Multimarginal optimal transport, density functinal theory, and convex relaxation

Lexing Ying
Stanford University and FAIR

Joint work with Yuehaw Khoo
Jan 2019, BIRS

Optimal transport

- Given probability distributions ρ_{1}, ρ_{2} on X
- Cost function $c(x, y)$
- Optimal transport problem

$$
\inf _{\mu \in \Pi\left(\rho_{1}, \rho_{2}\right)} \int_{X} \int_{X} c(x, y) d \mu(x, y)
$$

$\Pi\left(\rho_{1}, \rho_{2}\right)$ is the set of distributions on $X \times X$ with marginals ρ_{1}, ρ_{2}.

- Many applications:
- Definition of the so-called Wasserstein distance,
- Operational research, ...
- Generative adversarial network (GAN) ...

Multi-marginal optimal transport

- Given marginals $\rho_{1}, \ldots, \rho_{N}$ on X
- Multimarginal OT problem

$$
\inf _{\mu \in \Pi\left(\rho_{1}, \ldots, \rho_{N}\right)} \int_{X \times \cdots \times X} c\left(x_{1}, \ldots, x_{N}\right) d \mu\left(x_{1}, \ldots, x_{N}\right)
$$

with $\Pi\left(\rho_{1}, \ldots, \rho_{N}\right)$ the set of distributions on $X \times \cdots \times X$ with marginals $\rho_{1}, \ldots, \rho_{N}$

- Applications
- Operational research, ...
- Density functional theory
- Numerics: LP with exponential size in N
- Our goal: break this complexity barrier.

Density functional theory

- Many-body Schrödinger equation: finding ground state

$$
\inf _{\psi} \int \psi\left(x_{1}, \ldots, x_{N}\right)^{*} H \psi\left(x_{1}, \ldots, x_{N}\right) d x_{1} \ldots d x_{N}
$$

- H: Hamiltonian operator

$$
H \psi \equiv\left(\sum_{i=1}^{N}-\Delta_{x_{i}}+\sum_{i<j} \frac{1}{\left|x_{i}-x_{j}\right|}+V_{\mathrm{ext}}\right) \psi
$$

- $\psi\left(x_{1}, \ldots, x_{N}\right),\|\psi\|_{\mathcal{L}_{2}}=1$, antisymmetric.
- High dimensional problem, hard to solve.
- Density functional theory: Can change to a variational problem

$$
\inf _{\rho} F[\rho]+V_{\mathrm{ext}}[\rho]
$$

$\rho(\cdot)$: 1-marginal of $\left|\psi\left(x_{1}, \ldots, x_{N}\right)\right|^{2}$,

- $F[\rho]$: unknown universal functional (Hohenberg-Kohn 64).

$F[\rho]$: Strictly-correlated electron limit

- Usual approach: replace $F[\rho]$ with KS functional (Kohn-Sham 65)
- Opposite regime: approximate $F[\rho]$ with strictly-correlated electron (SCE) functional (Seidl 99)

$$
V_{\mathrm{ee}}^{\mathrm{SCE}}[\rho]=\inf _{\mu \in \Pi(\rho, \cdots, \rho)} \int \sum_{i<j} \frac{1}{\left|x_{i}-x_{j}\right|} \mu\left(x_{1}, \ldots, x_{N}\right) d x_{1} \ldots d x_{N}
$$

with $\mu\left(x_{1}, \ldots, x_{N}\right):=\left|\psi\left(x_{1}, \ldots, x_{N}\right)\right|^{2}$ symmetric,

$$
\int d \mu=1, \mu \geq 0, \text { and } \mu\left(x_{1}, \ldots, x_{N}\right)=0 \text { if any } x_{i}=x_{j} .
$$

- This is a special multimarginal OT problem
- with same ρ for each dimension
- Cost

$$
c\left(x_{1}, \ldots, x_{N}\right)=\sum_{i<j} \frac{1}{\left|x_{i}-x_{j}\right|}
$$

SCE example

- Support of μ is singular.
- Li atom in SCE regime (Seidl-Gori-Giorgi-Savin 07).

Breaking the complexity barrier

- Numerics-related previous work
- (Mendl-Lin 12): Solve the dual problem of $V_{e e}^{\mathrm{SCE}}[\rho]$ (exponential number of constraints)
- (Benamou-Carlier-Nenna 16): Sinkhorn scaling (exponential number of variables)
- (Friesecke-Vogler 18): Existence of sparse solution for multimarginal OT (optimization scheme to be worked out)
- Can we solve such a multimarginal OT with polynomial complexity?
- Approach: use convex relaxation techniques to obtain useful lower and upper bounds for the SCE optimization problem

Outline

- A lower bound to $V_{e e}^{\operatorname{SCE}}[\rho]$
- An upper bound to $V_{e e}^{\mathrm{SCE}}[\rho]$

Discretization

- For SCE: $c\left(x_{1}, \ldots, x_{N}\right)=\sum_{i<j} \frac{1}{\left|x_{i}-x_{j}\right|}$.
- Hence, focus on multimarginal OT with pairwise cost:

$$
\inf _{\mu \in \Pi(\rho, \cdots, \rho)} \int_{X \times \ldots \times X} \sum_{k, l=1, k<l}^{N} c\left(x_{k}, x_{l}\right) d \mu\left(x_{1}, \ldots, x_{N}\right)
$$

- Discretize X with L grid points p_{1}, \ldots, p_{L} and redefine

$$
c\left(i, i^{\prime}\right) \equiv \frac{1}{\left|p_{i}-p_{i^{\prime}}\right|} .
$$

- From now on, focus on the discrete problem

$$
\min _{\mu \in \Pi(\rho, \cdots, \rho)} \sum_{i_{1}, \ldots i_{N}=1}^{L} \sum_{k, l=1, k<l}^{N} c\left(i_{k}, i_{l}\right) \mu\left(i_{1}, \ldots, i_{N}\right)
$$

Reducing dimensionality

$$
\min _{\mu \in \Pi(\rho, \cdots, \rho)} \sum_{i_{1}, \ldots i_{N}=1}^{L} \sum_{k, l=1, k<l}^{N} c\left(i_{k}, i_{l}\right) \mu\left(i_{1}, \ldots, i_{N}\right)
$$

- Rewrite the problem in terms of 2-marginals

Representing $G_{k l}$ with μ

- Extreme points of density: delta functions.
- Write μ as convex combination of extreme points:

$$
\mu=\sum_{i_{1}, \ldots i_{N}} \mu_{i_{1}, \ldots, i_{N}} e_{i_{1}} \otimes \cdots \otimes e_{i_{N}}
$$

- $\left\{e_{1}, \ldots, e_{L}\right\}$ are canonical basis vectors.
- $\sum_{i_{1}, \ldots i_{N}} \mu_{i_{1}, \ldots, i_{N}}=1$ and $\mu_{i 1, \ldots, i_{N}} \geq 0$.
- The 2-marginal of the (k, l) slice: an $L \times L$ matrix

$$
G_{k l}=\sum_{i_{1}, \ldots i_{N}} \mu_{i_{1}, \ldots, i_{N}} e_{i_{k}} e_{i_{l}}^{\top}
$$

- Due to symmetry, all $G_{k l}$ for $k \neq l$ are the same and all $G_{k k}$ are the same

$$
\gamma \equiv G_{k l}, \quad \epsilon \equiv G_{k k}
$$

Equivalent multimarginal OT form

- Introduce $G \in \mathbb{R}^{N L \times N L}$:

$$
G:=\left[\begin{array}{ccc}
G_{11} & \cdots & G_{1 N} \\
\vdots & \ddots & \vdots \\
G_{N 1} & \cdots & G_{N N}
\end{array}\right]=\left[\begin{array}{ccc}
\epsilon & \cdots & \gamma \\
\vdots & \ddots & \vdots \\
\gamma & \cdots & \epsilon
\end{array}\right]
$$

- Recall

$$
\min _{\mu \in \Pi(\rho, \cdots, \rho)} \sum_{k, l=1, k<l}^{N} \sum_{i_{k}, i_{l}} c\left(i_{k}, i_{l}\right) \sum_{\text {other } i} \mu\left(i_{1}, \ldots, i_{N}\right)
$$

- Write the optimization problem in terms of 2-marginals:

$$
\min _{G \sim \Pi(\rho, \ldots, \rho)} \operatorname{Tr}(C G), \quad \text { with } \quad C=\left[\begin{array}{cccc}
0 & c & \cdots & c \\
c & 0 & & \\
\vdots & & \ddots & \vdots \\
c & & \cdots & 0
\end{array}\right]
$$

- Discrete quadratic optimization problem. Relax the domain of G.

Convex relaxation

- Problem: $\min _{G \sim \Pi(\rho, \ldots, \rho)} \operatorname{Tr}(C G)$
- Convexly relax $G:=\left[\begin{array}{ccc}G_{11} & \cdots & G_{1 N} \\ \vdots & \ddots & \vdots \\ G_{N 1} & \cdots & G_{N N}\end{array}\right]=\left[\begin{array}{ccc}\epsilon & \cdots & \gamma \\ \vdots & \ddots & \vdots \\ \gamma & \cdots & \epsilon\end{array}\right]$
- Some necessary conditions
- $G_{i j} \mathbf{1} \equiv \gamma \mathbf{1}=\rho$
- $G_{i i} \equiv \epsilon=\operatorname{diag}(\rho)$,
- $G \geq 0, G \succeq 0$,
- Drop all other constraints and obtain the convex problem

$$
\min _{G=\left[G_{i j}\right]} \operatorname{Tr}(C G), \quad C=\left[\begin{array}{cccc}
0 & c & \cdots & c \\
c & 0 & & \\
\vdots & & \ddots & \vdots \\
c & & \cdots & 0
\end{array}\right]
$$

s.t. $G_{i j} \mathbf{1} \equiv \gamma \mathbf{1}=\rho, G_{i i} \equiv \epsilon=\operatorname{diag}(\rho), G \geq 0, G \succeq 0$.

Final SDP form

- Rewrite the cost

$$
\operatorname{Tr}(C G)=\frac{N(N-1)}{2} \operatorname{Tr}(c \gamma)
$$

- Finally, introduce a mix of 2 marginals and 1 marginal

$$
\delta=\frac{1}{N^{2}}[I \cdots I] G\left[\begin{array}{c}
I \\
\vdots \\
I
\end{array}\right]=\frac{1}{N^{2}}[I \cdots I]\left[\begin{array}{ccc}
\epsilon & \cdots & \gamma \\
\vdots & \ddots & \vdots \\
\gamma & \cdots & \epsilon
\end{array}\right]\left[\begin{array}{c}
I \\
\vdots \\
I
\end{array}\right]
$$

- Then
$\delta=\frac{1}{N} \epsilon+\frac{N-1}{N} \gamma, \quad \delta \mathbf{1}=\rho, \quad \gamma=\gamma(\delta)=\frac{1}{N-1}(N \delta-\operatorname{diag}(\delta \mathbf{1}))$
- A convex-relaxed SDP lower bound:

$$
V_{e e}^{\mathrm{SCE}}[\rho] \approx \min _{\delta: \delta 1=\rho} \frac{N(N-1)}{2} \operatorname{Tr}\left(c\left(\frac{N}{N-1} \delta-\frac{1}{N-1} \operatorname{diag}(\delta \mathbf{1})\right)\right)
$$

with $\delta \succeq 0, \quad \delta \geq 0, \quad \operatorname{diag}(\delta)=\frac{\delta 1}{N}=\frac{\rho}{N}$.

Example

- 1D electron: $N=8, L=1600$

$$
\rho \propto \exp \left(-x^{2} / \sqrt{\pi}\right)
$$

- 10^{25} entries if LP was used.

Why this relaxation is reasonable

- Theorem (Friesecke-Vogler 18): The set of extreme points of N-representable symmetric 2-marginals (with Coulombic cost) is

$$
\Gamma=\left\{\left.\frac{N}{N-1} \lambda \lambda^{\top}-\frac{1}{N-1} \operatorname{diag}(\lambda) \right\rvert\, \lambda \in\left\{0, \frac{1}{N}\right\}^{L}, \lambda^{\top} \mathbf{1}=1\right\}
$$

- Theorem (Khoo-Y. 18): Γ is a subset of the extreme points of

$$
D \equiv\left\{\left.\frac{N}{N-1} \delta-\frac{1}{N-1} \operatorname{diag}(\delta \mathbf{1}) \right\rvert\, \delta \succeq 0, \delta \geq 0, \operatorname{diag}(\delta)=\frac{\delta \mathbf{1}}{N}\right\}
$$

(Note that D is the set of feasible 2-marginals γ for the SDP).

Why this relaxation is reasonable

- Thus $\gamma \in \operatorname{conv}(\Gamma) \subset D$
- If the relaxation is sufficiently tight, we expect for δ^{*} (the minimizer of the relaxed problem) to satisfy:

$$
\delta^{*} \approx \sum_{g=1}^{m} a_{g} \lambda_{g} \lambda_{g}^{\top}, \quad \lambda_{g} \in\left\{0, \frac{1}{N}\right\}^{L}, \quad \lambda_{g}^{\top} \mathbf{1}=1 .
$$

Outline

- A lower bound to $V_{e e}^{\mathrm{SCE}}[\rho]$
- An upper bound to $V_{e e}^{\mathrm{SCE}}[\rho]$

Upper bound

- With constraint $\delta \mathbf{1}=\rho$, solution $\gamma^{*} \equiv \gamma\left(\delta^{*}\right)$ usually out of $\operatorname{conv}(\Gamma)$.

- Need to project $\gamma^{*} \equiv \gamma\left(\delta^{*}\right)$ back, or equivalently write

$$
\delta^{*} \rightarrow \sum_{g=1}^{m} a_{g} \lambda_{g} \lambda_{g}^{\top},
$$

with $\lambda_{g} \in\left\{0, \frac{1}{N}\right\}^{L}$ for $g=1, \ldots, m$, (here $m=L$).

- How to perform the projection?
- One possibility: use eigendecomposition plus thresholding
- Fails because $\left\{\lambda_{g}\right\}$ are non-orthogonal
- Idea: use 3-marginals

Tensor decomposition with 3-marginals

- Recall that one needs to retrieve each λ_{i}.
- Solution: use 3-marginals (why?) and apply similar derivation
- Marginalize to 3-marginals
- Symmetrize the 3 -marginals by averaging
- Use the N-representable 3-marginal θ (instead of 2-marginals δ) as optimization variable
- Apply a similar convex relaxation to $\theta \in \mathbb{R}^{L \times L \times L}$ as before
- Solve the multimarginal OT in terms of 3-marginals
- More expensive, but still independent of N and no exponential blowup

Why 3-marginal?

- CP-decomposition for θ^{*} (the minimizer of the relaxed problem)

$$
\theta^{*} \Rightarrow \sum_{g=1}^{m} a_{g} \lambda_{g} \otimes \lambda_{g} \otimes \lambda_{g}
$$

and the RHS serves as the upper bound.

- For 3-tensor, one has unique decomposition results for $\lambda_{g}, g=1, \ldots, m$ up to scaling under very mild condition.
- $m=L$ in our case.
- Reason: there are $L-1$ effective constraints $\delta \mathbf{1}=\rho$.
- Each extra constraint increases the support by one.
- So needs a convex combination of $1+(L-1)=L$ extreme points.

Projection of 3-marginals

- Apply Jenrich's algorithm (weighted sum in third dim). Choose random vectors w_{1} and w_{2}

$$
W_{1}=\sum_{g=1}^{m} \theta^{*}(:,,:, g) w_{1}(g), \quad W_{2}=\sum_{g=1}^{m} \theta^{*}(:,:, g) w_{2}(g)
$$

Plug in $\theta^{*}=\sum_{g=1}^{m} a_{g} \lambda_{g} \otimes \lambda_{g} \otimes \lambda_{g}$

$$
W_{1}=\sum_{g=1}^{m}\left(a_{g} w_{1}^{\top} \lambda_{g}\right) \lambda_{g} \lambda_{g}^{\top}, \quad W_{2}=\sum_{g=1}^{m}\left(a_{g} w_{2}^{\top} \lambda_{g}\right) \lambda_{g} \lambda_{g}^{\top} .
$$

- $\left\{\lambda_{g}\right\}_{g=1}^{m}$ are linearly independent. By using $U=\left[\lambda_{1} \cdots \lambda_{m}\right]$,

$$
\begin{gathered}
W_{1}=U \Sigma_{1} U^{\top}, \quad W_{2}=U \Sigma_{2} U^{\top} . \\
W_{1} W_{2}^{-1}=U \Sigma U^{-1}, \quad \Sigma=\operatorname{diag}\left(\left[\frac{a_{1} w_{1}^{\top} \lambda_{1}}{a_{1} w_{2}^{\top} \lambda_{1}}, \ldots, \frac{a_{m} w_{1}^{\top} \lambda_{m}}{a_{m} w_{2}^{\top} \lambda_{m}}\right]\right) .
\end{gathered}
$$

- Eigendecomposition of $W_{1} W_{2}^{-1}$ gives U and $\left\{\lambda_{g}\right\}_{i=1}^{m}$

Numerical examples

- Lower bound: obtained from 2-marginal δ^{*} or 3-marginal θ^{*}.
- Upper bound: always obtained from 3-marginal θ^{*}.

Numerical examples

- 1D electrons, $N=8$.

$$
\rho(x) \propto \sin (4 x)+1.5 .
$$

- Left: 2-marginal $\delta^{*} \rightarrow \gamma$. Relative gap $=4.2 \mathrm{e}-02$
- Right: 3-marginal $\theta^{*} \rightarrow \gamma$. Relative gap $=3.9 \mathrm{e}-02$

Numerical examples

- 1D electrons, $N=8$.

$$
\rho(x) \propto 1 .
$$

- Left: 2-marginal $\delta^{*} \rightarrow \gamma$. Relative gap $=4.9 \mathrm{e}-04$
- Right: 3-marginal $\theta^{*} \rightarrow \gamma$. Relative gap $=1.0 \mathrm{e}-06$

Numerical examples

- 2D electrons, $N=5$.

$$
\rho(x, y) \propto 1
$$

- Plots are slice of 2-marginal with one component fixed.
- 2-marginal $\delta^{*} \rightarrow \gamma$. Relative gap $=3.8 \mathrm{e}-02$
- 3-marginal $\theta^{*} \rightarrow \gamma$. Relative gap $=3.5 \mathrm{e}-02$

Thank you

- Email: lexing@stanford.edu
- URL: http://web.stanford.edu/~lexing
- Research supported by NSF and DOE

