H| (in particular, test whether
H = SL(n,7Z)).
(3) Investigate (sub)-normal structure of H.
(4) Test whether u,v € Q" are in the same H-orbit, and computing
generators of Staby(u) (orbit-stabilizer problem).

Method: Computing via reduction to SL(n, Zy).

Remark. Decidability of problems (1), (2) implies that arithmetic
subgroups of SL(n,Z), n > 3, are explicitly given in terms of Grunewald &
Segal.
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3. Applications and experimental results

3. Applications and experimental results

Example.

Given

IsFinite(H);
‘false’
N.B. Generators of H are of finite order.

IsSolvableByFinite(H);

‘false’

IsDense(H);# density test in SL(3,Z).
‘true’
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3. Applications and experimental results

PrimesForDense(H);
N(H) = {2}

LevelMaxPCS(H); # computing the level M of H.
M =23
N.B. Now we know cl(H).

Index(H); # computing the index of cl(H) in SL(3,Z).
2".7

Question: Is H arithmetic in SL(3,Z) (or, equivalently, H = cl(H))?
Experimental evidence: ‘most likely, H is not arithmetic’
Fact (Long & Reid, 2011): H = A(3,3,4).

Conclusion: H is not arithmetic; e.g. has a finite quotient isomorphic to
Alt(20) which does not have faithful representation in SL(3, p) for any p.
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3. Applications and experimental results

Experiments

Let T := (x,y,z | zxz=! = xy, zyz~! = yxy) (the fundamental group of
the figure-eight knot complement). Put F = (x,y). Consider the
representation pyx : [ — SL(3,7Z), k € Z,

1 -2 3 22—k -1 1
Pk(X):<0 k —1—2k>,pk()/)=<—2—k -2 3>,

0 1 -2 -1 -1 2

0 0 1
p(z)=( 1 0 —k :
01 —-1-—k

Problem ([Long & Reid, 2011]): what are properties of p,(I')?

Motivation: Does SL(3,Z) have the Howson property? Is SL(3,7Z)
coherent?
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3. Applications and experimental results

k M Indexr Indexr r
1 2234 21031513 22
6 2231.43 210337.432331.631 2:3:5
7 3%5.19 263175.13.19231-127 2232
10 | 223%11-37 2143167213.19.37267 22325
15 220.241 | 20335.97.181.241219441 2-3-19
20 | 409-421 | 24335.7.421255897-59221 | 223.17

Comments: (i) M = Level(p(I')) = Level(px(F)) for all k in the table.
(ii) The congruence images of px(F) modulo M available.

(iii) For k =1,6,10, pk(I") surjects onto SL(3,2), and does not surjects
onto SL(3,4).

(iv) Runtime is less than 15 minutes.
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3. Applications and experimental results

Further experiments.

New experimental results for symplectic monodromy groups of
hypergeometric differential equations available. These are 2-generator
dense subgroups of Sp(n, Q) containing a transvection.

Motivation: applications in theoretical physics.

e Experimentation is based on our algorithms for subgroups of Sp(n,Z).

e Experimental tables provides results (including Level(H) and indices
in Sp(n, Z)) for

(i) n =4, 151 groups;
(i) n =6, 916 groups.
Justification of arithmeticity in a number of cases obtained.

https://arxiv.org/abs/1905.02190
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3. Applications and experimental results

Example. Let

U=

oQ O
X Q = =
= = O O
O O O =
O O = O
o~ OO
_= O = O

with d, k € Z. Then G(d, k) = (U, T) < Sp(4,Z) is the monodromy
group of a generalized hypergeometric ordinary differential equation.

For 14 pairs (d, k) the group G(d, k) is a monodromy group associated to
Calabi-Yau threefolds.

Problem (D. van Straten et al.).
Find an arithmetic subgroup G(d, k) of Sp(4,Z) which contains G(d, k),
and compute the index [Sp(4,Z) : G(d, k).
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3. Applications and experimental results

Alla Detinko @ BIRS

(d, k) M index t(sec)
(1,3) 2 6 3.910
(1,2) 2 10 3.306
(2,3) 8 26.3.5 4.797
(3,4) |22.32] 29.3%.52 | 7.155
(4,4) 20 220.32.5 8.064
(6,5) | 2332 219.36.52 [ 9.988
(9,6) | 2-3° | 28.31%.52 10671
(5,5) | 2-5% [ 28.3%.5%.13 | 10.312
(2,4) | 2° 211.32.5 | 5.106
(1,4) 22 2°.5 3.515
(16,8) | 210 2%0.32.5 | 16.841
(12,7) [ 25-32 | 217.36.52 [ 21.446
(8,6) 27 2?4.32.5 | 10771
(4,5) 25 213.3.5 7.605
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Appendix

1. Magma functions for computing with infinite linear groups:
http://magma.maths.usyd.edu.au/magma/handbook/matrix_
groups_over_infinite_fields.

2. GAP functionality for Zariski dense subgroups:
http://www.math.colostate.edu/~hulpke/arithmetic.g;
Documentation:
https://publications.mfo.de/handle/mfo/1321.

Acknowledgment: Dane Flannery, and Willem de Graaf, Alexander
Hulpke, Eamonn O’Brien.
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