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Kantorovich optimal transport

Consider X = {ay,...,as} with a; # aj for i,j € {1,....0},i #j.

Prototypical marginal: Uniform measure X := $>/_, 16,,.

This marginal measure arises via equi-mass discretization from continuous problems

il s TRV,
LU

Kantorovich OT problem

Minimize

/ (X1, 2, o) A1, o 0)
XN

over all v € Psym(XN) with given marginals X, ..., \.
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Kantorovich optimal transport

Definition (Kantorovich coupling)

In the given setting a probability measure v on XV is called a Kantorovich
coupling if it fulfills

* 7 € Poym(X")

e 7 has marginals ), ..., \, shorthand notation: v — X

N+Z—1)

Number of unknowns: (%
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Monge optimal transport

Definition ((Symmetrized) Monge state)

A probability measure on X" is a (symmetrized) Monge state if it is of the
form

l

1
ZZS 0Ti(a) @ - ©0Ty(a,))
v=1

for N permutations Ty, ..., Ty : X — X.

Number of unknowns: ¢- (N —1)
Here the linear symmetrization operator S : P(X") — P(X") is given by

(S7)(ALx o x Av) = Y |5 | As1) X o X Agy) for all Ag, ..., Ay C X.

TgESy
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Is there always a Monge state minimizing the considered
Kantorovich OT problem?

Example (Particles connected by springs [Friesecke;2018])
Consider for N = 3 and X = {1,2,3} C R the cost function given by
c3(x, %2, x3) = D 1<icjes (I — Xj|) with c(r) == (r — 3)2.

Then the unique optimizer of the considered Kantorovich OT problem is
given by

fy*:Sfywherefy:%(51®61®52+62®53®63).
1 +1
2 _:_ e __ 2 _ @ _:_
1 2 3 1 2 3

This v, is not a Monge state!
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Monge states and a low-dimensional enlargement
Quasi-Monge states

Recall:

Definition (Monge state)

A probability measure on X" is a Monge state if it is of the form

‘1
> 75 0 @ - ® 7y (a)
v=1

for N permutations Ty,..., Ty : X — X.
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Monge states and a low-dimensional enlargement
Quasi-Monge states

Idea: Drop the constraint that each map preserves the uniform measure
(i.e. is a permutation) and demand this only "on average".

Daniela Vagler TUM, Chair for Analysis (M7) 31.01.2019



Monge states and a low-dimensional enlargement
Quasi-Monge states

Idea: Drop the constraint that each map preserves the uniform measure
(i.e. is a permutation) and demand this only "on average".

Daniela Vogler TUM, Chair for Analysis (M7) 31.01.2019



Monge states and a low-dimensional enlargement
Quasi-Monge states

Idea: Drop the constraint that each map preserves the uniform measure
(i.e. is a permutation) and demand this only "on average".

Daniela Vogler TUM, Chair for Analysis (M7) 31.01.2019



Monge states and a low-dimensional enlargement
Quasi-Monge states

Idea: Drop the constraint that each map preserves the uniform measure
(i.e. is a permutation) and demand this only "on average".

Daniela Vogler TUM, Chair for Analysis (M7) 31.01.2019



Monge states and a low-dimensional enlargement
Quasi-Monge states

Idea: Drop the constraint that each map preserves the uniform measure
(i.e. is a permutation) and demand this only "on average".

Daniela Vogler TUM, Chair for Analysis (M7) 31.01.2019



Monge states and a low-dimensional enlargement
Quasi-Monge states

Idea: Drop the constraint that each map preserves the uniform measure
(i.e. is a permutation) and demand this only "on average".

Daniela Vogler TUM, Chair for Analysis (M7) 31.01.2019



Monge states and a low-dimensional enlargement
Quasi-Monge states

A probability measure on X"V is a2 Monge state if it is of the form

4
1
> 50 ® - ®d7y(a)

v=1

for N permutations Ty, ..., Ty : X = X .
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A probability measure on XV is a Quasi-Monge state if it is of the form

4
1
> 50 ® - ®d7y(a)

v=1

for N permutations Ty, ..., Ty : X = X .
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Monge states and a low-dimensional enlargement
Quasi-Monge states

A probability measure on XV is a Quasi-Monge state if it is of the form

Z % 67—1 (av) ®..Q0 5TN(a,,))

for some o) > 0 with 3> a(*) =1 and for N permutations
Ti,..., Ty : X —> X .
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Monge states and a low-dimensional enlargement

Quasi-Monge states

A probability measure on XV is a Quasi-Monge state if it is of the form

Z % 67—1 (av) ®..0 5TN(a,,))

for some o) > 0 with 3> a(*) =1 and for N maps T1,..., Ty : X = X
such that

Mz
||

>
Il
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Monge states and a low-dimensional enlargement
Quasi-Monge states

A probability measure on XV is a Quasi-Monge state if it is of the form

Z % 67—1 (av) ®..0 5TN(a,,))

for some o) > 0 with 3> a(*) =1 and for N maps T1,..., Ty : X = X
such that

Number of unknowns: ¢- (N + 1)
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A new characterization of Monge states

It is obvious that every Monge state is a Quasi-Monge state with the site
weights being equal to % e. a) = . =al) = % The converse is not
obvious but true:

Theorem (Friesecke and V.:Characterization of Monge states)

A probability measure on X"V is a Monge state if and only if it is a
Quasi-Monge state with all the site weights being equal to % ie.
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Breaking the curse of dimension

Theorem (Friesecke and V.:Breaking the curse of dimension)
For

e any number N > 2 of marginals

e any finite state space X
e any cost function cy : XN — RU {+oc0}
e any prescribed marginal \, € P(X)
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Breaking the curse of dimension

Theorem (Friesecke and V.:Breaking the curse of dimension

For
e any number N > 2 of marginals
e any finite state space X
e any cost function cy : XN — RU {+oc0}
e any prescribed marginal \, € P(X)

the considered Kantorovich OT problem admits a solution which is a
Quasi-Monge state.
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Breaking the curse of dimension

Theorem (Friesecke and V.:Breaking the curse of dimension )

If the cost cy has pairwise-symmetric structure, i.e.

eN(X1s - XN) = D 1<icjap C(Xiy X;) for some symmetric

c: X2 — RU{+oc}, then the Kantorovich OT problem reduces to the
problem:

Minimize

subject to

1 N
\ D Tidto = A
=il

a € P(X)
To o T X — X
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Breaking the curse of dimension

Careful analysis of extreme points of the set of N-marginal Kantorovich
couplings on {1, ..., ¢}, for general N and ¢. O
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Summary: Breaking the curse of dimension

Number of unknowns  Sufficient to obtain optimal cost

. . N+£-1
Kantorovich coupling ( -1 )
Monge state £-(N—-1) No
Quasi-Monge state - (N+1)

(our work)
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