

Stationary and time-dependent spectral renormalization method

Ziad H. Musslimani
Florida State University

Spectral renormalization method for the solution of the Kohn-Sham equation
Ziad H. Musslimani ${ }^{1,2}$, Michael Seidl ${ }^{2}$, and Paola Gori-Giorgi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510, USA,
${ }^{2}$ Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands (Datod. Tanmorv $2 \cap$ のП1 O$)$

Goal of Talk

Modest:

> Solve Kohn-Sham equations using spectral renormalization method;
> Use time-dependent spectral renormalization to simulate time-dependent DFT.

Ambitious:

Use the machinery developed above to study
> Many-body (strongly interacting) Anderson localization;
> PT symmetric DFT or DFT with complex potentials.
> Topological physics in the presence of strong interaction.

Spectral renormalization method

Spectral renormalization method for computing self-localized solutions to nonlinear systems

Mark J. Ablowitz
Department of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, Colorado 80309-0526
Ziad H. Musslimani
Department of Mathematics, University of Central Florida, Orlando, Florida, 32816

PHYSICAL REVIEW A 97, 032134 (2018)

Computing eigenfunctions and eigenvalues of boundary-value problems with the orthogonal spectral renormalization method

[^0]
A toy model: Gross-Pitaevskii equation

Models Bose-Einstein condensation at zero temperature

$$
\begin{gathered}
i \psi_{t}=-\psi_{x x}+x^{2} \psi+|\psi|^{2} \psi \\
\psi(x, t)=\phi(x) e^{-i E t} \\
-\phi_{x x}+x^{2} \phi+|\phi|^{2} \phi=E \phi \\
\int|\phi|^{2} d x=N
\end{gathered}
$$

Goal: compute the eigenfunctions ϕ and eigen energy E

Renormalize the orbital

$$
\phi(x)=R \varphi(x), \quad R \neq 0
$$

$$
\begin{gathered}
\int|\phi|^{2} d x=N \\
-\phi_{x x}+x^{2} \phi+|\phi|^{2} \phi=E \phi \\
-\varphi_{x x}+x^{2} \varphi+|R|^{2}|\varphi|^{2} \varphi=E \varphi \\
E=\frac{\int\left|\varphi_{x}\right|^{2} d x+\int x^{2}|\varphi|^{2}+|R|^{2} \int|\varphi|^{4} d x}{\int|\varphi|^{2} d x}
\end{gathered}
$$

Iteration scheme

Give φ_{1} equals random numbers

 Compute R_{1}Compute E_{1}
Update

$$
c \varphi-\varphi_{x x}+x^{2} \varphi+|R|^{2}|\varphi|^{2} \varphi=c \varphi+E \varphi
$$

$\left|R_{n}\right|^{2}=\frac{N}{\int\left|\varphi_{n}\right|^{2}}$
$E_{n}=\frac{\int\left|\varphi_{n, x}\right|^{2}+\int x^{2}\left|\varphi_{n}\right|^{2}+\left|R_{n}\right|^{2} \int\left|\varphi_{n}\right|^{4}}{\int\left|\varphi_{n}\right|^{2}}$
$\hat{\varphi}_{n+1}=\left(\frac{c+E_{n}}{c+k^{2}}\right) \hat{\varphi}_{n}-\frac{1}{c+k^{2}} F\left[x^{2} \varphi_{n}+\left|R_{n}\right|^{2}\left|\varphi_{n}\right|^{2} \varphi_{n}\right]$

Time dependent spectral renormalization

Physica D 358 (2017) 15-24

Contents lists available at ScienceDirect

Physica D

Time-dependent spectral renormalization method Justin T. Cole, Ziad H. Musslimani *

CrossMark

Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510, United States
$>$ Bridge between theory and numerics
$>$ The same method is used to solve linear/nonlinear eigenvalues problems as well as time dependent problems,
$>$ Used to detect singularities for ODEs and PDEs,
$>$ Allows inclusion of physics on demand in the form of conservation laws.

Evolution equation: $\quad \frac{\partial \psi}{\partial t}=\mathcal{L} \psi+\mathcal{N}[\psi]$

Initial condition:

$$
\psi(x, t=0)=f(x)
$$

Conservative PDE:

$$
\int_{\Omega} Q_{j}[\psi(x, t)] d x=C_{j}
$$

Dissipative PDE: $\quad \frac{d}{d t} \int_{\Omega} X_{j}[\psi(x, t)] d x=\int_{\Omega} J_{j}[\psi(x, t)] d x$

Duhamel's principle: $\quad \psi(x, t)=S(t) f(x)+\int_{0}^{t} d \tau S(t-\tau) \mathcal{N}[\psi(x, \tau)]$
Picard iteration:

$$
\psi_{n+1}(x, t)=S(t) f(x)+\int_{0}^{t} d \tau S(t-\tau) \mathcal{N}\left[\psi_{n}(x, \tau)\right]
$$

Semigroup operator:

$$
S(t) \equiv e^{t \mathcal{L}}, \quad t \geq 0
$$

Time dependent renormalization:

$$
\psi(x, t)=R(t) \phi(x, t)
$$

$$
\phi(x, t)=\frac{S(t) f(x)}{R(t)}+\frac{1}{R(t)} \int_{0}^{t} d \tau S(t-\tau) \mathcal{N}[R(\tau) \phi(x, \tau)]
$$

Renormalized Picard iteration: $\quad \phi_{n+1}(x, t)=\frac{S(t) f(x)}{R_{n}(t)}+\frac{1}{R_{n}(t)} \int_{0}^{t} d \tau S(t-\tau) \mathcal{N}\left[R_{n}(\tau) \phi_{n}(x, \tau)\right]$

$$
\int_{\Omega} Q_{j}[R(t) \phi(x, t)] d x=C_{j}
$$

$$
\frac{d}{d t} \int_{\Omega} X_{j}[R(t) \phi(x, t)] d x=\int_{\Omega} J_{j}[R(t) \phi(x, t)] d x
$$

Evaluate the time integral

$$
\begin{gathered}
G(x, \tau) \equiv \mathcal{N}[R(\tau) \phi(x, \tau)] \\
I(x, t) \equiv \int_{0}^{t} d \tau S(t-\tau) G(x, \tau) \quad \hat{I}(k, t)=\int_{0}^{t} d \tau e^{(t-\tau) \hat{\mathcal{L}}(k)} \hat{G}(k, \tau) \\
\hat{I}\left(k, t_{m+1}\right)=e^{\Delta t \hat{\mathcal{L}}(k)}\left[\hat{I}\left(k, t_{m}\right)+\int_{t_{m}}^{t_{m+1}} d \tau e^{\left(t_{m}-\tau\right) \hat{\mathcal{L}}(k)} \hat{G}(k, \tau)\right], \\
\hat{G}(k, \tau)=\hat{G}\left(k, t_{m}\right)+\frac{1}{\Delta t}\left[\hat{G}\left(k, t_{m+1}\right)-\hat{G}\left(k, t_{m}\right)\right]\left(\tau-t_{m}\right) . \\
\hat{I}\left(k, t_{m+1}\right)=e^{\Delta t \hat{\mathcal{L}}(k)}\left[\hat{I}\left(k, t_{m}\right)+A \hat{G}\left(k, t_{m}\right)+B \hat{G}\left(k, t_{m+1}\right)\right],
\end{gathered}
$$

$$
\begin{gathered}
\psi_{t}=i \psi_{x x}+2 i|\psi|^{2} \psi \\
\psi_{\mathrm{ex}}(x, t)=\operatorname{sech}(x+2 \xi t) e^{-i\left[\xi x+\left(\xi^{2}-1\right) t\right]} \\
\psi(x, t)=R(t) \phi(x, t) \\
\text { power: } \quad \int_{-\infty}^{+\infty} d x|\psi|^{2}=C_{1} \\
\text { momentum: } \operatorname{Im} \int_{-\infty}^{+\infty} d x \psi \psi_{x}^{*}=C_{2}
\end{gathered}
$$

Hamiltonian: $\int_{-\infty}^{+\infty} d x\left[\left|\psi_{x}\right|^{2}-|\psi|^{4}\right]=C_{3} \quad\left|R_{n}(t)\right|^{4} \int_{-\infty}^{+\infty}\left|\phi_{n x}(x, t)\right|^{4} d x-\left|R_{n}(t)\right|^{2} \int_{-\infty}^{+\infty}\left|\phi_{n}(x, t)\right|^{2} d x+C_{3}=0$

$$
\phi_{n+1}(x, t)=\frac{S(t) f(x)}{R_{n}(t)}+\frac{2 i}{R_{n}(t)} \int_{0}^{t} d \tau\left|R_{n}(\tau)\right|^{2} R_{n}(\tau)\left|\phi_{n}(x, \tau)\right|^{2} \phi_{n}(x, \tau)
$$

Snapshot of iteration

Fig. 5. The error evolution in the solution $E(t)$, power $P(t)$, momentum $M(t)$, and Hamiltonian $H(t)$. The value of $R(t)$ is found using conservation of power (row 1 of Table 1), momentum (row 2 of Table 1), and Hamiltonian (row 3 of Table 1 with negative sign) in panels (a), (b), and (c), respectively. The computational parameters are: $\xi=2, T=7, M=1000, L=100, N=1024$.

Dissipative PDE: Burgers' equation

$$
\psi_{t}=-\psi \psi_{x}+\nu \psi_{x x}
$$

$$
\begin{array}{cc}
\psi(x, t)=-2 \nu \frac{u_{x}(x, t)}{u(x, t)} & u_{t}(x, t)=v u_{x x}(x, t) \\
\psi(x, 0)=f(x)=-\frac{\nu \cos (x)}{1+\frac{1}{2} \sin (x)} \quad \psi_{\mathrm{ex}}(x, t)=-\frac{\nu \cos (x) e^{-\nu t}}{1+\frac{1}{2} \sin (x) e^{-\nu t}} \\
& \frac{d}{d t} \int_{0}^{2 \pi} \psi^{2}(x, t) d x=-2 \nu \int_{0}^{2 \pi} \psi_{x}^{2}(x, t) d x
\end{array}
$$

Burgers' Renormalization

$$
\begin{gathered}
\psi(x, t)=R(t) \phi(x, t) \quad \frac{d\left(\theta_{1} R^{2}\right)}{d t}=-2 \nu \theta_{2} R^{2} \\
\theta_{1}(t)=\int_{0}^{2 \pi} \phi^{2}(x, t) d x \neq 0 \quad \theta_{2}(t)=\int_{0}^{2 \pi} \phi_{x}^{2}(x, t) d x \\
R^{2}(t)=\frac{R^{2}(0) \theta_{1}(0)}{\theta_{1}(t)} \exp \left(-2 \nu \int_{0}^{t} \frac{\theta_{2}(\tau)}{\theta_{1}(\tau)} d \tau\right) \\
\hat{\phi}_{n+1}(k, t)=\frac{1}{R_{n}(t)} e^{-\nu t k^{2}} \hat{f}(k)+\frac{1}{R_{n}(t)} \hat{I}_{n}(k, t) \\
\hat{I}\left(k, t_{m+1}\right)=e^{-\nu \Delta t k^{2}}\left\{\hat{I}\left(k, t_{m}\right)-A R^{2}\left(t_{m}\right) F\left[\phi\left(x, t_{m}\right) \phi_{x}\left(x, t_{m}\right)\right]-B R^{2}\left(t_{m+1}\right) F\left[\left(x, x_{m+1}\right) \phi_{x}\left(x, t_{m+1}\right)\right)\right\},
\end{gathered}
$$

Detecting singularities for ODEs

$\dot{x}=x^{2}, \quad x(0)=x_{0} \quad x(t)=\frac{1}{\frac{1}{x_{0}}-t}$

Duhamel's formulation

$$
x(t)=x_{0}+\int_{0}^{t} x^{2}(\tau) d \tau
$$

$x(t)=R y(t)$
$y(t)=\frac{1}{R}\left[x_{0}+R^{2} \int_{0}^{t} y^{2}(\tau)\right] d \tau$

$$
\begin{gathered}
\int_{0}^{T} \varphi(t) y_{n}(t) d t=\frac{x_{0}}{R_{n}} \int_{0}^{T} \varphi(t) d t+R_{n} \int_{0}^{T} d t \varphi(t)\left[\int_{0}^{t} y_{n}^{2}(\tau) d \tau\right] \\
y_{n+1}(t)=\frac{1}{R_{n}}\left[x_{0}+R_{n}^{2} \int_{0}^{t} y_{n}^{2}(\tau)\right] d \tau
\end{gathered}
$$

Anderson localization of strongly interacting systems?

Anderson localization of non interacting systems

Consider the linear Schrödinger equation governing the motion of an electron in a periodic crystal

$$
\begin{aligned}
& i \partial_{t} \psi=-\partial_{x}^{2} \psi+V(x) \psi \quad \psi: \mathrm{R}^{+} \times \mathrm{R} \rightarrow \mathrm{C} \\
& \psi(x, 0)=\psi_{0}(x) \quad-\infty<x<+\infty \\
& V(x)=V(x+a) \quad V: \mathrm{R} \rightarrow \mathrm{R} \quad(\text { smooth }) \\
& \psi(t, x)=\phi(x, E) \exp (-i E t) \quad E \in \mathrm{R} \\
& -\partial_{x}^{2} \phi+V(x) \phi=E \phi
\end{aligned}
$$

Boundary conditions: ϕ is bounded as $x \rightarrow \pm \infty$

Floquet-Bloch theory and band-gap structure

The spectrum of $-\partial_{x}^{2}+V(x)$ acting on $L^{2}(\mathrm{R})$
is real, bounded from below, tends to positive infinity, is absolutely continuous, and consists of the union of closed intervals called spectral bands separated by spectral gaps.

$$
\begin{aligned}
& -\partial_{x}^{2} \phi+V(x) \phi=E \phi \\
& \phi_{n}(x, k)=\varphi_{n}(x, k(E)) e^{i k(E) x} \\
& \varphi_{n}(x+a, k)=\varphi_{n}(x, k) \\
& {\left[-\left(\frac{d}{d x}+i k\right)^{2}+V(x)\right] \varphi_{n}(x, k)=E_{n}(k) \varphi_{n}(x, k)} \\
& E_{1}(k) \leq E_{2}(k) \leq \ldots \leq E_{m}(k) \leq \ldots
\end{aligned}
$$

$$
\varphi_{n}(x, k) \text { is complex and bounded function of } x
$$

- If $k(E)$ is real then $\phi_{n}(x, k(E))$ is a bounded function of x $k(E)$ is in a spectral band
- If $k(E)$ is imaginary, then $\phi_{n}(x, k(E))$ is unbounded in x
$k(E)$ is in a spectral gap
A wave propagates freely through the medium Ballistic Transport/Diffraction

Transport in random lattices

Classical behavior

Random impurities in the crystalline structure scatter the electron and give rise to a random walk motion of the electron as if they were classical billiard balls. This is the mechanism behind diffusion and Ohm's law.

Quantum behavior

$$
\begin{gathered}
-\partial_{x}^{2} \phi+\left[V(x)+V_{\omega}(x)\right] \phi=E \phi \\
V(x)=V(x+a)
\end{gathered}
$$

$\left\{V_{\omega}\right\}_{\omega \in \Omega}$ is a collection of random potentials chosen from the set Ω with probability measure $P(\omega)$

The wave is coherently scattered by defects, Constructive interference of multiple scatterings

The transmission probability of a propagating wave through a disordered medium decays when the strength of the disorder potential reaches a critical value and leads to Anderson localization.

Experimental difficulties?

Anderson localization in disordered atomic lattices is difficult to observed

Reasons: Anderson localization requires
$>$ a disordered potential which is time independent;
$>$ No many body interactions

LETTERS

Transport and Anderson localization in disordered two-dimensional photonic lattices

Tal Schwartz ${ }^{1}$, Guy Bartal ${ }^{1}$, Shmuel Fishman ${ }^{1}$ \& Mordechai Segev ${ }^{1}$

Figure $1 \mid$ Transverse localization scheme. a, A probe beam entering a disordered lattice, which is periodic in the two transverse dimensions (x anc $y)$ but invariant in the propagation direction (z). In the experiment describes here, we use a triangular (hexagonal) photonic lattice with a periodicity of $11.2 \mu \mathrm{~m}$ and a refractive-index contrast of $\sim 5.3 \times 10^{-4}$. The lattice is induces optically, by transforming the interference pattern among three plane wave:

$$
P \equiv\left[\int I(x, y, L)^{2} \mathrm{~d} x \mathrm{~d} y\right] /\left[\int I(x, y, L) \mathrm{d} x \mathrm{~d} y\right]^{2}
$$

units of $\mathrm{P}=$ inverse area

Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices

Yoav Lahini, ${ }^{1, *}$ Assaf Avidan, ${ }^{1}$ Francesca Pozzi, ${ }^{2}$ Marc Sorel, ${ }^{2}$ Roberto Morandotti, ${ }^{3}$ Demetrios N. Christodoulides, ${ }^{4}$ and Yaron Silberberg ${ }^{1}$

Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices
Yoav Lahini, ${ }^{1, *}$ Assaf Avidan, ${ }^{1}$ Francesca Pozzi, ${ }^{2}$ Marc Sorel, ${ }^{2}$ Roberto Morandotti, ${ }^{3}$ Demetrios N. Christodoulides, ${ }^{4}$ and Yaron Silberberg ${ }^{1}$

Direct observation of Anderson localization of matter waves in a controlled disorder
Juliette Billy ${ }^{1}$, Vincent Josse ${ }^{1}$, Zhanchun Zuo ${ }^{1}$, Alain Bernard ${ }^{1}$, Ben Hambrecht ${ }^{1}$, Pierre Lugan ${ }^{1}$, David Clément ${ }^{1}$, Laurent Sanchez-Palencia ${ }^{1}$, Philippe Bouyer ${ }^{1}$ \& Alain Aspect ${ }^{1}$

Numerical study of one-dimensional and interacting Bose-Einstein condensates in a random potential

Eric Akkermans ${ }^{1}$, Sankalpa Ghosh ${ }^{1,2}$ and Ziad H Musslimani ${ }^{3}$

${ }^{1}$ Department of Physics, Technion Israel Institute of Technology, 32000 Haifa, Israel
${ }^{2}$ Physics Department, Indian Institute of Technology Delhi, New Delhi 110016 , India
${ }^{3}$ Department of Mathematics, Florida State University, Tallahassee, FL 32306-451, USA

Pikovsky, Shepelyansky

$\log \left\langle x^{2}\right\rangle$

red slop $=0.344$, disorder strength=2
blue slop $=0.306$, disorder strength $=4$
full straight line slop $=0.4$

$$
\beta=1
$$

Anderson localization for NLS equation

Mathematical formulation:

$$
\begin{gathered}
i u_{t}=-u_{x x}+V_{w}(x) u+g|u|^{2} u, \quad g>0 \\
V_{w}(x) \text { is a random potential }
\end{gathered}
$$

Assume that the initial condition $u(x, 0)$ is well localized Prove (or dis prove) the following statement:
For any $0<\epsilon \ll 1$ with probability $1-\epsilon$ on the space of the potentials

$$
\sup _{x, t}\left|e^{a|x|} u(x, t)\right|<C(\epsilon)<\infty \text { for some } a>0
$$

Random and dynamic optimal transport approach?

PT symmetric DFT?

Motivation: quantum mechanics

Physical observables
Self-adjoint (Hermitian) linear operators in Hilbert space

Hamiltonian H :
Real energy levels, unitary evolution
$\left.\begin{array}{l}i d u / d t=H u \\ u(0)=u_{0}\end{array}\right\} \longrightarrow \begin{gathered}u(t)=e^{i t H} u_{0} \\ \|u(t)\|_{L^{2}}=\left\|u_{0}\right\|_{L^{2}}\end{gathered}$

What about non Hermitian "Hamiltonians", do they describe physical reality?

Real Spectra in Non-Hermitian Hamiltonians Having $\mathcal{P} \mathcal{T}$ Symmetry

Carl M. Bender ${ }^{1}$ and Stefan Boettcher ${ }^{2,3}$
${ }^{1}$ Department of Physics, Washington University, St. Louis, Missouri 63130
${ }^{2}$ Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
${ }^{3}$ CTSPS, Clark Atlanta University, Atlanta, Georgia 30314
(Received 1 December 1997; revised manuscript received 9 April 1998)

The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded below. However, if one replaces this condition by the weaker condition of $\mathcal{P} \mathcal{T}$ symmetry, one obtains new infinite classes of Hamiltonians whose spectra are also real and positive. The classical and quantum properties of some of these Hamiltonians are discussed in this paper.

$$
-\psi^{\prime \prime}(x)-(i x)^{N} \psi(x)=E \psi(x)
$$

FIG. 1. Energy levels of the Hamiltonian $H=p^{2}-(i x)^{N}$ as a function of the parameter N. There are three regions: When $N \geq 2$ the spectrum is real and positive. The lower bound of this region, $N=2$, corresponds to the harmonic oscillator, whose energy levels are $\boldsymbol{E}_{n}=2 n+1$. When $1<N<2$, there are a finite number of real positive eigenvalues and an infinite number of complex conjugate pairs of eigenvalues. As N decreases from 2 to 1 , the number of real eigenvalues decreases; when $N \leq 1.42207$, the only real eigenvalue is the ground-state energy. As N approaches 1^{+}, the ground-state energy diverges. For $N \leq 1$ there are no real eigenvalues.

Introduction to PT symmetry

Parity operator: $\quad \operatorname{Pf}(x)=f(-x)$
Time reversal operator: $T f(x)=f^{*}(x)$
PT operator:

$$
\operatorname{PT} f(x)=f^{*}(-x)
$$

Definition of $P T$ symmetric operators: Let A be a linear operator. We say tt A is $P T$ symmetric if

$$
[P T, A]=0
$$

$$
A=-\frac{d^{2}}{d x^{2}}+V(x)
$$

$$
V^{*}(-x)=V(x)
$$

Definition of unbroken PT symmetry

Let A be a linear operator. We say that A has unbroken PT symmetry if A and $P T$ share the same eigenfunctions.

Theorem: If a $P T$ symmetric linear operator A has an unbroken $P T$ symmetry, then its spectrum is real.

Proof: $\quad P T u=\alpha u \quad A u=\lambda u$

$$
\begin{gathered}
P T(A u)=P T(\lambda u)=\lambda^{*} P T u=\lambda^{*} \alpha u \\
P T(A u)=A P T u=A \alpha u=\alpha \lambda u \\
\lambda^{*}=\lambda
\end{gathered}
$$

4
$f^{C P T}(x)=\int_{-\infty}^{+\bar{\infty}^{-\infty}} d y C(x, y) \bar{f}(-y)$
It gives positive definite norm and Unitary evolution

$$
\begin{aligned}
& {[C, H]=0} \\
& {[C, P T]=0}
\end{aligned}
$$

Can PT symmetric Hamiltonians (with exact PT symmetry) be considered as Extension of quantum mechanics?

Complex Extension of Quantum Mechanics

Carl M. Bender, ${ }^{1}$ Dorje C. Brody, ${ }^{2}$ and Hugh F. Jones ${ }^{2}$
${ }^{1}$ Department of Physics, Washington University, St. Louis, Missouri 63130
${ }^{2}$ Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 12 August 2002; published 16 December 2002)
Requiring that a Hamiltonian be Hermitian is overly restrictive. A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but satisfies the less restrictive and more physical condition of space-time reflection symmetry ($\mathcal{P} \mathcal{T}$ symmetry). One might expect a non-Hermitian Hamiltonian to lead to a violation of unitarity. However, if $\mathcal{P} \mathcal{T}$ symmetry is not spontaneously broken, it is possible to construct a previously unnoticed symmetry C of the Hamiltonian. Using C, an inner product whose associated norm is positive definite can be constructed. The procedure is general and works for any $\mathcal{P} \mathcal{T}$-symmetric Hamiltonian. Observables exhibit $C \mathcal{P} \mathcal{T}$ symmetry, and the dynamics is governed by unitary time evolution. This work is not in conflict with conventional quantum mechanics but is rather a complex generalization of it.

PT symmetry in Optics

Transparent $\mathcal{P} \mathcal{T}$ waveguide

Beam Dynamics in $\mathcal{P} \mathcal{T}$ Symmetric Optical Lattices

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides
College of Optics \& Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
Z. H. Musslimani
Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA
(Received 5 June 2007; revised manuscript received 9 October 2007; published 13 March 2008)

FKL 100, USU40L (ZUOS)
25 JANUARY 2008

Optical Solitons in $\mathcal{P} \mathcal{T}$ Periodic Potentials

Z. H. Musslimani
Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides

College of Optics \& Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA (Received 1 September 2007; revised manuscript received 24 October 2007; published 23 January 2008)

We investigate the effect of nonlinearity on beam dynamics in parity-time ($\mathcal{P} \mathcal{T}$) symmetric potentials. We show that a novel class of one- and two-dimensional nonlinear self-trapped modes can exist in optical $\mathcal{P} \mathcal{T}$ synthetic lattices. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow within these complex solitons is also examined.

DOI: 10.1103/PhysRevLett.100.030402
PACS numbers: 03.65.Ge, 11.30.Er, 42.65.Sf, 42.65.Tg

$$
V(x)=\cos ^{2}(x), \quad W(x)=W_{0} \sin (2 x) . \quad i \frac{\partial \psi}{\partial z}+\frac{\partial^{2} \psi}{\partial x^{2}}+[V(x)+i W(x)] \psi+|\psi|^{2} \psi=0
$$

Bandstucture of a PT optical lattice

$\left\{\begin{array}{cc}\text { If } \quad V_{0} \leq 0.5 \text { real eigenvalues } \\ \text { If } & V_{0}>0.5 \\ \text { complex eigenvalues }\end{array}\right.$

Before phase transition

After phase transition

nature physics

Non-Hermitian physics and PT symmetry

Ramy El-Ganainy ${ }^{1}$, Konstantinos G. Makris ${ }^{2}$, Mercedeh Khajavikhan ${ }^{3}$, Ziad H. Musslimani ${ }^{4}$, Stefan Rotter ${ }^{5}$ and Demetrios N. Christodoulides ${ }^{3 \star}$

In recent years, notions drawn from non-Hermitian physics and parity-time (PT) symmetry have attracted considerable attention. In particular, the realization that the interplay between gain and loss can lead to entirely new and unexpected features has initiated an intense research effort to explore non-Hermitian systems both theoretically and experimentally. Here we review recent progress in this emerging field, and provide an outlook to future directions and developments.

ARTICLE

Received 13 Oct 2014 | Accepted 21 Apr 2015 | Published 8 Jul 2015
Constant-intensity waves and their modulation instability in non-Hermitian potentials

K.G. Makris ${ }^{1,2}$, Z.H. Musslimani ${ }^{3}$, D.N. Christodoulides ${ }^{4} \& ~ S$. Rotter 1

Density functional theory of complex transition densities

```
Matthias Ernzerhof \({ }^{\text {a) }}\)
Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
```

The Journal of
Physical Chemistry
Letters

Calculating the Lifetimes of Metastable States with Complex Density Functional Theory
Yongxi Zhou and Matthias Ernzerhof*

Open-system Kohn-Sham density functional theory

Yongxi Zhou and Matthias Ernzerhofa)
Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada

Photonic Floquet topological insulators

Mikael C. Rechtsman ${ }^{1 *}$, Julia M. Zeuner ${ }^{2 *}$, Yonatan Plotnik ${ }^{1 *}$, Yaakov Lumer ${ }^{1}$, Daniel Podolsky ${ }^{1}$, Felix Dreisow ${ }^{2}$, Stefan Nolte ${ }^{2}$, Mordechai Segev ${ }^{1}$ \& Alexander Szameit ${ }^{2}$

Topological insulators are a new phase of matter ${ }^{1}$, with the striking property that conduction of electrons occurs only on their surfaces ${ }^{1-3}$. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Substantial effort has been directed towards realizing topological insulators for electromagnetic waves ${ }^{4-13}$. One-

Topological insulator laser: Experiments

Miguel A. Bandres,* Steffen Wittek,* Gal Harari,* Midya Parto, Jinhan Ren, Mordechai Segev, \dagger Demetrios N. Christodoulides, \dagger Mercedeh Khajavikhan \dagger

Topological DFT?

nature.com

Topological insulators

Topological insulators are materials that are insulating in their interior but can support the flow of electrons on their surface. The underlying cause is time-reversal symmetry: their physics is independent of whether time is flowing backward or forward. These surface states are robust, maintained even in the presence of surface defects.

Latest Research and Reviews

Home	News \& Commen	Research	Careers \& Jobs	Current Issue	Archive	Audio \& Video	For Authors
Archiv	Volume 547	ue 7663	News Feature	Article			

NATURE | NEWS FEATURE

The strange topology that is reshaping physics

Topological effects might be hiding inside perfectly ordinary materials, waiting to reveal bizarre new particles or bolster quantum computing.

Davide Castelvecchi

19 July 2017

What matters in science - and why - free in your inbox every weekday.

[^0]: Holger Cartarius, ${ }^{1}$ Ziad H. Musslimani, ${ }^{1,2}$ Lukas Schwarz, ${ }^{1}$ and Günter Wunner ${ }^{1}$
 ${ }^{1}$ Institut für Theoretische Physik 1, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
 ${ }^{2}$ Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA

