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Kantorovich optimal transport

Consider X = {a1, ..., a`} with ai 6= aj for i , j ∈ {1, ..., `}, i 6= j .

Prototypical marginal: Uniform measure λ :=
∑`

i=1
1
` δai .

This marginal measure arises via equi-mass discretization from continuous problems.

Kantorovich OT problem
Minimize ∫

XN

cN(x1, x2, ..., xN) dγ(x1, ..., xN)

over all γ ∈ Psym(XN) with given marginals λ, ..., λ.
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Kantorovich optimal transport

Definition (Kantorovich coupling)

In the given setting a probability measure γ on XN is called a Kantorovich
coupling if it fulfills
• γ ∈ Psym(XN)

• γ has marginals λ, ..., λ, shorthand notation: γ 7→ λ

Number of unknowns:
(N+`−1

`−1

)
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Monge optimal transport

Definition ((Symmetrized) Monge state)

A probability measure on XN is a (symmetrized) Monge state if it is of the
form ∑̀

ν=1

1
`
S
(
δT1(aν) ⊗ ...⊗ δTN(aν)

)
for N permutations T1, ...,TN : X → X .

Number of unknowns: ` · (N − 1)

Here the linear symmetrization operator S : P(XN)→ P(XN) is given by

(Sγ)(A1 × ...× AN) =
∑
σ∈SN

1
|SN |

γ(Aσ(1) × ...× Aσ(N)) for all A1, ...,AN ⊆ X .

Daniela Vögler TUM, Chair for Analysis (M7) 31.01.2019 4



Is there always a Monge state minimizing the considered
Kantorovich OT problem?

Example (Particles connected by springs [Friesecke;2018])

Consider for N = 3 and X = {1, 2, 3} ⊂ R the cost function given by
c3(x1, x2, x3) =

∑
1≤i<j≤3 c(|xi − xj |) with c(r) := (r − 3

4)
2.

Then the unique optimizer of the considered Kantorovich OT problem is
given by

γ∗ = Sγ where γ = 1
2(δ1 ⊗ δ1 ⊗ δ2 + δ2 ⊗ δ3 ⊗ δ3).

This γ∗ is not a Monge state!
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Monge states and a low-dimensional enlargement
Quasi-Monge states

Recall:

Definition (Monge state)

A probability measure on XN is a Monge state if it is of the form

∑̀
ν=1

1
`
S
(
δT1(aν) ⊗ ...⊗ δTN(aν)

)
for N permutations T1, ...,TN : X → X .
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Monge states and a low-dimensional enlargement
Quasi-Monge states

Idea: Drop the constraint that each map preserves the uniform measure
(i.e. is a permutation) and demand this only "on average".
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Monge states and a low-dimensional enlargement
Quasi-Monge states

Definition

A probability measure on XN is a Monge state if it is of the form

∑̀
ν=1

1
`
S
(
δT1(aν) ⊗ ...⊗ δTN(aν)

)
for N permutations T1, ...,TN : X → X .
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Monge states and a low-dimensional enlargement
Quasi-Monge states

Definition

A probability measure on XN is a Quasi-Monge state if it is of the form

∑̀
ν=1

α(ν)S
(
δT1(aν) ⊗ ...⊗ δTN(aν)

)
for some α(ν) ≥ 0 with

∑
α(ν) = 1 and for N permutations

T1, ...,TN : X → X .
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Monge states and a low-dimensional enlargement
Quasi-Monge states

Definition

A probability measure on XN is a Quasi-Monge state if it is of the form

∑̀
ν=1

α(ν)S
(
δT1(aν) ⊗ ...⊗ δTN(aν)

)
for some α(ν) ≥ 0 with

∑
α(ν) = 1 and for N maps T1, ...,TN : X → X

such that
1
N

N∑
k=1

Tk#α = λ.
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Monge states and a low-dimensional enlargement
Quasi-Monge states

Definition

A probability measure on XN is a Quasi-Monge state if it is of the form

∑̀
ν=1

α(ν)S
(
δT1(aν) ⊗ ...⊗ δTN(aν)

)
for some α(ν) ≥ 0 with

∑
α(ν) = 1 and for N maps T1, ...,TN : X → X

such that
1
N

N∑
k=1

Tk#α = λ.

Number of unknowns: ` · (N + 1)
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A new characterization of Monge states

It is obvious that every Monge state is a Quasi-Monge state with the site
weights being equal to 1

` , i.e. α
(1) = ... = α(`) = 1

` . The converse is not
obvious but true:

Theorem (Friesecke and V.:Characterization of Monge states)

A probability measure on XN is a Monge state if and only if it is a
Quasi-Monge state with all the site weights being equal to 1

` , i.e.
α(1) = ... = α(`) = 1

` .
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Breaking the curse of dimension
Theorem (Friesecke and V.:Breaking the curse of dimension)

For
• any number N ≥ 2 of marginals
• any finite state space X

• any cost function cN : XN → R ∪ {+∞}
• any prescribed marginal λ∗ ∈ P(X )
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Breaking the curse of dimension
Theorem (Friesecke and V.:Breaking the curse of dimension Part 1 )

For
• any number N ≥ 2 of marginals
• any finite state space X

• any cost function cN : XN → R ∪ {+∞}
• any prescribed marginal λ∗ ∈ P(X )

the considered Kantorovich OT problem admits a solution which is a
Quasi-Monge state.
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Breaking the curse of dimension
Theorem (Friesecke and V.:Breaking the curse of dimension Part 2 )

If the cost cN has pairwise-symmetric structure, i.e.
cN(x1, ..., xN) =

∑
1≤i<j≤N c(xi , xj) for some symmetric

c : X 2 → R ∪ {+∞}, then the Kantorovich OT problem reduces to the
problem:

Minimize ∑
1≤i<j≤N

∫
X
c(Ti (x),Tj (x)) dα(x)

subject to

1
N

N∑
k=1

Tk#α = λ∗

α ∈ P(X )

T1, ..,TN : X → X
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Breaking the curse of dimension

Proof.
Careful analysis of extreme points of the set of N-marginal Kantorovich
couplings on {1, ..., `}, for general N and `.
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Summary: Breaking the curse of dimension

Number of unknowns Sufficient to obtain optimal cost

Kantorovich coupling
(N + `− 1

`− 1

)
Yes

Monge state ` · (N − 1) No

Quasi-Monge state ` · (N + 1) Yes

(our work)
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