Numerical Methods for Multi-Marginal optimal transport and Density Functional Theory

Luca Nenna

(LMO) Université Paris-Sud

OT Methods for Density Functional Theory, 31/01/2019, Banff
universitė PARIS-SACLAY

Entropic Optimal Transport

Classical vs Multi-Marginal Optimal Transport

Let us consider two probability measures $\mu, \nu \in \mathcal{P}(X)$ (with $X \subset \mathbb{R}^{d}$) and a continuous function $c: X \times X \rightarrow \mathbb{R}$ then the Monge-Kantorovich formulation $(\mathcal{M K})$ reads as

$$
\inf \left\{\int_{X \times X} c(x, y) \mathbb{P}(x, y) d x d y \mid \quad \mathbb{P} \in \Pi(\mu, \nu)\right\}
$$

where $\Pi(\mu, \nu):=\left\{\mathbb{P} \in \mathcal{P}(X \times X) \mid \quad \pi_{1, \sharp} \mathbb{P}=\mu \quad \pi_{2, \sharp} \mathbb{P}=\nu\right\}$.

Classical vs Multi-Marginal Optimal Transport

Let us consider two probability measures $\mu, \nu \in \mathcal{P}(X)$ (with $X \subset \mathbb{R}^{d}$) and a continuous function $c: X \times X \rightarrow \mathbb{R}$ then the Monge-Kantorovich formulation $(\mathcal{M K})$ reads as

$$
\inf \left\{\int_{X \times X} c(x, y) \mathbb{P}(x, y) d x d y \mid \quad \mathbb{P} \in \Pi(\mu, \nu)\right\}
$$

where $\Pi(\mu, \nu):=\left\{\mathbb{P} \in \mathcal{P}(X \times X) \mid \quad \pi_{1, \sharp} \mathbb{P}=\mu \quad \pi_{2, \sharp} \mathbb{P}=\nu\right\}$.
And its extension to the multi-marginal framework

$$
\begin{equation*}
\inf \left\{\int c\left(x_{1}, \cdots, x_{N}\right) \mathbb{P}\left(x_{1}, \cdots, x_{N}\right) d \boldsymbol{x} \mid \mathbb{P} \in \Pi_{N}\left(\mu_{1}, \cdots, \mu_{N}\right)\right\} \tag{1}
\end{equation*}
$$

where $\Pi_{N}\left(\mu_{1}, \cdots, \mu_{N}\right)$ denotes the set of couplings $\mathbb{P}\left(x_{1}, \cdots, x_{N}\right)$ having μ_{i} as marginals.
Remark (Notation): Feel free to take $\mathbb{P}\left(x_{1}, \cdots, x_{N}\right)=|\Psi|^{2}$

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)) economics. The transport plan \mathbb{P} matches individuals from each team minimizing a given cost: In Density Functional Theory: the electron-electron repulsion (see
(Buttazzo, De Pascale, and Paola Gori-Giorgi 2012; C. Cotar,
G. Friesecke, and C. Klüppelberg 2013$)$). The plan $\mathbb{P}\left(x_{1}, \cdots, x_{N}\right)$ returns

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan \mathbb{P} matches individuals from each team μ_{i} minimizing a given cost;

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan \mathbb{P} matches individuals from each team μ_{i} minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Paola Gori-Giorgi 2012; C. Cotar, G. Friesecke, and C. Klüppelberg 2013)). The plan $\mathbb{P}\left(x_{1}, \cdots, x_{N}\right)$ returns the probability of finding electrons at position x_{1}, \cdots, x_{N};

Guillaume Carlier, and Luca Nenna 2018) Mean Field Games (J.-D. Benamou, G. Carlier Di Marino, and L. Nenna 2018)

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan \mathbb{P} matches individuals from each team μ_{i} minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Paola Gori-Giorgi 2012; C. Cotar, G. Friesecke, and C. Klüppelberg 2013)). The plan $\mathbb{P}\left(x_{1}, \cdots, x_{N}\right)$ returns the probability of finding electrons at position x_{1}, \cdots, x_{N};
- Incompressible Euler Equations (Yann Brenier 1989) : $\mathbb{P}(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018). Mean Field Games (J.-D. Benamou, G. Carlier, Di Marino, and L. Nenna 2018)

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan \mathbb{P} matches individuals from each team μ_{i} minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Paola Gori-Giorgi 2012; C. Cotar, G. Friesecke, and C. Klüppelberg 2013)). The plan $\mathbb{P}\left(x_{1}, \cdots, x_{N}\right)$ returns the probability of finding electrons at position x_{1}, \cdots, x_{N};
- Incompressible Euler Equations (Yann Brenier 1989) : $\mathbb{P}(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, Di Marino, and L. Nenna 2018);

Some applications

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan \mathbb{P} matches individuals from each team μ_{i} minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Paola Gori-Giorgi 2012; C. Cotar, G. Friesecke, and C. Klüppelberg 2013)). The plan $\mathbb{P}\left(x_{1}, \cdots, x_{N}\right)$ returns the probability of finding electrons at position x_{1}, \cdots, x_{N};
- Incompressible Euler Equations (Yann Brenier 1989) : $\mathbb{P}(\omega)$ gives "the mass of fluid" which follows a path ω. See also (Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018).
- Mean Field Games (J.-D. Benamou, G. Carlier, Di Marino, and L. Nenna 2018);
- etc...

The three universes of Numerical Optimal Transportation

Let's consider the two marginal case then we can have the three following numerical approach to Optimal Transport

The three universes of Numerical Optimal Transportation

Let's consider the two marginal case then we can have the three following numerical approach to Optimal Transport

- Discrete-2-Discrete: the marginals μ have an atomic form, i.e. $\mu(x)=\sum_{i} \mu_{i} \delta_{x_{i}}$ (and ν as well). Remarks:
- The problem becomes a standard linear programming problem.
- Works for any kind of cost function.
- Can be easily generalized to the multi-marginal case.

The semi-discrete approach (Mérigot 2011).
(Mérigot and Mirebeau 2016)

The Benamou-Brenier formulation fo Optimal Transport! (J.-D. Benamou and Y. Brenier 2000)

The three universes of Numerical Optimal Transportation

Let's consider the two marginal case then we can have the three following numerical approach to Optimal Transport

- Discrete-2-Discrete: the marginals μ have an atomic form, i.e. $\mu(x)=\sum_{i} \mu_{i} \delta_{x_{i}}$ (and ν as well). Remarks:
- The problem becomes a standard linear programming problem.
- Works for any kind of cost function.
- Can be easily generalized to the multi-marginal case.
- Continous-2-Discrete: $\mu=\bar{\mu} d x$ and $\nu(y)=\sum_{i} \nu_{i} \delta_{y_{i}}$. Remarks:
- The semi-discrete approach (Mérigot 2011).
- Used for generalized euler equations (kind of mmot problem) à la Brenier (Mérigot and Mirebeau 2016).
- Continous-2-Continous $\mu=\bar{\mu} d x$ (and ν too). Remarks The Benamou-Brenier formulation fo Optimal Transport! (J.-D. Benamou and Y. Brenier 2000)

The three universes of Numerical Optimal Transportation

Let's consider the two marginal case then we can have the three following numerical approach to Optimal Transport

- Discrete-2-Discrete: the marginals μ have an atomic form, i.e. $\mu(x)=\sum_{i} \mu_{i} \delta_{x_{i}}$ (and ν as well). Remarks:
- The problem becomes a standard linear programming problem.
- Works for any kind of cost function.
- Can be easily generalized to the multi-marginal case.
- Continous-2-Discrete: $\mu=\bar{\mu} d x$ and $\nu(y)=\sum_{i} \nu_{i} \delta_{y_{i}}$. Remarks:
- The semi-discrete approach (Mérigot 2011).
- Used for generalized euler equations (kind of mmot problem) à la Brenier (Mérigot and Mirebeau 2016).
- Continous-2-Continous $\mu=\bar{\mu} d x$ (and ν too). Remarks
- The Benamou-Brenier formulation fo Optimal Transport! (J.-D. Benamou and Y. Brenier 2000)

The discretized Monge-Kantorovich problem

Let's take $c_{i j}=c\left(x_{i}, y_{j}\right) \in \mathbb{R}^{M \times M}$ (M are the gridpoints used to discretize X) then the discretized $(\mathcal{M K})$, reads as

$$
\begin{equation*}
\min \left\{\sum_{i, j=1}^{M} c_{i j} \mathbb{P}_{i j} \mid \sum_{j=1}^{M} \mathbb{P}_{i j}=\mu_{i} \forall i, \sum_{i=1}^{M} \mathbb{P}_{i j}=\nu_{j} \forall j\right\} \tag{2}
\end{equation*}
$$

and the dual problem

$$
\begin{equation*}
\max \left\{\sum_{i=1}^{M} \phi_{i} \mu_{i}+\sum_{j=1}^{M} \psi_{j} \nu_{j} \mid \phi_{i}+\psi_{j} \leq c_{i j} \forall(i, j) \in\{1, \cdots, M\}^{2}\right\} . \tag{3}
\end{equation*}
$$

The discretized Monge-Kantorovich problem

Let's take $c_{i j}=c\left(x_{i}, y_{j}\right) \in \mathbb{R}^{M \times M}$ (M are the gridpoints used to discretize X) then the discretized $(\mathcal{M K})$, reads as

$$
\begin{equation*}
\min \left\{\sum_{i, j=1}^{M} c_{i j} \mathbb{P}_{i j} \mid \sum_{j=1}^{M} \mathbb{P}_{i j}=\mu_{i} \forall i, \sum_{i=1}^{M} \mathbb{P}_{i j}=\nu_{j} \forall j\right\} \tag{2}
\end{equation*}
$$

and the dual problem

$$
\begin{equation*}
\max \left\{\sum_{i=1}^{M} \phi_{i} \mu_{i}+\sum_{j=1}^{M} \psi_{j} \nu_{j} \mid \phi_{i}+\psi_{j} \leq c_{i j} \forall(i, j) \in\{1, \cdots, M\}^{2}\right\} \tag{3}
\end{equation*}
$$

Remarks

- The primal has M^{2} unknowns and $M \times 2$ linear constraints.
- The dual has $M \times 2$ unknowns, but M^{2} constraints.

The importance of being sparse

A multi-scale approach to reduce M (J.-D. Benamou, G. Carlier, and L. Nenna 2016)

Figure: Support of the optimal \mathbb{P} for 2 marginals and the Coulomb cost

The discretized Monge-Kantorovich problem

Let's take $c_{j_{1}, \cdots, j_{N}}=c\left(x_{j_{1}}, \cdots, x_{j_{N}}\right) \in \otimes_{1}^{N} \mathbb{R}^{M}$ (M are the gridpoints used to discretize $\left.\mathbb{R}^{d}\right)$ then the discretized $\left(\mathcal{M} \mathcal{K}_{N}\right)$, reads as

$$
\begin{equation*}
\min \left\{\sum_{\left(j_{\mathbf{1}}, \cdots, j_{N}\right)=1}^{M} c_{j_{\mathbf{1}}, \cdots, j_{N}} \mathbb{P}_{j_{1}, \cdots, j_{N}} \mid \sum_{j_{k}, k \neq i} \mathbb{P}_{j_{\mathbf{1}}, \cdots, j_{i-1}, j_{i+1}, \cdots, j_{N}}=\mu_{j_{i}}^{i}\right\} \tag{4}
\end{equation*}
$$

and the dual problem

$$
\begin{equation*}
\max \left\{\sum_{i=1}^{N} \sum_{j_{i}=1}^{M} u_{j_{i}}^{i} \mu_{j_{i}}^{i} \quad \mid \quad \sum_{k=1}^{N} u_{j_{k}}^{k} \leq c_{j_{1}}, \ldots, j_{N} \quad \forall\left(j_{1}, \cdots, j_{N}\right) \in\{1, \cdots, M\}^{N}\right\} . \tag{5}
\end{equation*}
$$

The discretized Monge-Kantorovich problem

Let's take $c_{j_{1}, \cdots, j_{N}}=c\left(x_{j_{1}}, \cdots, x_{j_{N}}\right) \in \otimes_{1}^{N} \mathbb{R}^{M}$ (M are the gridpoints used to discretize $\left.\mathbb{R}^{d}\right)$ then the discretized $\left(\mathcal{M} \mathcal{K}_{N}\right)$, reads as

$$
\begin{equation*}
\min \left\{\sum_{\left(j_{1}, \cdots, j_{N}\right)=1}^{M} c_{j_{1}, \cdots, j_{N}} \mathbb{P}_{j_{1}, \cdots, j_{N}} \mid \sum_{j_{k}, k \neq i} \mathbb{P}_{j_{\mathbf{1}}, \cdots, j_{i-1}, j_{i+1}, \cdots, j_{N}}=\mu_{j_{i}}^{i}\right\} \tag{4}
\end{equation*}
$$

and the dual problem

$$
\begin{equation*}
\max \left\{\sum_{i=1}^{N} \sum_{j_{i}=1}^{M} u_{j_{i}}^{i} \mu_{j_{i}}^{i} \quad \mid \quad \sum_{k=1}^{N} u_{j_{k}}^{k} \leq c_{j_{1}}, \ldots, j_{N} \quad \forall\left(j_{1}, \cdots, j_{N}\right) \in\{1, \cdots, M\}^{N}\right\} . \tag{5}
\end{equation*}
$$

Drawbacks

- The primal has M^{N} unknowns and $M \times N$ linear constraints.
- The dual has $M \times N$ unknowns, but M^{N} constraints.

The entropic OT problem

We present a numerical method to solve the regularized ((Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015; M. Cuturi 2013; Galichon and Salanié 2009)) optimal transport problem (let us consider, for simplicity, 2 marginals)

$$
\min _{\mathbb{P} \in \mathcal{C}} \sum_{i, j} c_{i j} \mathbb{P}_{i j}+\left\{\begin{array}{l}
\epsilon \sum_{i j} \mathbb{P}_{i j} \log \left(\frac{\mathbb{P}_{i j}}{\mu_{i} \nu_{j}}\right) \quad \mathbb{P} \geq 0 \tag{6}\\
+\infty \quad \text { otherwise }
\end{array}\right.
$$

where C is the matrix associated to the cost, \mathbb{P} is the discrete transport plan and \mathcal{C} is the intersection between $\mathcal{C}_{1}=\left\{\mathbb{P} \mid \sum_{j} \mathbb{P}_{i j}=\mu_{i}\right\}$ and $\mathcal{C}_{2}=\left\{\mathbb{P} \mid \sum_{i} \mathbb{P}_{i j}=\nu_{j}\right\}$.
Remark: Think at ϵ as the temperature, then entropic OT is just OT at positive temperature.

The problem (6) can be re-written as

$$
\min _{\mathbb{P} \in \mathcal{C}} \mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})
$$

where $\mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})=\sum_{i j} \mathbb{P}_{i j}\left(\log \frac{\mathbb{P}_{i j}}{\overline{\mathbb{P}}_{i j}}\right)(=\operatorname{KL}(\mathbb{P} \mid \overline{\mathbb{P}})$ aka the Kullback-Leibler divergence) and $\overline{\mathbb{P}}_{i j}=e^{-\frac{c_{i j}}{\epsilon}} \mu_{i} \nu_{j}$.

- Unique and semi-explicit solution (we will see it in $2 / 3$ minutes!)

The problem (6) can be re-written as

$$
\begin{equation*}
\min _{\mathbb{P} \in \mathcal{C}} \mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}}) \tag{7}
\end{equation*}
$$

where $\mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})=\sum_{i j} \mathbb{P}_{i j}\left(\log \frac{\mathbb{P}_{i j}}{\overline{\mathbb{P}}_{i j}}\right)(=\operatorname{KL}(\mathbb{P} \mid \overline{\mathbb{P}})$ aka the Kullback-Leibler divergence) and $\overline{\mathbb{P}}_{i j}=e^{-\frac{c_{i j}}{\epsilon}} \mu_{i} \nu_{j}$.
Remarks:

- Unique and semi-explicit solution (we will see it in $2 / 3$ minutes!)
- Problem (7) dates back to Schrödinger, see (Luca Nenna 2016) (or better give a look at Christian Léonard's web page).
- $\mathcal{H} \rightarrow$ MK as $\epsilon \rightarrow 0$. (see (Guillaume Carlier, Duval, Gabriel Peyré, and
Bernhard Schmitzer 2017. Léonard 2012))
- The dual problem is an unconstrained optimization problem.

The problem (6) can be re-written as

$$
\min _{\mathbb{P} \in \mathcal{C}} \mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})
$$

where $\mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})=\sum_{i j} \mathbb{P}_{i j}\left(\log \frac{\mathbb{P}_{i j}}{\overline{\mathbb{P}}_{i j}}\right)(=\operatorname{KL}(\mathbb{P} \mid \overline{\mathbb{P}})$ aka the Kullback-Leibler divergence) and $\overline{\mathbb{P}}_{i j}=e^{-\frac{c_{i j}}{\epsilon}} \mu_{i} \nu_{j}$.
Remarks:

- Unique and semi-explicit solution (we will see it in $2 / 3$ minutes!)
- Problem (7) dates back to Schrödinger, see (Luca Nenna 2016) (or better give a look at Christian Léonard's web page).
- $\mathcal{H} \rightarrow \mathcal{M K}$ as $\epsilon \rightarrow 0$. (see (Guillaume Carlier, Duval, Gabriel Peyré, and Bernhard Schmitzer 2017; Léonard 2012)).

The problem (6) can be re-written as

$$
\min _{\mathbb{P} \in \mathcal{C}} \mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})
$$

where $\mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})=\sum_{i j} \mathbb{P}_{i j}\left(\log \frac{\mathbb{P}_{i j}}{\overline{\mathbb{P}}_{i j}}\right)(=\operatorname{KL}(\mathbb{P} \mid \overline{\mathbb{P}})$ aka the Kullback-Leibler divergence) and $\overline{\mathbb{P}}_{i j}=e^{-\frac{c_{i j}}{\epsilon}} \mu_{i} \nu_{j}$.
Remarks:

- Unique and semi-explicit solution (we will see it in $2 / 3$ minutes!)
- Problem (7) dates back to Schrödinger, see (Luca Nenna 2016) (or better give a look at Christian Léonard's web page).
- $\mathcal{H} \rightarrow \mathcal{M K}$ as $\epsilon \rightarrow 0$. (see (Guillaume Carlier, Duval, Gabriel Peyré, and Bernhard Schmitzer 2017; Léonard 2012)).
- The dual problem is an unconstrained optimization problem.

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

From deterministic to stochastic matching (Léonard 2012)

Figure: G. Peyre's twitter account

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

From deterministic to stochastic matching (Léonard 2012)

$\varepsilon=.05$
Figure: G. Peyre's twitter account

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

From deterministic to stochastic matching (Léonard 2012)

$$
\varepsilon=0.2
$$

Figure: G. Peyre's twitter account

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

From deterministic to stochastic matching (Léonard 2012)

Figure: G. Peyre's twitter account

The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan \mathbb{P}^{\star} has the form $\mathbb{P}_{i j}^{\star}=a_{i}^{\star} b_{j}^{\star} \overline{\mathbb{P}}_{i j}$. Moreover a_{i}^{\star} and b_{j}^{\star} can be uniquely determined (up to a multiplicative constant) as follows

$$
b_{j}^{\star}=\frac{\nu_{j}}{\sum_{i} a_{i}^{\star} \overline{\mathbb{P}}_{i j}}, a_{i}^{\star}=\frac{\mu_{i}}{\sum_{j} b_{j}^{\star} \overline{\mathbb{P}}_{i j}}
$$

The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan \mathbb{P}^{\star} has the form $\mathbb{P}_{i j}^{\star}=a_{i}^{\star} b_{j}^{\star} \overline{\mathbb{P}}_{i j}$. Moreover a_{i}^{\star} and b_{j}^{\star} can be uniquely determined (up to a multiplicative constant) as follows

$$
b_{j}^{\star}=\frac{\nu_{j}}{\sum_{i} a_{i}^{\star} \overline{\mathbb{P}}_{i j}}, a_{i}^{\star}=\frac{\mu_{i}}{\sum_{j} b_{j}^{\star} \overline{\mathbb{P}}_{i j}}
$$

The Sinkhorn algorithm (aka IPFP)

$$
b_{j}^{n+1}=\frac{\nu_{j}}{\sum_{i} a_{i}^{n} \overline{\mathbb{P}}_{i j}}, a_{i}^{n+1}=\frac{\mu_{i}}{\sum_{j} b_{j}^{n+1} \overline{\mathbb{P}}_{i j}}
$$

```
\(\square\)\(a^{n}\) and \(b^{n}\) converge to \(a^{*}\) and \(b^{*}\)
```

Remark: $\phi_{i}=\epsilon \log \left(a_{i}\right)$ and $\log \left(b_{j}\right)$ are the (regularized) Kantorovich
potentials.

The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan \mathbb{P}^{\star} has the form $\mathbb{P}_{i j}^{\star}=a_{i}^{\star} b_{j}^{\star} \overline{\mathbb{P}}_{i j}$. Moreover a_{i}^{\star} and b_{j}^{\star} can be uniquely determined (up to a multiplicative constant) as follows

$$
b_{j}^{\star}=\frac{\nu_{j}}{\sum_{i} a_{i}^{\star} \overline{\mathbb{P}}_{i j}}, a_{i}^{\star}=\frac{\mu_{i}}{\sum_{j} b_{j}^{\star} \overline{\mathbb{P}}_{i j}}
$$

The Sinkhorn algorithm (aka IPFP)

$$
b_{j}^{n+1}=\frac{\nu_{j}}{\sum_{i} a_{i}^{n} \overline{\mathbb{P}}_{i j}}, a_{i}^{n+1}=\frac{\mu_{i}}{\sum_{j} b_{j}^{n+1} \overline{\mathbb{P}}_{i j}}
$$

Theorem ((ibid.))

a^{n} and b^{n} converge to a^{\star} and b^{\star}
Remark: $\phi_{i}=\epsilon \log \left(a_{i}\right)$ and $\psi_{j}=\epsilon \log \left(b_{j}\right)$ are the (regularized) Kantorovich
potentials.

The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan \mathbb{P}^{\star} has the form $\mathbb{P}_{i j}^{\star}=a_{i}^{\star} b_{j}^{\star} \overline{\mathbb{P}}_{i j}$. Moreover a_{i}^{\star} and b_{j}^{\star} can be uniquely determined (up to a multiplicative constant) as follows

$$
b_{j}^{\star}=\frac{\nu_{j}}{\sum_{i} a_{i}^{\star} \overline{\mathbb{P}}_{i j}}, a_{i}^{\star}=\frac{\mu_{i}}{\sum_{j} b_{j}^{\star} \overline{\mathbb{P}}_{i j}}
$$

The Sinkhorn algorithm (aka IPFP)

$$
b_{j}^{n+1}=\frac{\nu_{j}}{\sum_{i} a_{i}^{n} \overline{\mathbb{P}}_{i j}}, a_{i}^{n+1}=\frac{\mu_{i}}{\sum_{j} b_{j}^{n+1} \overline{\mathbb{P}}_{i j}}
$$

Theorem ((ibid.))

a^{n} and b^{n} converge to a^{\star} and b^{\star}
Remark: $\phi_{i}=\epsilon \log \left(a_{i}\right)$ and $\psi_{j}=\epsilon \log \left(b_{j}\right)$ are the (regularized) Kantorovich potentials.

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.
- The entropic regularization spreads the support and this helps to stabilize: it defines a strongly convex program with a unique solution.
parallelizable)
The regularized solution II minimal entropy as $\in \rightarrow 0($ in (Cominetti and San Martin 1994) the authors proved that the convergence is exponential).

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.
- The entropic regularization spreads the support and this helps to stabilize: it defines a strongly convex program with a unique solution.
- The solution can be obtained through elementary operations (trivially parallelizable).

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.
- The entropic regularization spreads the support and this helps to stabilize: it defines a strongly convex program with a unique solution.
- The solution can be obtained through elementary operations (trivially parallelizable).
- The regularized solution \mathbb{P}^{ϵ} converges to the solution $\mathbb{P}^{o t}$ of $\mathcal{M K} \mathrm{pb}$. with minimal entropy as $\epsilon \rightarrow 0$ (in (Cominetti and San Martin 1994) the authors proved that the convergence is exponential).

Some Remarks

- In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using the Hilbert metric.
- The entropic regularization spreads the support and this helps to stabilize: it defines a strongly convex program with a unique solution.
- The solution can be obtained through elementary operations (trivially parallelizable).
- The regularized solution \mathbb{P}^{ϵ} converges to the solution $\mathbb{P}^{o t}$ of $\mathcal{M K} \mathrm{pb}$. with minimal entropy as $\epsilon \rightarrow 0$ (in (Cominetti and San Martin 1994) the authors proved that the convergence is exponential).
- The complexity depends on the cost function: with Euler's cost $\mathcal{O}\left((N-1) M^{2.37}\right) \ldots$..still exponential in N for the Coulomb cost :(.

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=60 / \mathrm{N}$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=40 / \mathrm{N}$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=20 / N$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=10 / \mathrm{N}$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=6 / \mathrm{N}$

How the regularization works: from spread to deterministic plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals μ and ν

Figure: $\epsilon=4 / N$

The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

$$
\begin{equation*}
\min _{\mathbb{P} \in \mathcal{C}} \mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}}) \tag{8}
\end{equation*}
$$

where $\mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})=\sum_{i, j, k} \mathbb{P}_{i j k}\left(\log \frac{\mathbb{P}_{i j k}}{\overline{\mathbb{P}}_{i j k}}-1\right)$ is the relative entropy, and $\mathcal{C}=\bigcap_{i=1}^{3} \mathcal{C}_{i}$ (i.e. $\mathcal{C}_{1}=\left\{\mathbb{P} \mid \quad \sum_{j, k} \mathbb{P}_{i j k}=\mu_{i}^{1}\right\}$).

The optimal plan \mathbb{P}^{\star} becomes $\mathbb{P}_{i j k}^{\star}=a_{i}^{\star} b_{j}^{\star} c_{k}^{\star} \overline{\mathbb{P}}_{i j k} a_{i}^{\star}, b_{j}^{\star}$ and c_{k}^{\star} can be determined by the marginal constraints.

$$
\begin{aligned}
b_{j}^{\star} & =\frac{\mu_{j}^{2}}{\sum_{i k} a_{i}^{\star} c_{k}^{\star} \overline{\mathbb{P}}_{i j k}} \\
c_{k}^{\star} & =\frac{\mu_{k}^{3}}{\sum_{i j} a_{i}^{\star} b_{j}^{\star} \overline{\mathbb{P}}_{i j k}} \\
a_{i}^{\star} & =\frac{\mu_{i}^{1}}{\sum_{j k} b_{j}^{\star} c_{k}^{\star} \overline{\mathbb{P}}_{i j k}}
\end{aligned}
$$

The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

$$
\begin{equation*}
\min _{\mathbb{P} \in \mathcal{C}} \mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}}) \tag{8}
\end{equation*}
$$

where $\mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})=\sum_{i, j, k} \mathbb{P}_{i j k}\left(\log \frac{\mathbb{P}_{i j k}}{\overline{\mathbb{P}}_{i j k}}-1\right)$ is the relative entropy, and $\mathcal{C}=\bigcap_{i=1}^{3} \mathcal{C}_{i}$ (i.e. $\mathcal{C}_{1}=\left\{\mathbb{P} \mid \quad \sum_{j, k} \mathbb{P}_{i j k}=\mu_{i}^{1}\right\}$).

The optimal plan \mathbb{P}^{\star} becomes $\mathbb{P}_{i j k}^{\star}=a_{i}^{\star} b_{j}^{\star} c_{k}^{\star} \overline{\mathbb{P}}_{i j k} a_{i}^{\star}, b_{j}^{\star}$ and c_{k}^{\star} can be determined by the marginal constraints.

$$
\begin{aligned}
b_{j}^{\star} & =\frac{\mu_{j}^{2}}{\sum_{i k} a_{i}^{\star} c_{k}^{\star} \overline{\mathbb{P}}_{i j k}} \\
c_{k}^{\star} & =\frac{\mu_{k}^{3}}{\sum_{i j} a_{i}^{\star} b_{j}^{\star} \overline{\mathbb{P}}_{i j k}} \\
a_{i}^{\star} & =\frac{\mu_{i}^{1}}{\sum_{j k} b_{j}^{\star} c_{k}^{\star} \overline{\mathbb{P}}_{i j k}}
\end{aligned}
$$

$$
\Rightarrow
$$

$$
\Rightarrow
$$

$$
\Rightarrow
$$

$$
\Rightarrow
$$

The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

$$
\begin{equation*}
\min _{\mathbb{P} \in \mathcal{C}} \mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}}) \tag{8}
\end{equation*}
$$

where $\mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})=\sum_{i, j, k} \mathbb{P}_{i j k}\left(\log \frac{\mathbb{P}_{i j k}}{\overline{\mathbb{P}}_{i j k}}-1\right)$ is the relative entropy, and $\mathcal{C}=\bigcap_{i=1}^{3} \mathcal{C}_{i}$ (i.e. $\mathcal{C}_{1}=\left\{\mathbb{P} \mid \quad \sum_{j, k} \mathbb{P}_{i j k}=\mu_{i}^{1}\right\}$).

The optimal plan \mathbb{P}^{\star} becomes $\mathbb{P}_{i j k}^{\star}=a_{i}^{\star} b_{j}^{\star} c_{k}^{\star} \overline{\mathbb{P}}_{i j k} a_{i}^{\star}, b_{j}^{\star}$ and c_{k}^{\star} can be determined by the marginal constraints.

$$
\begin{array}{cll}
b_{j}^{\star}=\frac{\mu_{j}^{2}}{\sum_{i k} a_{i}^{\star} c_{k}^{\star} \overline{\mathbb{P}}_{i j k}} & \Rightarrow & b_{j}^{n+1}=\frac{\mu_{j}^{2}}{\sum_{i k} a_{i}^{n} c_{k}^{n} \overline{\mathbb{P}}_{i j k}} \\
c_{k}^{\star}=\frac{\mu_{k}^{3}}{\sum_{i j} a_{i}^{\star} b_{j}^{\star} \overline{\mathbb{P}}_{i j k}} & \Rightarrow & \\
a_{i}^{\star}=\frac{\mu_{i}^{1}}{\sum_{j k} b_{j}^{\star} c_{k}^{\star} \overline{\mathbb{P}}_{i j k}} & \Rightarrow & c_{k}^{n+1}=\frac{\mu_{k}^{3}}{\sum_{i j} a_{i}^{n} b_{j}^{n+1} \overline{\mathbb{P}}_{i j k}} \\
& \Rightarrow & a_{i}^{n+1}=\frac{\mu_{i}^{1}}{\sum_{j k} b_{j}^{n+1} c_{k}^{n+1} \overline{\mathbb{P}}_{i j k}}
\end{array}
$$

Sinkhornizing the world!!

- Wasserstein Barycenter (Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015);
- Matching for teams (Luca Nenna 2016);
- Optimal transport with capacity constraint (Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015);
- Partial Optimal Transport (Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015; Chizat, G. Peyré, B. Schmitzer, and Vialard 2016);
- Multi-Marginal Optimal Transport (Luca Nenna 2016; J.-D. Benamou, G. Carlier, and L. Nenna 2016; Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018; Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015);
- Wasserstein Gradient Flows (JKO) (Gabriel Peyré 2015);
- Unbalanced Optimal Transport (Chizat, G. Peyré, B. Schmitzer, and Vialard 2016);
- Cournot-Nash equilibria (Blanchet, Guillaume Carlier, and Luca Nenna 2017)
- Mean Field Games (J.-D. Benamou, G. Carlier, Di Marino, and L. Nenna 2018);
- And more is coming...

MMOT with Coulomb cost

The Levy-Lieb functional

Consider the Levy-Lieb functional $F_{L L}[\rho]$

$$
\begin{equation*}
F_{L L}[\rho]=\min _{\psi \rightarrow \rho} \epsilon T[\Psi]+V_{e e}[\Psi] \tag{9}
\end{equation*}
$$

Then we have (Bindini and De Pascale 2017; Codina Cotar, Gero Friesecke, and Claudia Klüppelberg 2018; Lewin 2018)

The Levy-Lieb functional

Consider the Levy-Lieb functional $F_{L L}[\rho]$

$$
\begin{equation*}
F_{L L}[\rho]=\min _{\Psi \rightarrow \rho} \epsilon T[\Psi]+V_{e e}[\Psi] \tag{9}
\end{equation*}
$$

Remark (super rough!!!): Let's take $\mathbb{P}=|\Psi|^{2}$, then
$|\nabla \Psi|^{2}=|\nabla \sqrt{\mathbb{P}}|^{2}=\frac{1}{4} \frac{|\nabla \mathbb{P}|^{2}}{\mathbb{P}}$ and the kinetic energy can be re-written as

$$
T[\Psi]=\int_{\mathbb{R}^{d N}} \frac{1}{4} \frac{|\nabla \mathbb{P}|^{2}}{\mathbb{P}} d x_{1} \cdots d x_{N} .
$$

The Levy-Lieb functional

Consider the Levy-Lieb functional $F_{L L}[\rho]$

$$
\begin{equation*}
F_{L L}[\rho]=\min _{\psi \rightarrow \rho} \epsilon T[\Psi]+V_{e e}[\Psi] \tag{9}
\end{equation*}
$$

Remark (super rough!!!): Let's take $\mathbb{P}=|\Psi|^{2}$, then
$|\nabla \Psi|^{2}=|\nabla \sqrt{\mathbb{P}}|^{2}=\frac{1}{4} \frac{|\nabla \mathbb{P}|^{2}}{\mathbb{P}}$ and the kinetic energy can be re-written as

$$
T[\Psi]=\int_{\mathbb{R}^{d N}} \frac{1}{4} \frac{|\nabla \mathbb{P}|^{2}}{\mathbb{P}} d x_{1} \cdots d x_{N} .
$$

Then we have (Bindini and De Pascale 2017; Codina Cotar, Gero Friesecke, and Claudia Klüppelberg 2018; Lewin 2018)...

Semiclassical limit

$\lim _{\epsilon \rightarrow 0} F_{L L}[\rho]=\mathcal{M} \mathcal{K}[\rho]$

The entropic inequality

One can prove the following inequality

The Entropic Inequality (Seidl, Di Marino, Gerolin, L. Nenna, Giesbertz, and P. Gori-Giorgi 2017)

$\min _{\mathbb{P} \rightarrow \rho} \int_{\mathbb{R}^{d N}} \epsilon \frac{1}{4} \frac{|\nabla \mathbb{P}|^{2}}{\mathbb{P}}+\sum_{i<j} \frac{1}{\left|x_{i}-x_{j}\right|} \mathbb{P} \geq \min _{\mathbb{P} \rightarrow \rho} \int_{\mathbb{R}^{d N}} \epsilon C \mathbb{P} \log (\mathbb{P})+\sum_{i<j} \frac{1}{\left|x_{i}-x_{j}\right|} \mathbb{P}=\mathcal{H}(\mathbb{P} \mid \overline{\mathbb{P}})$
where $\int \frac{1}{4} \frac{|\nabla \mathbb{P}|^{2}}{\mathbb{P}} \geq C \int \mathbb{P} \log (\mathbb{P})$ is the log-sobolev inequality (or Fisher information) and the entropic functional $\mathcal{H}(\mathbb{P} \mid \widehat{\mathbb{P}})$ corresponds to minimize the

The limit as $\epsilon \rightarrow 0$

Take the Coulomb cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals ρ (and ρ)

Figure: $\epsilon=10$

The limit as $\epsilon \rightarrow 0$

Take the Coulomb cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals ρ (and ρ)

Figure: $\epsilon=5$

The limit as $\epsilon \rightarrow 0$

Take the Coulomb cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals ρ (and ρ)

Figure: $\epsilon=1$

The limit as $\epsilon \rightarrow 0$

Take the Coulomb cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals ρ (and ρ)

Figure: $\epsilon=0.1$

The limit as $\epsilon \rightarrow 0$

Take the Coulomb cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals ρ (and ρ)

Figure: $\epsilon=0.01$

The limit as $\epsilon \rightarrow 0$

Take the Coulomb cost and solve the regularized problem. Then as $\epsilon \rightarrow 0$ ($N=512$), we have

Figure: Marginals ρ (and ρ)

Figure: $\epsilon=0.002$

Some simulations for $N=3,4,5$ in 1D

We take the density $\rho(x)=\frac{N}{10}\left(1+\cos \left(\frac{\pi}{5} x\right)\right)$ and...

Figure: Support of the projected plan $\pi_{12}(\mathbb{P})$

SGS vs Entropic: the uniform density on the ball $(N=3)$

0.2
0.4
0.6
0.8

1
Figure: SGS maps (left) $\mathcal{M}_{\mathcal{K}_{S G S}}=2.32682$ and entropic plan (right) $\mathcal{M} \mathcal{K}_{\epsilon}=2.31721$

The transition from spread to deterministic plans for $N=3$ and $d=3$

Take $\rho_{\alpha}(r)=\alpha \rho_{L i}(r)+(1-\alpha) \rho_{\text {exp }}(r)$ and $\alpha \in[0,1]$ then...

Figure: $\alpha=0$

The transition from spread to deterministic plans for $N=3$ and $d=3$

Take $\rho_{\alpha}(r)=\alpha \rho_{L i}(r)+(1-\alpha) \rho_{\text {exp }}(r)$ and $\alpha \in[0,1]$ then...

Figure: $\alpha=0.1429$

The transition from spread to deterministic plans for $N=3$ and $d=3$

Take $\rho_{\alpha}(r)=\alpha \rho_{L i}(r)+(1-\alpha) \rho_{\text {exp }}(r)$ and $\alpha \in[0,1]$ then...

Figure: $\alpha=0.2857$

The transition from spread to deterministic plans for $N=3$ and $d=3$

Take $\rho_{\alpha}(r)=\alpha \rho_{L i}(r)+(1-\alpha) \rho_{\text {exp }}(r)$ and $\alpha \in[0,1]$ then...

Figure: $\alpha=0.4286$

The transition from spread to deterministic plans for $N=3$

 and $d=3$Take $\rho_{\alpha}(r)=\alpha \rho_{L i}(r)+(1-\alpha) \rho_{\exp }(r)$ and $\alpha \in[0,1]$ then...

Figure: $\alpha=0.5714$

The transition from spread to deterministic plans for $N=3$

 and $d=3$Take $\rho_{\alpha}(r)=\alpha \rho_{L i}(r)+(1-\alpha) \rho_{\exp }(r)$ and $\alpha \in[0,1]$ then...

Figure: $\alpha=0.7143$

The transition from spread to deterministic plans for $N=3$

 and $d=3$Take $\rho_{\alpha}(r)=\alpha \rho_{L i}(r)+(1-\alpha) \rho_{\exp }(r)$ and $\alpha \in[0,1]$ then...

Figure: $\alpha=0.8571$

The transition from spread to deterministic plans for $N=3$

 and $d=3$Take $\rho_{\alpha}(r)=\alpha \rho_{L i}(r)+(1-\alpha) \rho_{\exp }(r)$ and $\alpha \in[0,1]$ then...

Figure: $\alpha=1$

Advertising

If you are interested in OT, Entropic regularization and more:

- My web page (just google me) or contact me luca.nenna@math.u-psud.fr;
- Mokaplan team https://team.inria.fr/mokaplan/;

Some references:
Benamou, J.-D., G. Carlier, \& L. Nenna (2016). "A Numerical Method to solve Multi-Marginal Optimal Transport Problems with Coulomb Cost". In: Splitting Methods in Communication, Imaging, Science, and Engineering. Springer International Publishing, pp. 577-601.
Benamou, Jean-David, Guillaume Carlier, Marco Cuturi, Luca Nenna, \& Gabriel Peyré (2015). "Iterative Bregman projections for regularized transportation problems". In: SIAM J. Sci. Comput. 37.2, A1111-A1138. ISSN: 1064-8275. DOI: 10.1137/141000439. URL: http://dx.doi.org/10.1137/141000439. Nenna, Luca (2016). "Numerical methods for multi-marginal optimal transportation". PhD thesis. PSL Research University.
Peyré, Gabriel \& Marco Cuturi (2017). Computational optimal transport. Tech. rep.

Thank You!!

