A mathematical introduction to Density Functional Theory and Kohn-Sham models

Eric CANCES

Ecole des Ponts and INRIA Paris, France

Banff, January 28, 2019

1. Hohenberg-Kohn theorem
2. Constrained search
3. Kohn-Sham models
4. Homogeneous electron gas

Some references

- Hohenberg and Kohn, Inhomogeneous electron gas, Phys. Rev. 1964
- Kohn and Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 1965
\bullet Lieb, Density Functional for Coulomb systems, Int. J. Quant. Chem. 1983
- Dreizler and Gross, Density Functional Theory, Springer-Verlag, 1990

1 - Hohenberg-Kohn theorem

1 - Hohenberg-Kohn theorem

Density associated with a normalized wavefunction of $\mathcal{H}_{N}=\bigwedge L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$

$$
\rho_{\Psi}(\mathbf{r})=N \int_{\mathbb{R}^{3(N-1)}}\left|\Psi\left(\mathbf{r}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}\right)\right|^{2} d \mathbf{r}_{2} \cdots d \mathbf{r}_{N}
$$

Density associated with a normalized wavefunction of $\mathcal{H}_{N}=\bigwedge L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$

$$
\rho_{\Psi}(\mathbf{r})=N \int_{\mathbb{R}^{3(N-1)}}\left|\Psi\left(\mathbf{r}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}\right)\right|^{2} d \mathbf{r}_{2} \cdots d \mathbf{r}_{N}
$$

Definition. Let $\mathcal{V} \subset L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ be a class of local potentials and

$$
H_{N}(v):=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N} v\left(\mathbf{r}_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

We will say that the Hohenberg-Kohn theorem is satisfied on \mathcal{V} if two potentials v_{1} and v_{2} in \mathcal{V} giving rise to the same ground-state density ρ only differ by an additive constant

Density associated with a normalized wavefunction of $\mathcal{H}_{N}=\bigwedge^{N} L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$

$$
\rho_{\Psi}(\mathbf{r})=N \int_{\mathbb{R}^{3(N-1)}}\left|\Psi\left(\mathbf{r}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}\right)\right|^{2} d \mathbf{r}_{2} \cdots d \mathbf{r}_{N}
$$

Definition. Let $\mathcal{V} \subset L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ be a class of local potentials and

$$
H_{N}(v):=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N} v\left(\mathbf{r}_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

We will say that the Hohenberg-Kohn theorem is satisfied on \mathcal{V} if two potentials v_{1} and v_{2} in \mathcal{V} giving rise to the same ground-state density ρ only differ by an additive constant
i.e.
if for any v_{1} and v_{2} in \mathcal{V} for which $H_{N}\left(v_{1}\right)$ and $H_{N}\left(v_{2}\right)$ admit ground state wavefunctions Ψ_{1} and Ψ_{2} respectively such that

$$
\rho_{\Psi_{1}}=\rho_{\Psi_{2}}
$$

then $v_{2}-v_{1}$ is constant almost everywhere

Bright Wilson's argument for molecular potentials (reported by Löwdin)
Theorem. The Hohenberg-Kohn theorem is satisfied on
$\mathcal{V}=\left\{v(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|}, \quad\left(z_{k}, \mathbf{R}_{k}\right)_{1 \leq k \leq M} \in\left(\mathbb{N}^{*} \times \mathbb{R}^{3}\right)^{M}, \mathbf{R}_{k} \neq \mathbf{R}_{l}\right.$, if $\left.k \neq l\right\}$

Bright Wilson's argument for molecular potentials (reported by Löwdin)
Theorem. The Hohenberg-Kohn theorem is satisfied on
$\mathcal{V}=\left\{v(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|}, \quad\left(z_{k}, \mathbf{R}_{k}\right)_{1 \leq k \leq M} \in\left(\mathbb{N}^{*} \times \mathbb{R}^{3}\right)^{M}, \mathbf{R}_{k} \neq \mathbf{R}_{l}\right.$, if $\left.k \neq l\right\}$
Proof. Let $v \in \mathcal{V}$ possessing a normalized ground state wavefunction Ψ. Let $\rho=\rho_{\Psi}$. The function ρ is smooth (actually analytic ${ }^{1}$) away from the nuclei, and at each nucleus of charge z_{k}, it holds

$$
\frac{d[\rho]_{\mathbf{R}_{k}}}{d r}(0)=-2 z_{k}[\rho]_{\mathbf{R}_{k}}(0), \quad \text { (Kato's cusp conditions) }
$$

where

$$
[\rho]_{\mathbf{R}_{k}}(r)=\frac{1}{4 \pi r^{2}} \int_{S\left(\mathbf{R}_{k}, r\right)} \rho
$$

is the average of ρ over the sphere $S\left(\mathbf{R}_{k}, r\right)$ of center \mathbf{R}_{k} of radius r.
Therefore, there is a unique $v \in \mathcal{V}$ with density ρ.

Extension to more general potentials
Denoting by $E_{0}(v)$ the ground-state energy of $H_{N}(v)$, we have

$$
E_{0}\left(v_{1}\right)=\left\langle\Psi_{1}\right| H_{N}\left(v_{1}\right)\left|\Psi_{1}\right\rangle=\left\langle\Psi_{1}\right| H_{N}\left(v_{2}\right)\left|\Psi_{1}\right\rangle+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right) \geq E_{0}\left(v_{2}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right)
$$

Extension to more general potentials
Denoting by $E_{0}(v)$ the ground-state energy of $H_{N}(v)$, we have

$$
E_{0}\left(v_{1}\right)=\left\langle\Psi_{1}\right| H_{N}\left(v_{1}\right)\left|\Psi_{1}\right\rangle=\left\langle\Psi_{1}\right| H_{N}\left(v_{2}\right)\left|\Psi_{1}\right\rangle+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right) \geq E_{0}\left(v_{2}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right)
$$

By symmetry, we also have

$$
E_{0}\left(v_{2}\right) \geq E_{0}\left(v_{1}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{2}-v_{1}\right)
$$

Extension to more general potentials
Denoting by $E_{0}(v)$ the ground-state energy of $H_{N}(v)$, we have
$E_{0}\left(v_{1}\right)=\left\langle\Psi_{1}\right| H_{N}\left(v_{1}\right)\left|\Psi_{1}\right\rangle=\left\langle\Psi_{1}\right| H_{N}\left(v_{2}\right)\left|\Psi_{1}\right\rangle+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right) \geq E_{0}\left(v_{2}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right)$
By symmetry, we also have

$$
E_{0}\left(v_{2}\right) \geq E_{0}\left(v_{1}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{2}-v_{1}\right)
$$

Therefore,

$$
E_{0}\left(v_{1}\right) \geq E_{0}\left(v_{2}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right) \geq E_{0}\left(v_{1}\right)
$$

Extension to more general potentials
Denoting by $E_{0}(v)$ the ground-state energy of $H_{N}(v)$, we have

$$
E_{0}\left(v_{1}\right)=\left\langle\Psi_{1}\right| H_{N}\left(v_{1}\right)\left|\Psi_{1}\right\rangle=\left\langle\Psi_{1}\right| H_{N}\left(v_{2}\right)\left|\Psi_{1}\right\rangle+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right) \geq E_{0}\left(v_{2}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right)
$$

By symmetry, we also have

$$
E_{0}\left(v_{2}\right) \geq E_{0}\left(v_{1}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{2}-v_{1}\right)
$$

Therefore,

$$
E_{0}\left(v_{1}\right) \geq E_{0}\left(v_{2}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right) \geq E_{0}\left(v_{1}\right)
$$

Hence, the above inequalities are in fact equalities, which implies that Ψ_{2} is a ground state of $H_{N}\left(v_{1}\right)$:

$$
H_{N}\left(v_{1}\right) \Psi_{2}=E_{0}\left(v_{1}\right) \Psi_{2} \quad \text { and } \quad H_{N}\left(v_{2}\right) \Psi_{2}=E_{0}\left(v_{2}\right) \Psi_{2}
$$

Extension to more general potentials
Denoting by $E_{0}(v)$ the ground-state energy of $H_{N}(v)$, we have
$E_{0}\left(v_{1}\right)=\left\langle\Psi_{1}\right| H_{N}\left(v_{1}\right)\left|\Psi_{1}\right\rangle=\left\langle\Psi_{1}\right| H_{N}\left(v_{2}\right)\left|\Psi_{1}\right\rangle+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right) \geq E_{0}\left(v_{2}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right)$
By symmetry, we also have

$$
E_{0}\left(v_{2}\right) \geq E_{0}\left(v_{1}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{2}-v_{1}\right)
$$

Therefore,

$$
E_{0}\left(v_{1}\right) \geq E_{0}\left(v_{2}\right)+\int_{\mathbb{R}^{3}} \rho\left(v_{1}-v_{2}\right) \geq E_{0}\left(v_{1}\right)
$$

Hence, the above inequalities are in fact equalities, which implies that Ψ_{2} is a ground state of $H_{N}\left(v_{1}\right)$:

$$
H_{N}\left(v_{1}\right) \Psi_{2}=E_{0}\left(v_{1}\right) \Psi_{2} \quad \text { and } \quad H_{N}\left(v_{2}\right) \Psi_{2}=E_{0}\left(v_{2}\right) \Psi_{2}
$$

This implies,

$$
\left(\sum_{i=1}^{N}\left(v_{2}-v_{1}\right)\left(\mathbf{r}_{i}\right)+E_{0}\left(v_{1}\right)-E_{0}\left(v_{2}\right)\right) \Psi_{2}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=0 \quad \text { almost everywhere in } \mathbb{R}^{3 N}
$$

In order to infer from
$\left(\sum_{i=1}^{N}\left(v_{2}-v_{1}\right)\left(\mathbf{r}_{i}\right)+E_{0}\left(v_{1}\right)-E_{0}\left(v_{2}\right)\right) \Psi_{2}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=0 \quad$ almost everywhere in $\mathbb{R}^{3 N}$
that

$$
\sum_{i=1}^{N}\left(v_{2}-v_{1}\right)\left(\mathbf{r}_{i}\right)+E_{0}\left(v_{1}\right)-E_{0}\left(v_{2}\right)=0 \quad \text { almost everywhere in } \mathbb{R}^{3 N}
$$

from which we easily conclude that

$$
\left(v_{2}-v_{1}\right)(\mathbf{r})=\frac{E_{0}\left(v_{2}\right)-E_{0}\left(v_{1}\right)}{N} \quad \text { almost everywhere in } \mathbb{R}^{3}
$$

we need a unique continuation argument of the form
$\left(H_{N}(v) \Psi=E \Psi\right.$ and $\Psi=0$ on a set of positive measure $) \Rightarrow\left(\Psi=0\right.$ a.e. in $\left.\mathbb{R}^{3 N}\right)$
$\longrightarrow \quad$ see Louis Garrigue's talk

In order to infer from
$\left(\sum_{i=1}^{N}\left(v_{2}-v_{1}\right)\left(\mathbf{r}_{i}\right)+E_{0}\left(v_{1}\right)-E_{0}\left(v_{2}\right)\right) \Psi_{2}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=0 \quad$ almost everywhere in $\mathbb{R}^{3 N}$
that

$$
\sum_{i=1}^{N}\left(v_{2}-v_{1}\right)\left(\mathbf{r}_{i}\right)+E_{0}\left(v_{1}\right)-E_{0}\left(v_{2}\right)=0 \quad \text { almost everywhere in } \mathbb{R}^{3 N}
$$

from which we easily conclude that

$$
\left(v_{2}-v_{1}\right)(\mathbf{r})=\frac{E_{0}\left(v_{2}\right)-E_{0}\left(v_{1}\right)}{N} \quad \text { almost everywhere in } \mathbb{R}^{3}
$$

we need a unique continuation argument of the form
$\left(H_{N}(v) \Psi=E \Psi\right.$ and $\Psi=0$ on a set of positive measure $) \Rightarrow\left(\Psi=0\right.$ a.e. in $\left.\mathbb{R}^{3 N}\right)$
$\longrightarrow \quad$ see Louis Garrigue's talk

Extension of Hohenberg-Kohn theorem to other settings
$\longrightarrow \quad$ see Andre Laestadius's talk on HK for current densities

2 - Constrained search

Let $\mathcal{H}_{k}:=\bigwedge^{k} L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right), \Psi \in \mathcal{H}_{N}$ such that $\|\Psi\|=1$, and $1 \leq p \leq N$

- the p-body (reduced) density matrix (p-RDM) associated with Ψ is

$$
\gamma_{p, \Psi}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{p} ; \mathbf{r}_{1}^{\prime}, \cdots, \mathbf{r}_{p}^{\prime}\right)
$$

$$
:=\binom{N}{p} \int_{\mathbb{R}^{3(N-p)}} \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{p}, \mathbf{r}_{p+1}, \cdots, \mathbf{r}_{N}\right) \Psi\left(\mathbf{r}_{1}^{\prime}, \cdots, \mathbf{r}_{p}^{\prime}, \mathbf{r}_{p+1}, \cdots, \mathbf{r}_{N}\right)^{*} d \mathbf{r}_{p+1} \cdots d \mathbf{r}_{N}
$$

- the p-body reduced density operator (p-RDO) associated with Ψ is the bounded self-adjoint operator on \mathcal{H}_{p} with kernel $\gamma_{p, \Psi}$. It is also denoted by $\gamma_{p, \Psi}$ and sometimes called density matrix as well;
- the p-body density is

$$
\begin{aligned}
\rho_{p, \Psi}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{p}\right) & =\gamma_{p, \Psi}\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{p} ; \mathbf{r}_{1}, \cdots, \mathbf{r}_{p}\right) \\
& =\binom{N}{p} \int_{\mathbb{R}^{3(N-p)}}\left|\Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{p}, \mathbf{r}_{p+1}, \cdots, \mathbf{r}_{N}\right)\right|^{2} d \mathbf{r}_{p+1} \cdots d \mathbf{r}_{N}
\end{aligned}
$$

- for $p=1, \gamma_{\Psi}:=\gamma_{1, \Psi}, \rho_{\Psi}:=\rho_{1, \Psi}$

Variational formulation of the ground-state energy

$$
\begin{array}{r}
E_{0}=\inf \left\{\langle\Psi| H_{N}|\Psi\rangle, \Psi \in \mathcal{W}_{N}\right\}, \quad \mathcal{W}_{N}=\left\{\Psi \in \bigwedge^{N} L^{2}\left(\mathbb{R}^{3}\right) \cap H^{1}\left(\mathbb{R}^{3 N}\right),\|\Psi\|_{L^{2}}=1\right\} \\
H_{N}=\underbrace{-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}}_{T}+\underbrace{\sum_{i=1}^{N} V\left(\mathbf{r}_{i}\right)}_{V_{\mathrm{ne}}}+\underbrace{\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}}_{V_{\mathrm{ee}}}, \quad V(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|}
\end{array}
$$

- kinetic energy: $\langle\Psi| T|\psi\rangle=\mathbf{T r}\left(-\frac{1}{2} \Delta \gamma_{\psi}\right)$
- interaction energy between electrons and nuclei: $\langle\Psi| V_{\mathrm{ne}}|\psi\rangle=\int_{\mathbb{R}^{3}} \rho_{\Psi} V$
- electron-electron interaction energy: $\langle\Psi| V_{\mathrm{ee}}|\psi\rangle=\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{2, \Psi}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}$

Variational formulation of the ground-state energy

$$
\begin{array}{r}
E_{0}=\inf \left\{\langle\Psi| H_{N}|\Psi\rangle, \Psi \in \mathcal{W}_{N}\right\}, \quad \mathcal{W}_{N}=\left\{\Psi \in \bigwedge^{N} L^{2}\left(\mathbb{R}^{3}\right) \cap H^{1}\left(\mathbb{R}^{3 N}\right),\|\Psi\|_{L^{2}}=1\right\} \\
H_{N}=\underbrace{-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}}_{T}+\underbrace{\sum_{i=1}^{N} V\left(\mathbf{r}_{i}\right)}_{V_{\mathrm{ne}}}+\underbrace{\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}}_{V_{\mathrm{ee}}}, \quad V(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|}
\end{array}
$$

"Usual" splitting of the electronic Hamiltonian

$$
H_{N}=\underbrace{T+V_{\mathrm{ne}}}_{\text {1-body }}+\underbrace{V_{\mathrm{ee}}}_{\mathbf{2 - b o d y}} \cdot
$$

Hohenberg-Kohn splitting of the electronic Hamiltonian

$$
H_{N}=\underbrace{T+V_{\mathrm{ee}}}+\underbrace{V_{\mathrm{ne}}}
$$

generic specific (to the molecular system considered)

Levy-Lieb functional (Levy '79, Lieb '83, already discussed in previous talks)

$$
\begin{aligned}
H_{N}=H_{N}^{1}+V_{\mathrm{ne}}, \quad H_{N}^{1} & =T+V_{\mathrm{ee}}=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}, \quad V_{\mathrm{ne}}=\sum_{i=1}^{N} V\left(\mathbf{r}_{i}\right) \\
E_{0} & =\inf \left\{F_{\mathrm{LL}}(\rho)+\int_{\mathbb{R}^{3}} \rho V, \rho \in \mathcal{R}_{N}\right\} \\
F_{\mathrm{LL}}(\rho) & :=\inf \left\{\langle\Psi| H_{N}^{1}|\Psi\rangle, \Psi \in \mathcal{W}_{N} \text { s.t. } \rho_{\Psi}=\rho\right\}, \\
\mathcal{R}_{N} & :=\left\{\rho, \exists \Psi \in \mathcal{W}_{N} \text { s.t. } \rho_{\Psi}=\rho\right\}
\end{aligned}
$$

Levy-Lieb functional (Levy '79, Lieb '83, already discussed in previous talks)

$$
\begin{aligned}
H_{N}=H_{N}^{1}+V_{\mathrm{ne}}, \quad H_{N}^{1} & =T+V_{\mathrm{ee}}=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}, \quad V_{\mathrm{ne}}=\sum_{i=1}^{N} V\left(\mathbf{r}_{i}\right) \\
E_{0} & =\inf \left\{F_{\mathrm{LL}}(\rho)+\int_{\mathbb{R}^{3}} \rho V, \rho \in \mathcal{R}_{N}\right\} \\
F_{\mathrm{LL}}(\rho) & :=\inf \left\{\langle\Psi| H_{N}^{1}|\Psi\rangle, \Psi \in \mathcal{W}_{N} \text { s.t. } \rho_{\Psi}=\rho\right\} \\
\mathcal{R}_{N} & :=\left\{\rho, \exists \Psi \in \mathcal{W}_{N} \text { s.t. } \rho_{\Psi}=\rho\right\}
\end{aligned}
$$

Theorem (pure-state N-representability of densities)

$$
\mathcal{R}_{N}=\left\{\rho \geq 0, \sqrt{\rho} \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \rho=N\right\}
$$

$F_{\mathrm{LL}}(\rho)$ is a "universal" functional of the density
Problem: no easy-to-compute expression of $F_{\mathrm{LL}}(\rho)$ is known

Lieb functional (Legendre-Fenchel duality)
For any $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$, we can define
$E_{0}(v)=\inf \left\{\langle\Psi| H_{N}(v)|\Psi\rangle, \Psi \in \mathcal{W}_{N}\right\}=\inf \left\{\langle\Psi| H_{N}^{1}+\sum_{i=1}^{N} v\left(\mathbf{r}_{i}\right)|\Psi\rangle, \Psi \in \mathcal{W}_{N}\right\}$
and $v \mapsto E_{0}(v)$ is a real-valued, concave, Lipschitz function on $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$

Lieb functional (Legendre-Fenchel duality)
For any $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$, we can define
$E_{0}(v)=\inf \left\{\langle\Psi| H_{N}(v)|\Psi\rangle, \Psi \in \mathcal{W}_{N}\right\}=\inf \left\{\langle\Psi| H_{N}^{1}+\sum_{i=1}^{N} v\left(\mathbf{r}_{i}\right)|\Psi\rangle, \Psi \in \mathcal{W}_{N}\right\}$
and $v \mapsto E_{0}(v)$ is a real-valued, concave, Lipschitz function on $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$

Theorem (Lieb '83)

$$
E_{0}(v)=\inf \left\{F_{\mathrm{L}}(\rho)+\int_{\mathbb{R}^{3}} \rho v, \rho \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{3}\left(\mathbb{R}^{3}\right)\right\}
$$

where $F_{L}(\rho)$ is the convex w-l.s.c. function defined on $L^{1}\left(\mathbb{R}^{3}\right) \cap L^{3}\left(\mathbb{R}^{3}\right)$ by

$$
F_{\mathrm{L}}(\rho)=\sup \left\{E(v)-\int_{\mathbb{R}^{3}} \rho v, v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)\right\}
$$

Physical interpretation of $F_{\mathrm{L}}(\rho)$
Mixed states of N-electron systems are described by N-electron density matrices of the form
$\Gamma=\sum_{n=1}^{+\infty} p_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|, \Psi_{n} \in \bigwedge^{N} L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right),\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle=\delta_{m n}, 0 \leq p_{n} \leq 1, \sum_{n=1}^{+\infty} p_{n}=1$
the density of Γ being given by

$$
\rho_{\Gamma}(\mathbf{r})=\sum_{n=1}^{+\infty} p_{n} \rho_{\Psi_{n}}(\mathbf{r})
$$

Γ is of finite energy if $\sum_{n=1}^{+\infty} p_{n}\left\|\nabla \Psi_{n}\right\|_{L^{2}}^{2}<\infty$, its energy being then

$$
\operatorname{Tr}\left(H_{N} \Gamma\right)=\sum_{n=1}^{+\infty} p_{n}\left\langle\Psi_{n}\right| H_{N}\left|\Psi_{n}\right\rangle=\operatorname{Tr}\left(H_{N}^{1} \Gamma\right)+\int_{\mathbb{R}^{3}} \rho_{\Gamma} V .
$$

Let us denote by \mathcal{D}_{N} the convex set of finite-energy N-electron density matrices
Theorem (ensemble N-representation of densities). It holds

$$
\left\{\rho \mid \exists \Gamma \in \mathcal{D}_{N} \text { s.t. } \rho_{\Gamma}=\rho\right\}=\mathcal{R}_{N}=\left\{\rho \geq 0, \sqrt{\rho} \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \rho=N\right\}
$$

Therefore (Valone '80)

$$
\begin{aligned}
E_{0}(v) & =\inf \left\{\operatorname{Tr}\left(H_{N}(v) \Gamma\right), \Gamma \in \mathcal{D}_{N}\right\} \\
& =\inf \left\{\operatorname{Tr}\left(H_{N}^{1} \Gamma\right)+\int_{\mathbb{R}^{3}} \rho_{\Gamma} v, \Gamma \in \mathcal{D}_{N}\right\} \\
& =\inf \left\{\inf \left\{\operatorname{Tr}\left(H_{N}^{1} \Gamma\right), \Gamma \in \mathcal{D}_{N}, \rho_{\Gamma}=\rho\right\}+\int_{\mathbb{R}^{3}} \rho v, \rho \in \mathcal{R}_{N}\right\} .
\end{aligned}
$$

It holds that $\quad F_{\mathrm{L}}(\rho)=\left\lvert\, \begin{array}{ll}\inf \left\{\operatorname{Tr}\left(H_{N}^{1} \Gamma\right), \Gamma \in \mathcal{D}_{N}, \rho_{\Gamma}=\rho\right\} & \text { if } \rho \in \mathcal{R}_{N}, \\ +\infty & \text { if } \rho \notin \mathcal{R}_{N},\end{array}\right.$ and that F_{L} is the convex hull of F_{LL} on the convex set \mathcal{R}_{N}

No explicit expressions of the functionals F_{L} and F_{LL} are known Approximations are needed for numerical simulations

Two classes of approximate functionals are available, built from the exact functionals of simple reference systems:

- orbital-free models: reference system $=$ homogeneous electron gas orbital-free functionals are cheap but inaccurate except in a few cases
- Kohn-Sham models: reference system $=N$ non-interacting electrons

Kohn-Sham functionals are much more accurate, but more expensive

In orbital-free models, the density functional is explicit in ρ
Examples:

- Thomas-Fermi (TF) model

$$
\begin{gathered}
\mathcal{E}^{\mathrm{TF}}(\rho)=C_{\mathrm{TF}} \int_{\mathbb{R}^{3}} \rho^{5 / 3}+\int_{\mathbb{R}^{3}} \rho V+\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \\
E_{0} \sim \inf \left\{\mathcal{E}^{\mathrm{TF}}(\rho), \rho \geq 0, \rho \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{5 / 3}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \rho=N\right\}
\end{gathered}
$$

- Thomas-Fermi-von Weizsäcker (TFW) model

$$
\begin{gathered}
\mathcal{E}^{\mathrm{TFW}}(\rho)=C_{\mathrm{W}} \int_{\mathbb{R}^{3}}|\nabla \sqrt{\rho}|^{2}+C_{\mathrm{TF}} \int_{\mathbb{R}^{3}} \rho^{5 / 3}+\int_{\mathbb{R}^{3}} \rho V+\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \\
E_{0} \sim \inf \left\{\mathcal{E}^{\mathrm{TFW}}(\rho), \rho \geq 0, \sqrt{\rho} \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \rho=N\right\}
\end{gathered}
$$

3 - Kohn-Sham models

Density functional theory for non-interacting electrons

	Hamiltonian	Levy-Lieb	Lieb
Interacting e ${ }^{-}$	H_{N}^{1}	$F_{\mathrm{LL}}(\rho)$	$F_{\mathrm{L}}(\rho)$
Non-interacting e ${ }^{-}$	H_{N}^{0}	$T_{\mathrm{LL}}(\rho)$	$T_{\mathrm{J}}(\rho)$

$$
H_{N}^{1}=T+V_{\mathrm{ee}}=-\sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_{i}}+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \quad H_{N}^{0}=T=-\sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_{i}}
$$

Density functional theory for non-interacting electrons

	Hamiltonian	Levy-Lieb	Lieb
Interacting e ${ }^{-}$	H_{N}^{1}	$F_{\mathrm{LL}}(\rho)$	$F_{\mathrm{L}}(\rho)$
Non-interacting e ${ }^{-}$	H_{N}^{0}	$T_{\mathrm{LL}}(\rho)$	$T_{\mathrm{J}}(\rho)$

$$
H_{N}^{1}=T+V_{\mathrm{ee}}=-\sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_{i}}+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \quad H_{N}^{0}=T=-\sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_{i}}
$$

Can $T_{\mathrm{LL}}(\rho)$ be "easily" computed? No
Can $T_{\mathrm{J}}(\rho)$ be "easily" computed? Yes! \rightarrow (extended) Kohn-Sham model

Kohn-Sham kinetic energy functional (Levy-Lieb approach for H_{N}^{0})

$$
T_{\mathrm{LL}}(\rho)=\inf \left\{\langle\Psi| T|\Psi\rangle, \Psi \in \mathcal{W}_{N} \text { s.t. } \rho_{\Psi}=\rho\right\}
$$

$\leq \inf \left\{\langle\Psi| T|\Psi\rangle, \Psi \in \mathcal{W}_{N}\right.$ is a Slater determinant s.t. $\left.\rho_{\Psi}=\rho\right\}$
$=\inf \left\{\sum_{i=1}^{N} \frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}\right|^{2}, \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}, \sum_{i=1}^{N}\left|\phi_{i}\right|^{2}=\rho\right\}$
$=: T_{\mathrm{s}}(\rho) \quad$ (Kohn \& Sham '65)
A Slater determinant with finite kinetic energy is a wavefunction Ψ of the form

$$
\Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=\frac{1}{\sqrt{N!}}\left|\begin{array}{ccc}
\phi_{1}\left(\mathbf{r}_{1}\right) & \cdots & \phi_{1}\left(\mathbf{r}_{N}\right) \\
\cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot \\
\phi_{N}\left(\mathbf{r}_{1}\right) & \cdots & \phi_{N}\left(\mathbf{r}_{N}\right)
\end{array}\right|, \quad \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right), \quad \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}
$$

Kohn-Sham model ('65)

1. For N non interacting electrons, the density functional is (approximatively) given by

$$
T_{\mathrm{s}}(\rho)=\inf \left\{\sum_{i=1}^{N} \frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}\right|^{2}, \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right) \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j} \sum_{i=1}^{N}\left|\phi_{i}\right|^{2}=\rho\right\}
$$

2. For a classical charge distribution of density ρ, the Coulomb interaction reads

$$
J(\rho) \stackrel{\operatorname{def}}{=} \frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho(x) \rho(y)}{|x-y|} d x d y
$$

3. Kohn and Sham proposed the following decomposition of F_{LL}

$$
F_{\mathrm{LL}}(\rho)=T_{\mathrm{s}}(\rho)+J(\rho)+E_{\mathrm{xc}}(\rho) \quad \text { where } \quad E_{\mathrm{xc}}(\rho) \stackrel{\text { def }}{=} F_{\mathrm{LL}}(\rho)-T_{\mathrm{s}}(\rho)-J(\rho)
$$

E_{xc} is called the exchange-correlation functional

Exchange-correlation functional
Assuming that

- $F_{\mathrm{LL}}(\rho)=\inf _{\Psi \mid \rho_{\Psi}=\rho}\langle\Psi| H_{N}^{1}|\Psi\rangle$ has a unique minimizer Ψ_{ρ}^{0} (up to a global phase)
- $T_{\mathrm{s}}(\rho)=\inf _{\Phi \text { Slater det. } \mid \rho_{\Phi}=\rho}\langle\Phi| H_{N}^{0}|\Phi\rangle$ has a unique minimizer Φ_{ρ}^{0} (u.t.g.p.)
one can define
- the kinetic energy and electron-electron energy functionals

$$
T(\rho):=\left\langle\Psi_{\rho}^{0}\right| T\left|\Psi_{\rho}^{0}\right\rangle, \quad V_{\mathrm{ee}}(\rho):=\left\langle\Psi_{\rho}^{0}\right| V_{\mathrm{ee}}\left|\Psi_{\rho}^{0}\right\rangle
$$

- the exchange energy functional

$$
E_{\mathrm{x}}(\rho):=-\frac{1}{2} \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\left|\gamma_{\Phi_{\rho}^{0}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right|^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}
$$

- the kinetic and e-e contributions to the correlation energy functional

$$
\begin{array}{rll}
T_{\mathrm{c}}(\rho):=T(\rho)-T_{\mathrm{s}}(\rho) \quad \text { and } & U_{\mathrm{c}}(\rho)=V_{\mathrm{ee}}(\rho)-J(\rho)-E_{\mathrm{x}}(\rho) \\
& E_{\mathrm{xc}}(\rho)=E_{\mathrm{x}}(\rho)+E_{\mathrm{c}}(\rho), & E_{\mathrm{c}}(\rho)=T_{\mathrm{c}}(\rho)+U_{\mathrm{c}}(\rho)
\end{array}
$$

Orders of magnitude of the various components of the energy (in a.u.)

System	E_{GS}	$T\left(\rho_{\mathrm{GS}}\right)$	$T_{\mathrm{s}}\left(\rho_{\mathrm{GS}}\right)$	$T_{\mathrm{c}}\left(\rho_{\mathrm{GS}}\right)$	$V_{\mathrm{ne}}\left(\rho_{\mathrm{GS}}\right)$	$V_{\mathrm{ee}}\left(\rho_{\mathrm{GS}}\right)$	$J\left(\rho_{\mathrm{GS}}\right)$	$E_{\mathrm{x}}\left(\rho_{\mathrm{GS}}\right)$	$U_{\mathrm{c}}\left(\rho_{\mathrm{GS}}\right)$
$\mathbf{H e}$	$\mathbf{- 2 . 9 0 4}$	$\mathbf{2 . 9 0 4}$	$\mathbf{2 . 8 6 7}$	$\mathbf{0 . 0 3 7}$	$\mathbf{- 6 . 7 5 3}$	$\mathbf{0 . 9 4 6}$	$\mathbf{2 . 0 4 9}$	$\mathbf{- 1 . 0 2 5}$	$\mathbf{- 0 . 0 7 9}$
$\mathbf{B e}$	$\mathbf{- 1 4 . 6 6 7}$	$\mathbf{1 4 . 6 6 7}$	$\mathbf{1 4 . 5 9 4}$	$\mathbf{0 . 0 7 3}$	$\mathbf{- 3 3 . 7 1 0}$	$\mathbf{4 . 3 7 5}$	$\mathbf{7 . 2 1 8}$	$\mathbf{- 2 . 6 7 4}$	$\mathbf{- 0 . 1 6 9}$
$\mathbf{N e}$	$\mathbf{- 1 2 8 . 9 4}$	$\mathbf{1 2 8 . 9 4}$	$\mathbf{1 2 8 . 6 1}$	$\mathbf{0 . 3 3}$	$\mathbf{- 3 1 1 . 1 2}$	$\mathbf{5 3 . 2 4}$	$\mathbf{6 6 . 0 5}$	$\mathbf{- 1 2 . 0 9}$	$\mathbf{- 0 . 3 9}$

$$
\begin{aligned}
E_{\mathrm{GS}} & =T\left(\rho_{\mathrm{GS}}\right)+V_{\mathrm{ne}}\left(\rho_{\mathrm{GS}}\right)+V_{\mathrm{ee}}\left(\rho_{\mathrm{GS}}\right) \\
& =\underbrace{T_{\mathrm{s}}\left(\rho_{\mathrm{GS}}\right)+V_{\mathrm{ne}}\left(\rho_{\mathrm{GS}}\right)+J\left(\rho_{\mathrm{GS}}\right)+E_{\mathrm{x}}\left(\rho_{\mathrm{GS}}\right)}_{\text {could be "easily" computed from } \rho_{\mathrm{GS}}}+\underbrace{T_{\mathrm{c}}\left(\rho_{\mathrm{GS}}\right)+U_{\mathrm{c}}\left(\rho_{\mathrm{GS}}\right)}_{E_{\mathrm{c}}\left(\rho_{\mathrm{GS}}\right)}
\end{aligned}
$$

In practice, because of error cancellations, it is better to split the energy as $E(\rho)=T_{\mathrm{s}}(\rho)+V_{\mathrm{ne}}(\rho)+J(\rho)+E_{\mathrm{xc}}(\rho)$ and approximate $E_{\mathrm{xc}}(\rho)$

Local Density Approximation (LDA)
A possible approximation of $E_{\mathrm{xc}}(\rho)$ (Kohn and Sham '65) is

$$
E_{\mathrm{xc}}^{\mathrm{LDA}}(\rho)=\int_{\mathbb{R}^{3}} e_{\mathrm{xc}}(\rho(x)) d x
$$

where $e_{\mathrm{xc}}(\bar{\rho})$ is the exchange-correlation energy density in a homogeneous electron gas of density $\bar{\rho}$

Parametrization of $e_{\mathrm{xc}}: \mathbb{R}_{+} \rightarrow \mathbb{R}$: see Part 4: Homogeneous electron gas

Beyond LDA
$\longrightarrow \quad$ see Kieron's talk
Beyond-LDA Kohn-Sham models are poorly understood mathematically

Rewriting the minimization problem in terms of $\Phi=\left(\phi_{1}, \cdots, \phi_{N}\right)$, one obtains

$$
\begin{aligned}
& \qquad \begin{aligned}
& E_{0} \simeq \inf \left\{E^{\mathrm{KS}, \mathrm{LDA}}(\Phi), \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in\left(H^{1}\left(\mathbb{R}^{3}\right)\right)^{N}, \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}\right\} \\
& E^{\mathrm{KS}, \mathrm{LDA}}(\Phi)= \frac{1}{2} \sum_{i=1}^{N} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}\right|^{2}+\int_{\mathbb{R}^{3}} \rho_{\Phi} V \\
&+\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{\Phi}(\mathbf{r}) \rho_{\Phi}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\int_{\mathbb{R}^{3}} e_{\mathrm{xc}}\left(\rho_{\Phi}(\mathbf{r})\right) d \mathbf{r} \\
& \text { with } \quad V(\mathbf{r})=- \sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|} \quad \rho_{\Phi}(\mathbf{r})=\sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2}
\end{aligned} .
\end{aligned}
$$

Existence of solutions for neutral and positively charged systems for the $\mathbf{X} \alpha$ model $\left(e_{\mathrm{xc}}(\rho)=-C \int_{\mathbb{R}^{3}} \rho^{4 / 3}\right.$): Le Bris '93

Kohn-Sham equations (Euler-Lagrange + gauge invariance + loc. min.)

$$
\begin{cases}-\frac{1}{2} \Delta \phi_{i}+\mathcal{W}_{\Phi} \phi_{i}=\varepsilon_{i} \phi_{i} & 1 \leq i \leq N \\ \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j} & 1 \leq i, j \leq N\end{cases}
$$

- In the Hartree-Fock model, the potential \mathcal{W}_{Φ} is nonlocal

$$
\mathcal{W}_{\Phi}^{\mathrm{HF}} \phi=\left(V+\rho_{\Phi} \star \frac{1}{|\cdot|}\right) \phi-\int_{\mathbb{R}^{3}} \frac{\gamma_{\Phi}\left(\cdot, \mathbf{r}^{\prime}\right)}{\left|\cdot-\mathbf{r}^{\prime}\right|} \phi\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}, \quad \gamma_{\Phi}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{i=1}^{N} \phi_{i}(\mathbf{r}) \phi_{i}\left(\mathbf{r}^{\prime}\right)
$$

while it is local in the Kohn-Sham LDA model

$$
\mathcal{W}_{\Phi}^{\mathrm{KS}-\mathrm{LDA}} \phi=\left(V+\rho_{\Phi} \star \frac{1}{|\cdot|}+\frac{d e_{\mathrm{xc}}}{d \rho}\left(\rho_{\Phi}\right)\right) \phi
$$

- In the Hartree-Fock model, $\varepsilon_{1} \leq \varepsilon_{2} \leq \cdots \leq \varepsilon_{N}$ are the lowest N eigenvalues of $-\frac{1}{2} \Delta+\mathcal{W}_{\Phi}$, while it is not known whether this property holds true for the Kohn-Sham LDA model

Lieb approach (minimizing over N-body density matrices)
Let $\Gamma \in \mathcal{D}_{N}$
$\Gamma=\sum_{n=1}^{+\infty} p_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|, \quad \Psi_{n} \in \bigwedge^{N} L^{2}\left(\mathbb{R}^{3}\right), \quad\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle=\delta_{m n}, \quad 0 \leq p_{n} \leq 1, \quad \sum_{n=1}^{+\infty} p_{n}=1$
The first order reduced density operator associated with Γ is

$$
\gamma_{\Gamma}=\sum_{n=1}^{+\infty} p_{n} \gamma_{\Psi_{n}} \quad \text { note that } \quad \rho_{\Gamma}(\mathbf{r})=\gamma_{\Gamma}(\mathbf{r}, \mathbf{r})
$$

It holds

$$
\gamma_{\Gamma}^{*}=\gamma_{\Gamma}, \quad 0 \leq \gamma_{\Gamma} \leq 1, \quad \operatorname{Tr}\left(\gamma_{\Gamma}\right)=N, \quad \mathbf{T r}\left(H_{N}^{0} \Gamma\right)=\mathbf{T r}\left(-\frac{1}{2} \Delta \gamma_{\Gamma}\right)
$$

Theorem (ensemble N-representability of 1-RDM)

$$
\begin{aligned}
\mathcal{C}_{N} & =\left\{\gamma \mid \exists \Gamma \in \mathcal{D}_{N} \text { s.t. } \gamma_{\Gamma}=\gamma\right\} \\
& =\left\{\gamma \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{3}\right)\right) \mid 0 \leq \gamma \leq 1, \operatorname{Tr}(\gamma)=N, \operatorname{Tr}(-\Delta \gamma)<\infty\right\}
\end{aligned}
$$

Janak functional (Lieb density functional for non-interacting electrons)

$$
\begin{aligned}
T_{\mathrm{J}}(\rho) & =\inf \left\{\operatorname{Tr}\left(H_{N}^{0} \Gamma\right), \Gamma \in \mathcal{D}_{N} \text { s.t. } \rho_{\Gamma}=\rho\right\} \\
& =\inf \left\{\operatorname{Tr}\left(-\frac{1}{2} \Delta \gamma_{\Gamma}\right), \Gamma \in \mathcal{D}_{N} \text { s.t. } \rho_{\Gamma}=\rho\right\} \\
& =\inf \left\{\operatorname{Tr}\left(-\frac{1}{2} \Delta \gamma\right), \gamma \in \mathcal{C}_{N} \text { s.t. } \rho_{\gamma}=\rho\right\} \quad \text { where } \rho_{\gamma}(\mathbf{r})=\gamma(\mathbf{r}, \mathbf{r}) \\
& =\inf \left\{\sum_{i=1}^{+\infty} \frac{1}{2} n_{i} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}\right|^{2}, \quad \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}\right. \\
& \left.0 \leq n_{i} \leq 1, \sum_{i=1}^{+\infty} n_{i}\left|\phi_{i}\right|^{2}=\rho\right\}
\end{aligned}
$$

Extended Kohn-Sham LDA model

$$
\begin{gathered}
\inf \left\{\mathcal{E}(\gamma), \gamma \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{3}\right)\right), 0 \leq \gamma \leq 1, \operatorname{Tr}(\gamma)=N, \operatorname{Tr}(-\Delta \gamma)<\infty\right\} \\
\mathcal{E}(\gamma)=\operatorname{Tr}\left(-\frac{1}{2} \Delta \gamma\right)+\int_{\mathbb{R}^{3}} \rho_{\gamma} V+J\left(\rho_{\gamma}\right)+\int_{\mathbb{R}^{3}} e_{\mathrm{xc}}\left(\rho_{\gamma}\right), \quad \rho_{\gamma}(\mathbf{r})=\gamma(\mathbf{r}, \mathbf{r})
\end{gathered}
$$

The minimization set \mathcal{C}_{N} is convex and any $\gamma \in \mathcal{C}_{N}$ can be written as

$$
\begin{gathered}
\gamma=\sum_{i=1}^{+\infty} n_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \\
\int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}, \quad 0 \leq n_{i} \leq 1, \quad \sum_{i=1}^{+\infty} n_{i}=N, \quad \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right)
\end{gathered}
$$

Existence of solutions for neutral and positively charged systems: Anantharaman-EC ' $\mathbf{0} 9$ for LDA and GGA $2 \mathrm{e}^{-}$, Gontier ' $\mathbf{1 5}$ for LSDA

Extended Kohn-Sham LDA equations

$$
\begin{gathered}
\gamma^{0}=\sum_{i} n_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \\
\left\{\begin{array}{l}
\rho^{0}(\mathbf{r})=\sum_{i} n_{i}\left|\phi_{i}(\mathbf{r})\right|^{2} \\
H_{\rho^{0}} \phi_{i}=\varepsilon_{i} \phi_{i} \\
\int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}
\end{array} \text { and } \left\lvert\, \begin{array}{l}
n_{i}=1 \mathbf{i f} \varepsilon_{i}<\varepsilon_{\mathrm{F}}, \\
0 \leq n_{i} \leq 1 \text { if } \varepsilon_{i}=\varepsilon_{\mathrm{F}}, \\
n_{i}=0 \text { if } \varepsilon_{i}>\varepsilon_{\mathrm{F}},
\end{array} \sum_{i} n_{i}=N\right.\right. \\
H_{\rho^{0}}=-\frac{1}{2} \Delta+V+\rho^{0} \star|\mathbf{r}|^{-1}+\frac{d e_{\mathrm{xc}}}{d \rho}\left(\rho^{0}\right)
\end{gathered}
$$

4 - Homogeneous electron gas

Reference: Dreizler and Gross, Springer-Verlag 1990

Supercell model (useful for theoretical calculation and numerical simulations)

$$
\begin{aligned}
& \text { supercell } \Omega=[0, L)^{3} \text {, spin states } \mathrm{S}=\{|\uparrow\rangle,|\downarrow\rangle\}, \\
& \text { periodic lattice } \mathcal{R}_{L}=L \mathbb{Z}^{3} \text {, dual lattice } \mathcal{R}_{L}^{*}=\frac{2 \pi}{L} \mathbb{Z}^{3}
\end{aligned}
$$

Electronic Hamiltonian (second quantization formalism)
$H_{L}=\sum_{\mathbf{k} \in \mathcal{R}_{L}^{*}, \sigma \in \mathrm{~S}} \frac{\hbar^{2}}{2 m_{e}}|\mathbf{k}|^{2} a_{\mathbf{k}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma}+\frac{e^{2}}{2 L^{3}} \sum_{\mathbf{q} \in \mathcal{R}_{L}^{*} \backslash\{0\}} \sum_{\mathbf{k} \in \mathcal{R}_{L}^{*}, \sigma \in \mathrm{~S}} \sum_{\mathbf{k}^{\prime} \in \mathcal{R}_{L}^{*}, \sigma^{\prime} \in \mathrm{S}} \frac{4 \pi}{|\mathbf{q}|^{2}} a_{\mathbf{k}+\mathbf{q}, \sigma}^{\dagger} a_{\mathbf{k}^{\prime}-\mathbf{q}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma} a_{\mathbf{k}^{\prime}, \sigma}$
$\longrightarrow \quad$ rigorous results on the TL by Lieb \& Narnhofer '75

Remark. This is the jellium model, not clear mathematically that this coincides with the HEG (minimizer of the energy per unit volume at constant density)

Supercell model (useful for theoretical calculation and numerical simulations)

$$
\begin{aligned}
& \text { supercell } \Omega=[0, L)^{3} \text {, spin states } \mathrm{S}=\{|\uparrow\rangle,|\downarrow\rangle\}, \\
& \text { periodic lattice } \mathcal{R}_{L}=L \mathbb{Z}^{3} \text {, dual lattice } \mathcal{R}_{L}^{*}=\frac{2 \pi}{L} \mathbb{Z}^{3}
\end{aligned}
$$

Electronic Hamiltonian (second quantization formalism)

$$
H_{L}=\sum_{\mathbf{k} \in \mathcal{R}_{L}^{*}, \sigma \in \mathrm{~S}} \frac{\hbar^{2}}{2 m_{e}}|\mathbf{k}|^{2} a_{\mathbf{k}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma}+\frac{e^{2}}{2 L^{3}} \sum_{\mathbf{q} \in \mathcal{R}_{L}^{*} \backslash\{0\}} \sum_{\mathbf{k} \in \mathcal{R}_{L}^{*}, \sigma \in \mathrm{~S}} \sum_{\mathbf{k}^{\prime} \in \mathcal{R}_{L}^{*}, \sigma^{\prime} \in \mathrm{S}} \frac{4 \pi}{|\mathbf{q}|^{2}} a_{\mathbf{k}+\mathbf{q}, \sigma}^{\dagger} a_{\mathbf{k}^{\prime}-\mathbf{q}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma} a_{\mathbf{k}^{\prime}, \sigma}
$$

Dimensional analysis: for the homogeneous electron gas of density $n \in \mathbb{R}_{+}^{*}$
$a_{0}=\frac{\hbar^{2}}{m_{e} e^{2}}($ Bohr radius $), \quad r_{0}=\left(\frac{3}{4 \pi n}\right)^{1 / 3}$ (Wigner-Seitz radius), $\quad r_{s}=\frac{r_{0}}{a_{0}}$
$H_{L a_{0} r_{s}}=\frac{e^{2}}{a_{0} r_{s}^{2}}\left(\sum_{\mathbf{k} \in \mathcal{R}_{L}^{*}, \sigma \in \mathrm{~S}} \frac{|\mathbf{k}|^{2}}{2} a_{\mathbf{k}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma}+\frac{r_{s}}{2 L^{3}} \sum_{\mathbf{q} \in \mathcal{R}_{L}^{*}} \sum_{\mathbf{k} \in \mathcal{R}_{L}^{*}, \sigma \in \mathrm{~S}} \sum_{\mathbf{k}^{\prime} \in \mathcal{R}_{L}^{*}, \sigma^{\prime} \in \mathbf{S}} \frac{4 \pi}{|\mathbf{q}|^{2}} a_{\mathbf{k}+\mathbf{q}, \sigma}^{\dagger} a_{\mathbf{k}^{\prime}-\mathbf{q}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma} a_{\mathbf{k}^{\prime}, \sigma}\right)$
r_{s} small (high-density regime): kinetic energy \gg potential energy
r_{s} large (low-density regime): potential energy \gg kinetic energy

High-density regime ($r_{s} \ll 1$)

- leading term in the limit $r_{s} \rightarrow 0$

$$
H_{L}=\sum_{\mathbf{k} \in \mathcal{R}_{L}^{*}, \sigma \in \mathrm{~S}} \frac{\hbar^{2}}{2 m_{e}}|\mathbf{k}|^{2} a_{\mathbf{k}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma} \underset{L \rightarrow \infty}{\longrightarrow}-\frac{\hbar^{2}}{2 m_{e}} \Delta
$$

The ground-state density matrix is not spin-polarized

$$
\gamma_{0}=\mathbb{1}_{\left(-\infty, \varepsilon_{\mathrm{F}}\right]}\left(-\frac{\hbar^{2}}{2 m_{e}} \Delta\right), \quad \varepsilon_{\mathrm{F}} \text { such that } \underline{\operatorname{Tr}}\left(\gamma_{0}\right)=n
$$

The ground-state energy per particle is given by
$\widetilde{e}_{0}^{\mathrm{HD}, 0}\left(r_{s}\right)=\frac{\widetilde{C}_{\mathrm{TF}}}{r_{s}^{2}}=C_{\mathrm{TF}} n^{2 / 3}, \quad$ with $C_{\mathrm{TF}}=\frac{3 \hbar^{2}}{10 m_{e}}\left(3 \pi^{2}\right)^{\frac{2}{3}}, \quad \widetilde{C}_{\mathrm{TF}}=\frac{3}{10}\left(\frac{9 \pi}{4}\right)^{2 / 3} \frac{e^{2}}{a_{0}}$

High-density regime ($r_{s} \ll 1$) (continued)

- $1^{\text {st }}$ order perturbation: let $n=n_{\uparrow}+n_{\downarrow}$ and $\zeta=\frac{n_{\uparrow}-n_{\downarrow}}{n}$
$\widetilde{e}_{0}^{\mathrm{HD}, 0}\left(r_{s}, \zeta\right)+\widetilde{e}_{0}^{\mathrm{HD}, 1}\left(r_{s}, \zeta\right)=\widetilde{C}_{\mathrm{TF}} \frac{(1+\zeta)^{5 / 3}+(1-\zeta)^{5 / 3}}{2 r_{s}^{2}}-\widetilde{C}_{\mathrm{D}} \frac{(1+\zeta)^{4 / 3}+(1-\zeta)^{4 / 3}}{2 r_{s}}$
$\longrightarrow \quad$ rigorous asymptotics when $r_{s} \rightarrow 0$ (Graf \& Solovej '94)
According to this model, there is a phase transition at $r_{s}=r_{s}^{(1)} \simeq 5.45$:
$-r_{s}<5.45$: spin-unpolarized
$-r_{s}>5.45:$ spin-polarized
According to numerical simulations (see below), the phase transition occurs at much lower density $\left(r_{s}^{(\infty)} \gg 5.45\right)$

For valence electrons in real metals, the local Wigner-Seitz radius is typically

$$
1.8 \leq r_{s}(\mathbf{r}) \leq 5.6
$$

\longrightarrow see David Gontier's talk on the Hartree-Fock approximation for the HEG

High-density regime ($r_{s} \ll 1$) (continued)

- $2^{\text {nd }}$-order perturbation: two diagrams contribute
$-2^{\text {nd }}$-order exchange diagram:

$$
\widetilde{e}_{0, \mathrm{x}}^{\mathrm{HD}, 2}\left(r_{s}\right)=\left(\frac{1}{6} \ln 2-\frac{3}{4 \pi^{2}} \zeta(3)\right) \frac{e^{2}}{a_{0}} \simeq 0.024 \frac{e^{2}}{a_{0}}
$$

(Onsager et al. '66)
$-2^{\text {nd }}$-order ring diagram \longrightarrow divergent

$\widetilde{e}_{0, \mathrm{x}}^{\mathrm{HD}, 2}\left(r_{s}\right)=\frac{3 e^{4}}{16 \pi^{5}} \int_{\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{f_{\mathbf{k}} f_{\mathbf{k}^{\prime}}\left(1-f_{\mathbf{k}+\mathbf{q}}\right)\left(1-f_{\mathbf{k}^{\prime}+\mathbf{q}}\right)}{\left|\mathbf{k}+\mathbf{k}^{\prime}+\mathbf{q}\right|^{2} \mathbf{q} \cdot\left(\mathbf{k}+\mathbf{k}^{\prime}+\mathbf{q}\right)} d \mathbf{k} d \mathbf{k}^{\prime} d \mathbf{q}, \quad f_{\mathbf{k}}=\mathbb{1}_{|\mathbf{k}| \leq 1}$

High-density regime ($r_{s} \ll 1$) (continued)

- $2^{\text {nd }}$-order perturbation: two diagrams contribute
$-2^{\text {nd }}$-order exchange diagram:

$$
\widetilde{e}_{0, \mathrm{x}}^{\mathrm{HD}, 2}\left(r_{s}\right)=\left(\frac{1}{6} \ln 2-\frac{3}{4 \pi^{2}} \zeta(3)\right) \frac{e^{2}}{a_{0}} \simeq 0.024 \frac{e^{2}}{a_{0}}
$$

(Onsager et al. '66)
$-2^{\text {nd }}$-order ring diagram \longrightarrow divergent

- Random Phase Approximation (RPA) = ring approximation
$\widetilde{e}_{0, \mathrm{c}}^{\text {ring }}\left(r_{s}\right)=\left(\frac{(1-\ln 2)}{\pi^{2}} \ln r_{s}-0.071+o(1)\right) \frac{e^{2}}{a_{0}}$
(Gell-Mann \& Brueckner '57)
(partial resummation of ring diagrams of any orders)

High-density regime ($r_{s} \ll 1$) (continued)

- $2^{\text {nd }}$-order perturbation: two diagrams contribute
$-2^{\text {nd }}$-order exchange diagram:

$$
\widetilde{e}_{0, \mathrm{x}}^{\mathrm{HD}, 2}\left(r_{s}\right)=\left(\frac{1}{6} \ln 2-\frac{3}{4 \pi^{2}} \zeta(3)\right) \frac{e^{2}}{a_{0}} \simeq 0.024 \frac{e^{2}}{a_{0}}
$$

(Onsager et al. '66)
$-2^{\text {nd }}$-order ring diagram \longrightarrow divergent

- Random Phase Approximation (RPA) = ring approximation
$\widetilde{e}_{0, \mathrm{c}}^{\text {ring }}\left(r_{s}\right)=\left(\frac{(1-\ln 2)}{\pi^{2}} \ln r_{s}-0.071+o(1)\right) \frac{e^{2}}{a_{0}}$
(Gell-Mann \& Brueckner '57)
(partial resummation of ring diagrams of any orders)
- Correlation energy per particle in the high-density regime

$$
\widetilde{e}_{0, c}^{\mathrm{HD}}\left(r_{s}\right)=\left(\frac{(1-\ln 2)}{\pi^{2}} \ln r_{s}-0.048+0.009 r_{s} \ln r_{s}-0.018 r_{s}+o\left(r_{s}\right)\right) \frac{e^{2}}{a_{0}}
$$

(last two explicit terms by du Bois '59 and Carr \& Maradudin '65)

Low-density regime ($r_{s} \gg 1$)

- Wigner crystallization in a BCC lattice (conjecture supported by numerical simulations)
- Energy per particle in the high-density regime

$$
\widetilde{e}_{0}^{\mathrm{HD}}\left(r_{s}\right)=\left(-\frac{1.792}{r_{s}}+\frac{2.65}{r_{s}^{3 / 2}}-\frac{0.73}{r_{s}^{2}}+o\left(\frac{1}{r_{s}^{2}}\right)\right) \frac{e^{2}}{2 a_{0}}
$$

including

- the BCC lattice energy (first term, Wigner '34)
- the harmonic lattice vibrations (second term, Wigner '38)
- the first anharmonic corrections (third term, Carr-Coldwell et al. '61)
note that there is no consensus on the correctness of this expansion

Intermediate regime
Numerical approximation of the many-body problem

- coupled-clusters (Freeman '77)
- quantum Monte Carlo (VMC: Ceperley '78, GFMC: Ceperley \& Alder '80)

Parameterization of the exchange-correlation energy per particle
Two popular parameterizations of $\widetilde{e}_{\mathrm{c}}(n, \zeta)$

- Vosko, Wilk \& Nusain '80 (VWN)
- Perdew \& Zunger '91 (PZ91)
both using
- the high-density expansion
- the QCM results by Ceperley \& Alder '80

Perdew \& Zunger parameterization (PZ91)

- exchange functional

$$
\begin{aligned}
& \widetilde{e}_{\mathrm{x}}\left(r_{s}, \zeta\right)=\widetilde{e}_{\mathrm{x}}\left(r_{s}, 0\right)+\left(\widetilde{e}_{\mathrm{x}}(n, 1)-\widetilde{e}_{\mathrm{x}}\left(r_{s}, 0\right)\right) f(\zeta) \\
& \widetilde{e}_{\mathrm{x}}\left(r_{s}, 0\right)=-\frac{3}{4 \pi}\left(\frac{9 \pi}{4}\right)^{\frac{1}{3}} \frac{1}{r_{s}}\left(\frac{e^{2}}{a_{0}}\right), \quad \widetilde{e}_{\mathrm{x}}\left(r_{s}, 1\right)=2^{1 / 3} \widetilde{e}_{\mathrm{x}}\left(r_{s}, 0\right), \quad f(\zeta)=\frac{(1+\zeta)^{\frac{4}{3}}+(1-\zeta)^{\frac{4}{3}}-2}{2\left(2^{\frac{1}{3}}-1\right)}
\end{aligned}
$$

Perdew \& Zunger parameterization (PZ91)

- exchange functional

$$
\begin{aligned}
& \widetilde{e}_{\mathrm{x}}\left(r_{s}, \zeta\right)=\widetilde{e}_{\mathrm{x}}\left(r_{s}, 0\right)+\left(\widetilde{e}_{\mathrm{x}}(n, 1)-\widetilde{e}_{\mathrm{x}}\left(r_{s}, 0\right)\right) f(\zeta) \\
& \widetilde{e}_{\mathrm{x}}\left(r_{s}, 0\right)=-\frac{3}{4 \pi}\left(\frac{9 \pi}{4}\right)^{\frac{1}{3}} \frac{1}{r_{s}}\left(\frac{e^{2}}{a_{0}}\right), \quad \widetilde{e}_{\mathrm{x}}\left(r_{s}, 1\right)=2^{1 / 3} \widetilde{e}_{\mathrm{x}}\left(r_{s}, 0\right), \quad f(\zeta)=\frac{(1+\zeta)^{\frac{4}{3}}+(1-\zeta)^{\frac{4}{3}}-2}{2\left(2^{\frac{1}{3}}-1\right)}
\end{aligned}
$$

- correlation functional

$$
\widetilde{e}_{\mathrm{c}}^{\mathrm{PZ}}\left(r_{s}, \zeta\right) \simeq \widetilde{e}_{\mathrm{c}}^{\mathrm{PZ}}\left(r_{s}, 0\right)+\left(\widetilde{e}_{\mathrm{c}}^{\mathrm{PZ}}(n, 1)-\widetilde{e}_{\mathrm{c}}^{\mathrm{PZ}}\left(r_{s}, 0\right)\right) f(\zeta)
$$

with for $\zeta=0$ or $\zeta=1$

$$
\widetilde{e}_{\mathrm{c}}^{\mathrm{PZ} 91}\left(r_{s}, \zeta\right)=\left\lvert\, \begin{array}{ll}
\frac{\gamma_{\zeta}}{1+\beta_{1, \zeta} r_{s}^{1 / 2}+\beta_{2, \zeta} r_{s}}\left(\frac{e^{2}}{a_{0}}\right) & \text { for } r_{s} \geq 1 \\
\left(A_{\zeta} \ln r_{s}+B_{\zeta}+C_{\zeta} r_{s} \ln r_{s}+D_{\zeta} r_{s}\right)\left(\frac{e^{2}}{a_{0}}\right) & \text { for } 0 \leq r_{s} \leq 1
\end{array}\right.
$$

Perdew \& Zunger parameterization (PZ91) (continued)

- parameterization of the correlation functional: $\zeta=0$ or $\zeta=1$
$\widetilde{e}_{\mathrm{c}}^{\mathrm{PZ91}}\left(r_{s}, \zeta\right)=\left\lvert\, \begin{array}{ll}\frac{\gamma_{\zeta}}{1+\beta_{1, \zeta} r_{s}^{1 / 2}+\beta_{2, \zeta} r_{s}}\left(\frac{e^{2}}{a_{0}}\right) & \text { for } r_{s} \geq 1 \\ \text { with } & \\ \left(A_{\zeta} \ln r_{s}+B_{\zeta}+C_{\zeta} r_{s} \ln r_{s}+D_{\zeta} r_{s}\right)\left(\frac{e^{2}}{a_{0}}\right) & \text { for } 0 \leq r_{s} \leq 1\end{array}\right.$

$\gamma_{0}=-0.1423$	$\beta_{1,0}=1.0529$	$\beta_{2,0}=0.3334$	$A_{0}=0.0311$	$B_{0}=-0.0480$	$C_{0}=0.0020$	$D_{0}=-0.011$
$\gamma_{1}=-0.0843$	$\beta_{1,1}=1.3981$	$\beta_{2,1}=0.2611$	$A_{1}=0.0155$	$B_{1}=-0.0269$	$C_{1}=0.0007$	$D_{1}=-0.0048$

$-\gamma_{\zeta}, \beta_{1, \zeta}, \beta_{2, \zeta}, \zeta=0,1$: fit of Ceperley-Alder results

- A_{0} and B_{0} : first two terms of the high-density expansion (RPA resummation)
$-A_{1}$ and B_{1} : use the scaling (exact for RPA, valid with a 1% accuracy)

$$
\widetilde{e}_{\mathrm{c}}\left(r_{s}, 1\right)=\frac{1}{2} \widetilde{e}_{\mathrm{c}}\left(r_{s} / 2^{4 / 3}, 0\right)
$$

$-C_{\zeta}$ and $D_{\zeta}, \zeta=0,1:$ chosen so that $\breve{e}_{\mathrm{c}}^{\mathrm{PZ91}}(n, \zeta)$ is C^{1} on \mathbb{R}_{+}^{*}

