The strong correlation limit of DFT:
 What's known, what's new, what's open

Gero Friesecke (TUM)

Banff, 28 January, 2019
H. Chen (Beijing Normal), C. Cotar (UCL), C. Klüppelberg (TUM),
B. Pass (Alberta), D. Vögler (TUM)

Electronic Schrödinger equation

Dirac 1929: Chemically specific behaviour of atoms and molecules captured, "in principle", by quantum mechanics.
Emission/absorption spectra, binding energies, equilibrium geometries, interatomic forces (\rightarrow materials science),...
Born-Oppenheimer approximation, statics, N electrons $->$ need to find $E_{0}, \Psi_{0}=$ lowest e-value/e-state of Schrödinger operator

$$
H=\underbrace{-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}}_{T}+\underbrace{\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}}_{V_{\text {ee }}}+\underbrace{\sum_{i=1}^{N} v\left(\mathbf{r}_{i}\right)}_{V_{n e}}
$$

acting on $\Psi \in L_{\text {anti }}^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{N} ; \mathbb{C}\right),\|\Psi\|_{L^{2}}=1$.
$v: \mathbb{R}^{3} \rightarrow \mathbb{R}$ external potential, e.g. $v(\mathbf{r})=-\sum_{\alpha=1}^{M} Z_{\alpha} /\left|\mathbf{r}-R_{\alpha}\right|$.
$\left|\Psi\left(\mathbf{r}_{1}, s_{1}, \ldots, r_{N}, s_{N}\right)\right|^{2}=N$-point probability density of positions and spins (Born formula)

Key collective variable: electron density

$$
\rho\left(\mathbf{r}_{1}\right)=N \sum_{s_{1}, \ldots, s_{N} \in \mathbb{Z}^{2}} \int\left|\Psi\left(\mathbf{r}_{1}, s_{1}, . ., \mathbf{r}_{N}, s_{N}\right)\right|^{2} d \mathbf{r}_{2} . . d \mathbf{r}_{N}
$$

Curse of dimension \rightarrow DFT

Pb . with N-electron Schrödinger equation: curse of dimension discretize $\mathbb{R} \rightarrow 10$ gridpts single CO_{2} molecule: $L^{2}\left(\mathbb{R}^{3 N}\right)=L^{2}\left(\mathbb{R}^{66}\right) \rightarrow 10^{3 N}=10^{66}$ gridpts.
DFT: approximate the Schrödinger eq. by systems of equations / variational principles based on the single-particle density.

Physics community: idea of constrained search

Levy 1979: assuming that a lowest e-value/e-state of H exists,

$$
\begin{aligned}
E_{0} & =\min _{\|\Psi\|^{2}=1}\left\langle\Psi, T+V_{e e}+V_{e x t} \mid \Psi\right\rangle \quad \text { (Rayleigh-Ritz) } \\
& =\min _{\rho} \min _{\Psi \mapsto \rho}\langle\Psi| T+V_{e e}+V_{e x t}|\Psi\rangle \\
& =\min _{\rho}(\underbrace{\min _{\text {universal part }}\langle\Psi| T+V_{e e}|\Psi\rangle}_{\text {Levy-Lieb functional }{ }_{F L L}[\rho]}+\underbrace{\int_{\mathbb{R}^{3}} v(\mathbf{r}) \rho(\mathbf{r}) d \mathbf{r}}_{\text {chemically specific part }})
\end{aligned}
$$

Lieb 1983: rigorous formulation in function spaces; proof that the inner minimum is attained
inner min. over $\left\{\Psi \in H^{1}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{N}\right): \Psi\right.$ antisymm., $\left.\Psi \mapsto \rho\right\}$
outer min. over $\left\{\rho: \sqrt{\rho} \in H^{1}\left(\mathbb{R}^{3}\right), \rho \geq 0, \int \rho=N\right\}$

Density scaling

For any given density ρ, consider its dilation $\rho_{\alpha}(\mathbf{r}):=\alpha^{d} \rho(\alpha \mathbf{r})(\alpha>0)$

Levy/Perdew '85: density scaling doesn't commute with constrained search.

$$
\begin{aligned}
& \rho \longrightarrow \xrightarrow{\text { scale }} \rho_{\alpha}(\mathbf{r})=\alpha^{-d} \rho(\alpha \mathbf{r}) \\
& \begin{array}{ccc}
\min _{\Psi \rightarrow \rho}\langle\Psi| \alpha^{2} T+\alpha V_{\text {ee }}|\Psi\rangle \\
& \downarrow & \\
\alpha^{-\frac{N d}{2}} & \Psi\left[\rho_{\alpha}\right]\left(\frac{r}{\alpha}, s\right) & \stackrel{\min _{\psi \rightarrow \rho_{\alpha}}\langle\Psi| T+V_{\text {ee }}|\Psi\rangle}{ } \\
=: \Psi_{\alpha} & \stackrel{\text { scale back }}{ } & \Psi\left[\rho_{\alpha}\right]
\end{array}
\end{aligned}
$$

High-density regime $(\alpha \gg 1)$ Kinetic energy dominates

$$
F_{L L}[\rho] \approx \alpha^{2} \min _{\Psi \mapsto \rho}\langle\Psi| T|\Psi\rangle
$$

Low-density regime $(\alpha \ll 1)$ Interaction energy dominates

$$
F_{L L}[\rho] \approx \alpha \inf _{\Psi \mapsto \rho}\langle\Psi| V_{e e}|\Psi\rangle
$$

The optimal wavefunctions look completely different in both regimes.

What does the constrained-search wavefunction look like?
Simulation, H.Chen/GF, Multisale Model. Simul., 2015 (Quasi-Newton + FEM-FCI)
ρ 1D 'lump', width α^{-1}, N electrons,
$\rho(x)=\alpha \frac{N}{2 L}\left(1+\cos \left(\alpha \frac{\pi}{2 L} x\right)\right), x \in[-L / \alpha, L / \alpha]$

Shown: Pair density

$$
\rho_{2}\left(x_{1}, x_{2}\right)=\sum_{s_{1}, \ldots, s_{N} \in \mathbb{Z}_{3}} \int . . \int\left|\Psi\left(x_{1}, . ., x_{N}, s_{1}, . ., s_{N}\right)\right|^{2} d x_{3} . . d x_{N}
$$

Sparsity

Recall ρ arbitrary density, $\rho_{\alpha}(\mathbf{r})=\alpha^{3} \rho(\alpha \mathbf{r}), \Psi_{\alpha}=\underset{\Psi \mapsto \rho}{\operatorname{argmin}}\langle\Psi| \alpha T+V_{e e}|\Psi\rangle$
High-density (weak-interaction) limit $\alpha \rightarrow \infty$ (implicit Kohn/Sham 1965)

$$
\text { expect } \lim _{\alpha \rightarrow \infty} \Psi_{\alpha}=\text { antisymmetriz. of } \varphi_{1}\left(\mathbf{r}_{1}, s_{1}\right) \cdots \varphi_{N}\left(\mathbf{r}_{N}, s_{N}\right)
$$

maths: N scalar functions $\varphi_{i}: \mathbb{R}^{3} \times \mathbb{Z}_{2} \rightarrow \mathbb{C}$ which are L^{2}-orthonormal physics: N Kohn-Sham orbitals, i.e. minimal kin.en. s/to $\sum_{i, s}\left|\varphi_{i}\right|^{2}=\rho$ Data/storage complexity: $N \cdot \ell, \ell=$ no. of single-particle basis functions

Low-density (strong-interaction) limit $\alpha \rightarrow 0$ (Seidl 1999)
hope $\lim _{\alpha \rightarrow 0} \sum_{s_{1}, . ., s_{N}}\left|\Psi_{\alpha}\right|^{2}=$ symmetriz. of $\frac{\rho\left(\mathbf{r}_{1}\right)}{N} \delta\left(\mathbf{r}_{2}-T_{2}\left(\mathbf{r}_{1}\right)\right) \cdots \delta\left(\mathbf{r}_{N}-T_{N}\left(\mathbf{r}_{1}\right)\right)$
maths: N maps $T_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which transport ρ to ρ physics: N co-motion functions, strictly correlated electrons (SCE) Data/storage complexity (if ansatz justified): $N \cdot \ell, \ell=$ no. equi-mass cells

Plugging the sparse ansatz into the constrained-search

Weak interaction limit: Kohn-Sham ansatz reduces $\min _{\psi \mapsto \rho}\langle\Psi| T|\Psi\rangle$ to
$\min \left\{\sum_{i=1}^{N} \int_{\mathbb{R}^{3} \times \mathbb{Z}_{2}} \frac{1}{2}\left|\nabla \varphi_{i}\right|^{2}: \int_{\mathbb{R}^{3} \times \mathbb{Z}_{2}} \varphi_{i}^{*} \varphi_{j}=\delta_{i j}, \sum_{i=1}^{N} \sum_{s}\left|\varphi_{i}(\mathbf{r}, s)\right|^{2}=\rho(\mathbf{r})\right.$ for all $\left.\mathbf{r}\right\}$.
Minimum value: Kohn-Sham kinetic energy functional $T_{s}[\rho]$.

Strong interaction limit: SCE ansatz reduces $\inf _{\psi \mapsto \rho}\langle\Psi| V_{e e}|\Psi\rangle$ to

$$
\inf \left\{\int_{\mathbb{R}^{3}} \frac{\rho(\mathbf{r})}{N} \sum_{1 \leq i<j \leq N} \frac{1}{\left|T_{i}(\mathbf{r})-T_{j}(\mathbf{r})\right|} d \mathbf{r}: T_{1}, . ., T_{N} \text { push } \rho \text { forward to } \rho\right\} .
$$

Infimum value: SCE functional $V_{e e}^{S C E}[\rho]$. Mathematically, this is a very challenging optimal transport problem (multi-marginal; non-convex cost; Monge form).

Rigorous formulation of strong-interaction limit

Cotar/GF/Klüppelb. arXiv 2011, CPAM 2013; Buttazzo/Gori-Giorgi/DePascale, PRA 2012 The problem

$$
\begin{equation*}
\inf _{\Psi \mapsto \rho}\langle\Psi| V_{e e}|\Psi\rangle \tag{1}
\end{equation*}
$$

on $L_{\text {anti }}^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{N}\right)$ (square-integrable functions) has no minimizer, as Ψ tries to concentrate on lower-dimensional sets.

Way out: consider the interaction energy
as a function of the N-point position density $\gamma \in L^{1}\left(\mathbb{R}^{3 N}\right)$, and enlarge $L^{1}\left(\mathbb{R}^{3 N}\right)$ (integrable functions) to measures (e.g., delta functions on curves/surfaces):

$$
\begin{equation*}
\min _{\gamma \mapsto \rho} \int_{\mathbb{R}^{3 N}} \sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} d \gamma\left(\mathbf{r}_{1}, . ., \mathbf{r}_{N}\right) \tag{2}
\end{equation*}
$$

on $\mathcal{P}_{\text {sym }}\left(\mathbb{R}^{3 N}\right)$ (symmetric probability measures on $\mathbb{R}^{3 N}$), where $\gamma \mapsto \rho$

Problem (2) is well-posed, and a Kantorovich optimal transport problem.

Constraint-search wavefunctions vs. Opt.Tr./SCE
Huajie Chen, GF, Multiscale Model. Simul. 2015
ρ 1D 'lump', width α^{-1}, N electrons,
$\rho(x)=\alpha \frac{N}{2 L}\left(1+\cos \left(\alpha \frac{\pi}{2 L} x\right)\right), x \in[-L / \alpha, L / \alpha]$

Shown: Pair density
$\rho_{2}\left(x_{1}, x_{2}\right)=\sum_{s_{1}, \ldots, s_{N} \in \mathbb{Z}_{3}} \int . . \int\left|\Psi\left(x_{1}, . ., x_{N}, s_{1}, . ., s_{N}\right)\right|^{2} d x_{3} . . d x_{N}$

Constraint-search minimizers converge to optimal plans

physically expected, subtle maths (marginal-preserving smoothing of transport plans)

Cotar/GF/Klüppelberg 2013: $\mathrm{N}=2$
Cotar/GF/Klüppelberg, Bindini/DePascale, Lewin (all arXiv 2017): general N Our version:

Theorem: For any ρ, the constrained-search minimizers $\Psi_{\alpha}=\operatorname{argmin}\langle\Psi| \alpha T+V_{e e}|\Psi\rangle$ satisfy, up to subsequences, $\Psi \mapsto \rho$

$$
\lim _{\alpha \rightarrow 0} \sum_{s_{1}, \ldots, s_{N} \in \mathbb{Z}_{2}}\left|\Psi_{\alpha}\right|^{2}=\gamma
$$

for some minimizer γ of optimal transport with Coulomb cost, the limit being weak* convergence of probability measures.

In fact, the constrained-search problem Gamma-converges to OT with Coulomb cost.

Different formulations of strongly correlated limit of DFT

Original constrained-search for electron repulsion

$$
\begin{equation*}
\inf _{\left.\Psi \in L_{\text {anti }}^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{N}\right)\right), \Psi \mapsto \rho}\langle\Psi| V_{e e}|\Psi\rangle \tag{1}
\end{equation*}
$$

(ill-posed, curse of dimension),

$$
\begin{equation*}
\min _{\gamma \in \mathcal{P}_{s y m}\left(\mathbb{R}^{3 N}\right), \gamma \mapsto \rho} \int_{\mathbb{R}^{3 N}} \sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} d \gamma\left(\mathbf{r}_{1}, . ., \mathbf{r}_{N}\right) \tag{2}
\end{equation*}
$$

(Kantorovich OT, well posed [CFK, BDG], curse of dimension still there),

$$
\begin{equation*}
\max \left\{N \int_{\mathbb{R}^{3}} v(\mathbf{r}) \rho(\mathbf{r}): \sum_{i=1}^{N} v\left(\mathbf{r}_{i}\right) \leq \sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \text { for all }\left(\mathbf{r}_{1}, . ., \mathbf{r}_{N}\right)\right\} \tag{3}
\end{equation*}
$$

(dual Kantorovich, well posed [BDG], curse of dimension in constraint),

$$
\begin{equation*}
\inf \left\{\int_{\mathbb{R}^{3}} \frac{\rho(\mathbf{r})}{N} \sum_{1 \leq i<j \leq N} \frac{1}{\left|T_{i}(\mathbf{r})-T_{j}(\mathbf{r})\right|} d \mathbf{r}: T_{1}, . ., T_{N} \text { transport } \rho \text { to } \rho\right\} \tag{4}
\end{equation*}
$$

(SCE/Monge OT, not known if well-posed, curse of dimension gone).

Different formulations of strongly correlated limit of DFT

Original constrained-search for electron repulsion

$$
\begin{equation*}
\inf _{\left.\Psi \in L_{\text {anti }}^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{N}\right)\right), \Psi \mapsto \rho}\langle\Psi| V_{e e}|\Psi\rangle \tag{1}
\end{equation*}
$$

(ill-posed, curse of dimension),

$$
\begin{equation*}
\min _{\gamma \in \mathcal{P}_{s y m}\left(\mathbb{R}^{3 N}\right), \gamma \mapsto \rho} \int_{\mathbb{R}^{3 N}} \sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} d \gamma\left(\mathbf{r}_{1}, . ., \mathbf{r}_{N}\right) \tag{2}
\end{equation*}
$$

(Kantorovich OT, well posed [CFK, BDG], curse of dimension still there),

$$
\begin{equation*}
\max \left\{N \int_{\mathbb{R}^{3}} v(\mathbf{r}) \rho(\mathbf{r}): \sum_{i=1}^{N} v\left(\mathbf{r}_{i}\right) \leq \sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \text { for all }\left(\mathbf{r}_{1}, . ., \mathbf{r}_{N}\right)\right\} \tag{3}
\end{equation*}
$$

(dual Kantorovich, well posed [BDG], curse of dimension in constraint),

$$
\begin{equation*}
\inf \left\{\int_{\mathbb{R}^{3}} \frac{\rho(\mathbf{r})}{N} \sum_{1 \leq i<j \leq N} \frac{1}{\left|T_{i}(\mathbf{r})-T_{j}(\mathbf{r})\right|} d \mathbf{r}: T_{1}, . ., T_{N} \text { transport } \rho \text { to } \rho\right\} \tag{4}
\end{equation*}
$$

(SCE/Monge OT, not known if well-posed, curse of dimension gone).
Fundamental math question: When is the SCE/Monge ansatz exact, i.e. when does Kantorovich OT admit a minimizer of SCE/Monge form?

Rigorous results, optimal transport with Coulomb cost

Find optimal arrangement (N-body prob.distr.) of N particles in \mathbb{R}^{d} given their 1-body density ρ

$$
\min _{\substack{\gamma \in \mathcal{P}_{s y m\left(\mathbb{R}^{N} \cdot d\right)}^{\gamma \rightarrow \rho / N}}} \int_{\mathbb{R}^{N d}} \sum_{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{-\alpha} d \gamma\left(x_{1}, . ., x_{N}\right) \quad(0<\alpha<d)
$$

Symmetric: $\gamma\left(A_{1} \times \cdots \times A_{N}\right)=\gamma\left(A_{\sigma(1)} \times \cdots \times A_{\sigma(N)}\right)$ for all perm's $\gamma \mapsto \rho / N: \gamma\left(\mathbb{R}^{d} \times \cdots \times A_{i} \times \cdots \times \mathbb{R}^{d}\right)=\int_{A_{i}} \mu$ for all $i, \rho \in L^{1}\left(\mathbb{R}^{d}\right)$

	$d=1$	
$N=2$	unique min., of Monge form ${ }^{1)}$	
$2<N<\infty$	unique min., Monge form ${ }^{2)}$	example of non-Monge min. ${ }^{3)}$
$N=\infty$	unique min., non-Monge ${ }^{4)}$	

Monge: $\gamma\left(x_{1}, . ., x_{N}\right)=$ symmetrization of $\frac{\rho\left(x_{1}\right)}{N} \delta_{T_{2}\left(x_{1}\right)}\left(x_{2}\right) \cdots \delta_{T_{N}\left(x_{1}\right)}\left(x_{N}\right)$ for $N-1$ maps T_{2}, \ldots, T_{N} transporting ρ to itself

Rigorous results, optimal transport with Coulomb cost

Find optimal arrangement (N-body prob.distr.) of N particles in \mathbb{R}^{d} given their 1-body density ρ

$$
\min _{\substack{\gamma \in \mathcal{P}_{s y m}(\mathbb{R} \cdot(\cdot d) \\ \gamma \rightarrow \rho / N}} \int_{\mathbb{R}^{N d}} \sum_{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{-\alpha} d \gamma\left(x_{1}, . ., x_{N}\right) \quad(0<\alpha<d)
$$

Symmetric: $\gamma\left(A_{1} \times \cdots \times A_{N}\right)=\gamma\left(A_{\sigma(1)} \times \cdots \times A_{\sigma(N)}\right)$ for all perm's $\gamma \mapsto \rho / N: \gamma\left(\mathbb{R}^{d} \times \cdots \times A_{i} \times \cdots \times \mathbb{R}^{d}\right)=\int_{A_{i}} \mu$ for all $i, \rho \in L^{1}\left(\mathbb{R}^{d}\right)$

	$d=1$	
$N=2$	unique min., of Monge form ${ }^{1)}$	
$2<N<\infty$	unique min., Monge form ${ }^{2)}$	example of non-Monge min. ${ }^{3)}$
$N=\infty$	unique min., non-Monge ${ }^{4)}$	

Monge: $\gamma\left(x_{1}, . ., x_{N}\right)=$ symmetrization of $\frac{\rho\left(x_{1}\right)}{N} \delta_{T_{2}\left(x_{1}\right)}\left(x_{2}\right) \cdots \delta_{T_{N}\left(x_{1}\right)}\left(x_{N}\right)$ for $N-1$ maps T_{2}, \ldots, T_{N} transporting ρ to itself

1) Cotar, GF, Klüppelberg, 2011, 2013; Butazzo, Gori-Giorgi, DePascale 2012
2) Seidl 1999; Colombo, DiMarino, DePascale 2015
3) Pass 2014
4) Cotar, GF, Pass 2015

Trying to understand multi-marginal optimal transport without having assigned three particles to three sites is like trying to understand quantum many-body theory without having solved the 1D harmonic oscillator.

The 3-particles-3-sites-assignment problem

 GF, arXiv 1808.04318 $X=\left\{a_{1}, . ., a_{\ell}\right\}$ finite state space (later: $\ell=3$), $N=3$ particles/marginals uniform one-particle density $\rho(x)=\frac{N}{\ell} \sum_{i=1}^{\ell} \delta_{a_{i}}(x)$Kantorovich OT, $\min _{\gamma \in \mathcal{P}_{\text {sym }}\left(X^{3}\right), \gamma \mapsto \rho} \int_{X^{3}} c(x, y, z) d \gamma(x, y, z)$, reduces to:

$$
\min \sum_{i, j, k=1}^{\ell} c_{i j k} \gamma_{i j k}
$$

over symmetric $\ell \times \ell \times \ell$ tensors $\left(\gamma_{i j k}\right)$ of order 3 which are tristochastic,

$$
\gamma_{i j k} \geq 0, \sum_{i, j} \gamma_{i j k}=1 \text { for all } k, \sum_{i, k} \mu_{i j k}=1 \text { for all } j, \sum_{j, k} \mu_{i j k}=1 \text { for all } i .
$$

$T: X \rightarrow X$ transports ρ to ρ iff T a permutation $\left(T\left(a_{i}\right)=a_{\tau(i)}\right)$.
SCE/Monge ansatz:
$\gamma=S \gamma^{\prime}, \quad \gamma^{\prime}=\frac{1}{\ell} \sum_{\nu=1}^{\ell} \delta_{a_{\tau_{1}(\nu)}} \otimes \delta_{a_{\tau_{2}(\nu)}} \otimes \delta_{a_{\tau_{3}(\nu)}}$ for some permutations $\tau_{1}, \tau_{2}, \tau_{3}$
Means γ^{\prime} extremely sparse: each of the 3ℓ "planes" associated with the sum constraints contain exactly one 1 and $\ell^{2}-1$ zeros.

Kantorovich plans as molecular packings

Physics version of finite-state-space Kantorovich problem, GF, arXiv 1808.04318
Find the ground state of an ensemble of non-interacting molecules s.th.:

1) Each molecule is composed of 3 identical atoms.
2) All atoms must be confined to ℓ given sites $a_{1}, . ., a_{\ell} \in \mathbb{R}^{d}$
3) All sites must be occupied equally often (marginal condition)
4) The cost to be minimized is the intramolecular interaction energy between the particles within a molecule.

State of a single molecule: $\delta_{x_{1}} \otimes \delta_{x_{2}} \otimes \delta_{x_{3}}, x_{1} \leq x_{2} \leq x_{3}$
" \leq " from indistinguishability, " $=$ " allowed as atoms can be on same site
State of ensemble: $\gamma=\sum_{\nu} p_{\nu} \delta_{x_{1}^{(\nu)}} \otimes \delta_{x_{2}^{(\nu)}} \otimes \delta_{x_{3}^{(\nu)}}, \quad p_{\nu}$ occup. probab'ies

Example: $\gamma=\frac{1}{2} \delta_{a_{2}} \otimes \delta_{a_{2}} \otimes \delta_{a_{3}}+\frac{1}{3} \delta_{a_{1}} \otimes \delta_{a_{1}} \otimes \delta_{a_{1}}+\frac{1}{3} \delta_{a_{4}} \otimes \delta_{a_{4}} \otimes \delta_{a_{4}}+\frac{1}{6} \delta_{a_{3}} \otimes \delta_{a_{3}} \otimes \delta_{a_{3}}$

Simple counterexample to Monge ansatz

GF, arXiv 1808.04318

$X=\{1,2,3\} \subset \mathbb{R}$ three equi-spaced sites on the real line
Minimize $\int_{X^{3}}(v(|x-y|)+v(|y-z|)+v(|x-z|)) d \gamma(x, y, z)$
$\mathrm{s} /$ to $\gamma \mapsto \delta_{1}+\delta_{2}+\delta_{3}$
$v(r)=(r-a)^{2}, a=\frac{3}{4}$ (springs of bondlength 3/4)
Marginal condition + interaction \approx Frenkel-Kontorova model

Unique minimizer $\gamma=S\left(\frac{1}{2} \delta_{1} \otimes \delta_{1} \otimes \delta_{2}+\frac{1}{2} \delta_{2} \otimes \delta_{3} \otimes \delta_{3}\right)$ not Monge, not symmetrized Monge

no. N of particles/marginals, no. ℓ of sites both minimal
$\mathrm{N}=2$, any ℓ : Monge ansatz ok for all costs, Birkhoff-Von Neumann-theorem any $\mathrm{N}, \ell=2$: follows from resuls of FMPCK, JCP 139,164109,2013

Continuous counterexample, formation of microstructure

 partially inspired by DiMarino/Gerolin/Nenna fractal Monge map (2015) Monge problem with no minimizer (GF, arXiv 2018): $\rho(x) \equiv 1 / 3$ on $[0,3]$, minimize $\int_{0}^{3} \frac{\rho(x)}{3}\left(v\left(\left|x-T_{2}(x)\right|\right)+v\left(\left|T_{2}(x)-T_{3}(x)\right|\right)+v\left(\left|x-T_{3}(x)\right|\right)\right) d x$ over T_{2}, T_{3} transporting ρ to $\rho, v(r)=\frac{r^{4}}{4}-\frac{r^{3}}{3}$.

Convex geometry of the set of Kantorovich plans

Kantorovich polytope For finite $X=\left\{a_{1}, . ., a_{\ell}\right\}$, any N, any given one-body density ρ, set of Kantorovich plans $\left\{\gamma \in \mathcal{P}_{\text {sym }}\left(X^{N}\right): \gamma \mapsto \rho / N\right\}$ is a convex polytope.
Typical costs (like Coulomb, springs from counterex., repulsive harmonic,
...) are 2-body, so cost depends only on 2-point marginal
$\mu_{i j}=\sum_{k_{3}, \ldots, k_{N}} \gamma_{i j k_{3} \ldots k_{N}}$. Reduced Kantorovich polytope $=\mu^{\prime} s$ coming from γ 's in the Kantorovich polytope.

Fruitful to analyze/visualize these polytopes and their extreme points
GF, arXiv 2018, $N=\ell=3$
Vögler, arXiv 2019, larger N and ℓ, by computer
GF, Vögler, SIAM J.Math.Anal. 2018, sparse ansatz capturing all ext.pts

The reduced Kantorovich polytope for $\mathrm{N}=\ell=3$
GF, arXiv 2018

8 extreme points, 5 Monge (blue, purple, red), 3 non-Monge (yellow)

The reduced Kantorovich polytope for $\mathrm{N}=\ell=3$
GF, arXiv 2018

The reduced Kantorovich polytope for $\mathrm{N}=\ell=3$

GF, arXiv 2018
no. of molecules does not divide N
-> vertex not Monge

-> vertex is Monge
-> recover Gangbo-Swiech result (1999)

Breaking the curse of dimension

new ansatz replacing Monge: GF, Vögler, SIAM J.Math.Anal. 2018 finite state space $X=\left\{a_{1}, \ldots, a_{\ell}\right\}$, marginal $\mu=\sum_{i} \mu_{i} \delta_{a_{i}}$
Monge state $\in \mathcal{P}_{\text {sym }}\left(X^{N}\right):$

$$
\gamma=S \sum_{\nu=1}^{\ell} \mu_{\nu} \delta_{T_{1}\left(a_{\nu}\right)} \otimes \cdots \otimes \delta_{T_{N}\left(a_{\nu}\right)}
$$

Each $T_{1}, \ldots, T_{N}: X \rightarrow X$ pushes μ forward to μ (each map contributes one point to each site, $\left(T_{i}\right)_{\sharp \mu} \mu=\mu$ for all i) "Quasi-Monge" state $\in \mathcal{P}_{\text {sym }}\left(X^{N}\right)$: flexible site weights α_{ν}

$$
\gamma=S \sum_{\nu=1}^{\ell} \alpha_{\nu} \delta_{T_{1}\left(a_{\nu}\right)} \otimes \cdots \otimes \delta_{T_{N}\left(a_{\nu}\right)}
$$

Average push-forward of $\alpha=\sum_{\nu} \alpha_{\nu} \delta_{a_{\nu}}$ under the maps $T_{1}, \ldots, T_{N}: X \rightarrow X$ is equal to to μ (maps contribute unequally to different sites, $\frac{1}{N} \sum_{i=1}^{N}\left(T_{i}\right)_{\sharp} \alpha=\mu$)

Breaking the curse of dimension

Monge state:
each map contributes one point to each site

"Quasi-Monge" state:
flexible site weights maps contribute unequally to sites

Breaking the curse of dimension

Theorem (GF, Vögler, SIAM J.Math.Anal., 2018) For any number N of marginals, any cost $c: X^{N} \rightarrow \mathbb{R}$, and any marginal $\mu \in \mathcal{P}(X)$, the Kantorovich problem "Minimize $\int_{X^{N}} c d \gamma$ subject to $\gamma \rightarrow \mu$ " admits a minimizer of "Quasi-Monge" form.

Breaking the curse of dimension

Theorem (GF, Vögler, SIAM J.Math.Anal., 2018) For any number N of marginals, any cost $c: X^{N} \rightarrow \mathbb{R}$, and any marginal $\mu \in \mathcal{P}(X)$, the Kantorovich problem "Minimize $\int_{X^{N}} c d \gamma$ subject to $\gamma \rightarrow \mu$ " admits a minimizer of "Quasi-Monge" form.

High-dimensional linear pb. \longrightarrow low-dimensional nonlinear pb $\binom{N+\ell-1}{\ell-1} \rightarrow \ell \cdot(N+1)$ DOF's.

The counterexample is quasi-Monge

Quasi-Monge problem formulated in terms of maps

 GF, Vögler, SIAM J.Math.Anal. 2018$$
V_{e e}^{Q S C E}[\rho]=\min _{\alpha, T_{1}, . ., T_{N}} \int_{\mathbb{R}^{3}} \alpha(\mathbf{r}) \sum_{1 \leq i<j \leq N} \frac{1}{\left|T_{i}(\mathbf{r})-T_{j}(\mathbf{r})\right|} d \mathbf{r}
$$

subject to $\frac{1}{N} \sum_{i=1}^{N}\left(T_{i}\right)_{\sharp} \alpha=\rho, \alpha$ probability measure on \mathbb{R}^{3}
after discretiz.: minimizer exists, exactly same as Kantorovich pb., numerically nice

Summary

1) DFT in the strong correlation limit reduces to a highly nontrivial optimal transport problem.
2) Still not known whether, for this problem, Kantorovich = Monge
3) But, after discretization, Kantorovich = Quasi-Monge, thereby breaking the curse of dimension.

Thanks for your attention!

GF, arXiv 1808.04318
GF, Vögler, SIAM J.Math.Anal. 2018

