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Classical vs Multi-Marginal Optimal Transport

Let us consider two probability measures µ, ν ∈ P(X ) (with X ⊂ Rd) and a
continuous function c : X × X → R then the Monge-Kantorovich formulation
(MK) reads as

inf

{∫
X×X

c(x , y)P(x , y)dxdy | P ∈ Π(µ, ν)

}
where Π(µ, ν) := {P ∈ P(X × X )| π1,]P = µ π2,]P = ν}.
And its extension to the multi-marginal framework

inf

{∫
c(x1, · · · , xN)P(x1, · · · , xN)dxxx | P ∈ ΠN(µ1, · · · , µN)

}
(1)

where ΠN(µ1, · · · , µN) denotes the set of couplings P(x1, · · · , xN) having µi as
marginals.
Remark (Notation): Feel free to take P(x1, · · · , xN) = |Ψ|2
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Some applications

The Wasserstein barycenter problem can be rewritten as a MMOT problem
(see (Agueh and G. Carlier 2011)): statistics, machine learning, image
processing;
Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)):
economics. The transport plan P matches individuals from each team µi

minimizing a given cost;
In Density Functional Theory: the electron-electron repulsion (see
(Buttazzo, De Pascale, and Paola Gori-Giorgi 2012; C. Cotar,
G. Friesecke, and C. Klüppelberg 2013)). The plan P(x1, · · · , xN) returns
the probability of finding electrons at position x1, · · · , xN ;
Incompressible Euler Equations (Yann Brenier 1989) : P(ω) gives “the mass
of fluid” which follows a path ω. See also (Jean-David Benamou,
Guillaume Carlier, and Luca Nenna 2018).
Mean Field Games (J.-D. Benamou, G. Carlier, Di Marino, and
L. Nenna 2018);
etc...
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The three universes of Numerical Optimal Transportation

Let’s consider the two marginal case then we can have the three following
numerical approach to Optimal Transport

Discrete-2-Discrete: the marginals µ have an atomic form, i.e.
µ(x) =

∑
i µiδxi (and ν as well). Remarks:

The problem becomes a standard linear programming problem.
Works for any kind of cost function.
Can be easily generalized to the multi-marginal case.

Continous-2-Discrete: µ = µ̄dx and ν(y) =
∑

i νiδyi . Remarks:
The semi-discrete approach (Mérigot 2011).
Used for generalized euler equations (kind of mmot problem) à la Brenier
(Mérigot and Mirebeau 2016).

Continous-2-Continous µ = µ̄dx (and ν too). Remarks
The Benamou-Brenier formulation fo Optimal Transport! (J.-D. Benamou
and Y. Brenier 2000)
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The discretized Monge-Kantorovich problem

Let’s take cij = c(xi , yj) ∈ RM×M (M are the gridpoints used to discretize X )
then the discretized (MK), reads as

min{
M∑

i,j=1

cijPij |
M∑
j=1

Pij = µi ∀i ,
M∑
i=1

Pij = νj ∀j} (2)

and the dual problem

max{
M∑
i=1

φiµi +
M∑
j=1

ψjνj | φi + ψj ≤ cij ∀(i , j) ∈ {1, · · · ,M}2}. (3)

Remarks
The primal has M2 unknowns and M × 2 linear constraints.
The dual has M × 2 unknowns, but M2 constraints.
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The importance of being sparse

A multi-scale approach to reduce M (J.-D. Benamou, G. Carlier, and
L. Nenna 2016)

Figure: Support of the optimal P for 2 marginals and the Coulomb cost
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The discretized Monge-Kantorovich problem

Let’s take cj1,··· ,jN = c(xj1 , · · · , xjN ) ∈ ⊗N
1 RM (M are the gridpoints used to

discretize Rd) then the discretized (MKN), reads as

min{
M∑

(j1,··· ,jN )=1

cj1,··· ,jNPj1,··· ,jN |
∑
jk ,k 6=i

Pj1,··· ,ji−1,ji+1,··· ,jN = µi
ji} (4)

and the dual problem

max{
N∑
i=1

M∑
ji=1

uijiµ
i
ji |

N∑
k=1

ukjk ≤ cj1,...,jN ∀(j1, · · · , jN) ∈ {1, · · · ,M}N}. (5)

Drawbacks
The primal has MN unknowns and M × N linear constraints.
The dual has M × N unknowns, but MN constraints.
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The entropic OT problem

We present a numerical method to solve the regularized ((Jean-David Benamou,
Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015;
M. Cuturi 2013; Galichon and Salanié 2009)) optimal transport problem (let
us consider, for simplicity, 2 marginals)

min
P∈C

∑
i,j

cijPij +

ε
∑

ij Pij log

(
Pij

µiνj

)
P ≥ 0

+∞ otherwise
. (6)

where C is the matrix associated to the cost, P is the discrete transport plan and
C is the intersection between C1 = {P |

∑
j Pij = µi} and C2 = {P |

∑
i Pij = νj}.

Remark: Think at ε as the temperature, then entropic OT is just OT at positive
temperature.
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The problem (6) can be re-written as

min
P∈C
H(P|P̄) (7)

where H(P|P̄) =
∑

ij Pij

(
log

Pij

P̄ij

)
(= KL(P|P̄) aka the Kullback-Leibler

divergence ) and P̄ij = e
−
cij
ε µiνj .

Remarks:
Unique and semi-explicit solution (we will see it in 2/3 minutes!)
Problem (7) dates back to Schrödinger, see (Luca Nenna 2016) (or better
give a look at Christian Léonard’s web page).
H →MK as ε→ 0. (see (Guillaume Carlier, Duval, Gabriel Peyré, and
Bernhard Schmitzer 2017; Léonard 2012)).
The dual problem is an unconstrained optimization problem.
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The “bridge” between quadratic Monge-Kantorovich and
Schrödinger

From deterministic to stochastic matching (Léonard 2012)

Figure: G. Peyre’s twitter account
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The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))
The optimal plan P? has the form P?ij = a?i b

?
j P̄ij . Moreover a?i and b?j can be

uniquely determined (up to a multiplicative constant) as follows

b?j =
νj∑
i a
?
i P̄ij

, a?i =
µi∑
j b
?
j P̄ij

The Sinkhorn algorithm (aka IPFP)

bn+1
j =

νj∑
i a

n
i P̄ij

, an+1
i =

µi∑
j b

n+1
j P̄ij

Theorem ((ibid.))
an and bn converge to a? and b?

Remark:φi = ε log(ai ) and ψj = ε log(bj) are the (regularized) Kantorovich
potentials.
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Some Remarks

In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using
the Hilbert metric.
The entropic regularization spreads the support and this helps to stabilize: it
defines a strongly convex program with a unique solution.
The solution can be obtained through elementary operations (trivially
parallelizable).
The regularized solution Pε converges to the solution Pot ofMK pb. with
minimal entropy as ε→ 0 (in (Cominetti and San Martin 1994) the
authors proved that the convergence is exponential).
The complexity depends on the cost function: with Euler’s cost
O((N − 1)M2.37)...still exponential in N for the Coulomb cost :( .
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The complexity depends on the cost function: with Euler’s cost
O((N − 1)M2.37)...still exponential in N for the Coulomb cost :( .
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How the regularization works: from spread to deterministic
plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have

Figure: Marginals µ and ν

Figure: ε = 60/N
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How the regularization works: from spread to deterministic
plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have

Figure: Marginals µ and ν

Figure: ε = 40/N
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How the regularization works: from spread to deterministic
plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have

Figure: Marginals µ and ν

Figure: ε = 20/N
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How the regularization works: from spread to deterministic
plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have

Figure: Marginals µ and ν

Figure: ε = 10/N
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How the regularization works: from spread to deterministic
plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have

Figure: Marginals µ and ν

Figure: ε = 6/N
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How the regularization works: from spread to deterministic
plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have

Figure: Marginals µ and ν

Figure: ε = 4/N
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The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

min
P∈C
H(P|P̄) (8)

where H(P|P̄) =
∑

i,j,k Pijk(log
Pijk

P̄ijk

− 1) is the relative entropy, and C =
⋂3

i=1 Ci

(i.e. C1 = {P |
∑

j,k Pijk = µ1
i }).

The optimal plan P? becomes P?ijk = a?i b
?
j c
?
k P̄ijk a?i , b

?
j and c?k can be

determined by the marginal constraints.

b?j =
µ2
j∑

ik a
?
i c
?
k P̄ijk

c?k =
µ3
k∑

ij a
?
i b
?
j P̄ijk

a?i =
µ1
i∑

jk b
?
j c
?
k P̄ijk

⇒
⇒
⇒
⇒
⇒
⇒

bn+1
j =

µ2
j∑

ik a
n
i c

n
k P̄ijk

cn+1
k =

µ3
k∑

ij a
n
i b

n+1
j P̄ijk

an+1
i =

µ1
i∑

jk b
n+1
j cn+1

k P̄ijk
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Sinkhornizing the world!!

Wasserstein Barycenter (Jean-David Benamou, Guillaume Carlier,
Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015);
Matching for teams (Luca Nenna 2016);
Optimal transport with capacity constraint (Jean-David Benamou,
Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015);
Partial Optimal Transport (Jean-David Benamou, Guillaume Carlier,
Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015; Chizat, G. Peyré,
B. Schmitzer, and Vialard 2016);
Multi-Marginal Optimal Transport (Luca Nenna 2016; J.-D. Benamou,
G. Carlier, and L. Nenna 2016; Jean-David Benamou, Guillaume Carlier,
and Luca Nenna 2018; Jean-David Benamou, Guillaume Carlier,
Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015);
Wasserstein Gradient Flows (JKO) (Gabriel Peyré 2015);
Unbalanced Optimal Transport (Chizat, G. Peyré, B. Schmitzer, and Vialard
2016);
Cournot-Nash equilibria (Blanchet, Guillaume Carlier, and Luca Nenna
2017)
Mean Field Games (J.-D. Benamou, G. Carlier, Di Marino, and L. Nenna
2018);
And more is coming...
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MMOT with Coulomb cost
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The Levy-Lieb functional

Consider the Levy-Lieb functional FLL[ρ]

FLL[ρ] = min
Ψ→ρ

εT [Ψ] + Vee [Ψ] (9)

Remark (super rough!!!): Let’s take P = |Ψ|2, then

|∇Ψ|2 = |∇
√
P|2 =

1
4
|∇P|2

P
and the kinetic energy can be re-written as

T [Ψ] =

∫
RdN

1
4
|∇P|2

P
dx1 · · · dxN .

Then we have (Bindini and De Pascale 2017; Codina Cotar, Gero Friesecke,
and Claudia Klüppelberg 2018; Lewin 2018)...

Semiclassical limit
limε→0 FLL[ρ] =MK[ρ]
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The entropic inequality

One can prove the following inequality

The Entropic Inequality (Seidl, Di Marino, Gerolin, L. Nenna,
Giesbertz, and P. Gori-Giorgi 2017)

min
P→ρ

∫
RdN

ε
1
4
|∇P|2

P
+
∑
i<j

1
|xi − xj |

P ≥ min
P→ρ

∫
RdN

εCP log(P)+
∑
i<j

1
|xi − xj |

P = H(P|P̄).

(10)

where
∫ 1
4
|∇P|2

P
≥ C

∫
P log(P) is the log-sobolev inequality (or Fisher

information) and the entropic functional H(P|P̄) corresponds to minimize the

Kullback-Leibler distance between P and P̄ = e
−

∑
i<j

1
|xi−xj |

1
Cε .
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The limit as ε→ 0

Take the Coulomb cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have
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Figure: Marginals ρ (and ρ)

Figure: ε = 10
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The limit as ε→ 0

Take the Coulomb cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have
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Figure: Marginals ρ (and ρ)

Figure: ε = 5
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The limit as ε→ 0

Take the Coulomb cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have
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Figure: Marginals ρ (and ρ)

Figure: ε = 1
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The limit as ε→ 0

Take the Coulomb cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have
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Figure: Marginals ρ (and ρ)

Figure: ε = 0.1
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The limit as ε→ 0

Take the Coulomb cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have
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Figure: Marginals ρ (and ρ)

Figure: ε = 0.01
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The limit as ε→ 0

Take the Coulomb cost and solve the regularized problem. Then as ε→ 0
(N = 512), we have
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Figure: Marginals ρ (and ρ)

Figure: ε = 0.002
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Some simulations for N = 3, 4, 5 in 1D

We take the density ρ(x) = N
10 (1 + cos(π5 x)) and...

N = 3 N = 4 N = 5

Figure: Support of the projected plan π12(P)
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SGS vs Entropic: the uniform density on the ball (N = 3)

Figure: SGS maps (left) MKSGS = 2.32682 and entropic plan (right) MKε = 2.31721
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The transition from spread to deterministic plans for N = 3
and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure: α = 0
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The transition from spread to deterministic plans for N = 3
and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure: α = 0.1429
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The transition from spread to deterministic plans for N = 3
and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure: α = 0.2857
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The transition from spread to deterministic plans for N = 3
and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure: α = 0.4286
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The transition from spread to deterministic plans for N = 3
and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure: α = 0.5714
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The transition from spread to deterministic plans for N = 3
and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure: α = 0.7143
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The transition from spread to deterministic plans for N = 3
and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure: α = 0.8571
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The transition from spread to deterministic plans for N = 3
and d = 3

Take ρα(r) = αρLi (r) + (1− α)ρexp(r) and α ∈ [0, 1] then...

Figure: α = 1
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Advertising
If you are interested in OT, Entropic regularization and more:

My web page (just google me) or contact me luca.nenna@math.u-psud.fr;
Mokaplan team https://team.inria.fr/mokaplan/;

Some references:
Benamou, J.-D., G. Carlier, & L. Nenna (2016). “A Numerical Method to solve
Multi-Marginal Optimal Transport Problems with Coulomb Cost”. In: Splitting
Methods in Communication, Imaging, Science, and Engineering. Springer
International Publishing, pp. 577–601.

Benamou, Jean-David, Guillaume Carlier, Marco Cuturi, Luca Nenna, & Gabriel Peyré
(2015). “Iterative Bregman projections for regularized transportation problems”. In:
SIAM J. Sci. Comput. 37.2, A1111–A1138. ISSN: 1064-8275. DOI:
10.1137/141000439. URL: http://dx.doi.org/10.1137/141000439.

Nenna, Luca (2016). “Numerical methods for multi-marginal optimal transportation”.
PhD thesis. PSL Research University.

Peyré, Gabriel & Marco Cuturi (2017). Computational optimal transport. Tech. rep.

Thank You!!
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