Smoothing operators in multi-marginal Optimal Transport

Ugo Bindini

Scuola Normale Superiore - Pisa

Optimal Transport Methods in Density Functional Theory Banff 2019

Multi-marginal Optimal Transport

2 A smoothing operator

- Definition
- Properties

3 Applications to Density Functional Theory

- The semiclassical limit
- Lieb's open map problem

Given ρ_1, \ldots, ρ_N probability measures over \mathbb{R}^d , and a cost function $c : (\mathbb{R}^d)^N \to [0, +\infty]$, the Kantorovich formulation for the multi-marginal optimal transport problem is to minimize

$$\int_{(\mathbb{R}^d)^N} c(x_1,\ldots,x_N) dP(x_1,\ldots,x_N)$$

where $P \in \Pi(\rho_1, \ldots, \rho_N) := \left\{ P \in \mathcal{P}\left((\mathbb{R}^d)^N \right) \mid \pi^j_{\#}(P) = \rho_j \text{ for all } j \right\}.$

Multi-marginal Optimal Transport

Fix p > 1.

U. Bindini (SNS - Pisa)

э

• • • • • • • • • •

Fix p > 1. We say that ρ is $W^{1,p}$ -regular if ρ is absolutely continuous w.r.t. the Lebesgue measure \mathcal{L}^d , and

$$\left(\frac{\mathrm{d}\rho}{\mathrm{d}\mathcal{L}^d}\right)^{1/\rho}\in W^{1,\rho}(\mathbb{R}^d).$$

We denote $\mathcal{P}^{1,p}(\mathbb{R}^d)$ the space of $W^{1,p}$ -regular probabilities.

Fix p > 1.

We say that ρ is $W^{1,p}$ -regular if ρ is absolutely continuous w.r.t. the Lebesgue measure \mathcal{L}^d , and

$$\left(\frac{\mathrm{d}\rho}{\mathrm{d}\mathcal{L}^d}\right)^{1/\rho}\in W^{1,\rho}(\mathbb{R}^d).$$

We denote $\mathcal{P}^{1,p}(\mathbb{R}^d)$ the space of $W^{1,p}$ -regular probabilities.

When p = 2 we recover the well-known space

$$\mathcal{R} := \left\{
ho \mid
ho \geq 0, \int_{\mathbb{R}^d}
ho = 1, \sqrt{
ho} \in H^1(\mathbb{R}^d)
ight\}.$$

H. Lieb, Density Functionals for Coulomb Systems (1983)

Multi-marginal Optimal Transport

The space $\mathcal{P}^{1,p}$ is a metric space with distance

$$\delta^{1,p}(\rho_1,\rho_2) = \left\| \left(\frac{\mathrm{d}\rho_1}{\mathrm{d}\mathcal{L}^d} \right)^{1/p} - \left(\frac{\mathrm{d}\rho_2}{\mathrm{d}\mathcal{L}^d} \right)^{1/p} \right\|_{W^{1,p}}$$

Multi-marginal Optimal Transport

The space $\mathcal{P}^{1,p}$ is a metric space with distance

$$\delta^{1,p}(\rho_1,\rho_2) = \left\| \left(\frac{\mathrm{d}\rho_1}{\mathrm{d}\mathcal{L}^d} \right)^{1/p} - \left(\frac{\mathrm{d}\rho_2}{\mathrm{d}\mathcal{L}^d} \right)^{1/p} \right\|_{W^{1,p}}.$$

Theorem

If $P \in \mathcal{P}^{1,p}((\mathbb{R}^d)^N)$, then its marginals belong to $\mathcal{P}^{1,p}(\mathbb{R}^d)$. Moreover, the map

$$\pi \colon \mathcal{P}^{1,p}\left((\mathbb{R}^d)^N\right) \longrightarrow \mathcal{P}^{1,p}(\mathbb{R}^d)^N$$
$$P \longmapsto (\rho_1, \dots, \rho_N)$$

is continuous w.r.t. the $\delta^{1,p}$ metrics.

If P is not regular, we want to approximate P with $(P_{\varepsilon})_{\varepsilon>0}$ such that:

If P is not regular, we want to approximate P with $(P_{\varepsilon})_{\varepsilon>0}$ such that:

• P_{ε} is $W^{1,p}$ -regular;

If P is not regular, we want to approximate P with $(P_{\varepsilon})_{\varepsilon>0}$ such that:

- P_{ε} is $W^{1,p}$ -regular;
- $P_{\varepsilon} \in \Pi(\rho_1, \ldots, \rho_N);$

If P is not regular, we want to approximate P with $(P_{\varepsilon})_{\varepsilon>0}$ such that:

- P_{ε} is $W^{1,p}$ -regular;
- $P_{\varepsilon} \in \Pi(\rho_1, \ldots, \rho_N);$
- as $\varepsilon \to 0$, P_{ε} converges to P (in a suitable sense).

If P is not regular, we want to approximate P with $(P_{\varepsilon})_{\varepsilon>0}$ such that:

- P_{ε} is $W^{1,p}$ -regular;
- $P_{\varepsilon} \in \Pi(\rho_1, \ldots, \rho_N);$
- as $\varepsilon \to 0$, P_{ε} converges to P (in a suitable sense).

Since P in general is only a measure, the "suitable sense" is the weak convergence of measures (in duality with C_b).

Let $\rho_1, \ldots, \rho_N \in \mathcal{P}^{1,p}(\mathbb{R}^d)$ and $P \in \Pi(\rho_1, \ldots, \rho_N)$. For every $\varepsilon > 0$ consider a Gaussian kernel on \mathbb{R}^d

$$\eta^{\varepsilon}(z) = rac{1}{(2\pi\varepsilon)^{d/2}} \exp\left(-rac{|z|^2}{2\varepsilon}
ight),$$

and define

$$P_{\varepsilon}(X) := \Theta^{\varepsilon}[P](X) = \iint \prod_{j=1}^{N} \frac{\rho_{j}(x_{j})\eta^{\varepsilon}(y_{j}-x_{j})\eta^{\varepsilon}(y_{j}-z_{j})}{(\rho_{j}*\eta^{\varepsilon})(y_{j})} \mathrm{d}P(Z) \, \mathrm{d}Y.$$

Let $\rho_1, \ldots, \rho_N \in \mathcal{P}^{1,\rho}(\mathbb{R}^d)$ and $P \in \Pi(\rho_1, \ldots, \rho_N)$. For every $\varepsilon > 0$ consider a Gaussian kernel on \mathbb{R}^d

$$\eta^{\varepsilon}(z) = rac{1}{(2\pi\varepsilon)^{d/2}} \exp\left(-rac{|z|^2}{2\varepsilon}
ight),$$

and define

$$P_{\varepsilon}(X) := \Theta^{\varepsilon}[P](X) = \iint \prod_{j=1}^{N} \frac{\rho_{j}(x_{j})\eta^{\varepsilon}(y_{j}-x_{j})\eta^{\varepsilon}(y_{j}-z_{j})}{(\rho_{j}*\eta^{\varepsilon})(y_{j})} \mathrm{d}P(Z) \, \mathrm{d}Y.$$

<u>Remark</u> The marginals are recovered: $\Theta^{\varepsilon}[P] \in \Pi(\rho_1, \ldots, \rho_N)$.

Properties of Θ^{ε} : regularity

 $\Theta^{\varepsilon}[P]$ is $W^{1,p}$ -regular, with a kinetic energy control:

$$T(\Theta^{arepsilon}[P]) \leq \sum_{j=1}^{N} \left(T(
ho_{j})^{rac{1}{p}} + rac{c(d,p)}{\sqrt{arepsilon}}
ight)^{p}.$$

Properties of Θ^{ε} : regularity

 $\Theta^{\varepsilon}[P]$ is $W^{1,p}$ -regular, with a kinetic energy control:

$$T(\Theta^{\varepsilon}[P]) \leq \sum_{j=1}^{N} \left(T(\rho_j)^{\frac{1}{p}} + \frac{c(d,p)}{\sqrt{\varepsilon}} \right)^{p}.$$

If in addition $P \in \mathcal{P}^{1,p}\left((\mathbb{R}^d)^N\right)$, then

$$T(\Theta^{\varepsilon}[P]) \leq \sum_{j=1}^{N} \left(\left\| \nabla_{x_{j}} (P * \eta^{\varepsilon})^{\frac{1}{p}} \right\|_{p} + c_{p} \Delta(\varepsilon, p, \rho_{j}) \right)^{p}$$

where

$$\Delta(\varepsilon, p, \rho) = \begin{cases} \left[(T(\rho) + T(\rho * \eta^{\varepsilon}))^{\frac{1}{p-1}} - 2T(\rho * \eta^{\varepsilon})^{\frac{1}{p-1}} \right]^{\frac{p-1}{p}} & 1$$

Proposition

Let
$$P \in \mathcal{P}((\mathbb{R}^d)^N)$$
. Then $\Theta^{\varepsilon}[P] \rightarrow P$, i.e., for every $\phi \in C_b((\mathbb{R}^d)^N)$
$$\lim_{\varepsilon \to 0} \int \phi(X) \Theta^{\varepsilon}[P](X) dX = \int \phi(X) dP(X).$$

Proposition

Let
$$P \in \mathcal{P}((\mathbb{R}^d)^N)$$
. Then $\Theta^{\varepsilon}[P] \to P$, i.e., for every $\phi \in C_b((\mathbb{R}^d)^N)$
$$\lim_{\varepsilon \to 0} \int \phi(X)\Theta^{\varepsilon}[P](X)dX = \int \phi(X)dP(X).$$

If *P* is itself $W^{1,p}$ -regular, then we get:

Proposition

Let $P \in \mathcal{P}^{1,p}\left((\mathbb{R}^d)^N\right)$. Then

$$\lim_{\varepsilon\to 0}\delta^{1,p}(\Theta^{\varepsilon}[P],P)=0.$$

Consider Θ as an operator

$$\Theta: (0, +\infty) \times \mathcal{P}\left((\mathbb{R}^d)^N\right) \longrightarrow \mathcal{P}^{1,p}\left((\mathbb{R}^d)^N\right).$$

< 1 k

э

Consider Θ as an operator

$$\Theta: (0, +\infty) imes \mathcal{P}\left((\mathbb{R}^d)^N\right) \longrightarrow \mathcal{P}^{1,p}\left((\mathbb{R}^d)^N\right).$$

Remark. The Propositions above give "continuity" with respect to the first argument ε . What about continuity in the second argument?

Consider Θ as an operator

$$\Theta: (0, +\infty) \times \mathcal{P}\left((\mathbb{R}^d)^N\right) \longrightarrow \mathcal{P}^{1,p}\left((\mathbb{R}^d)^N\right).$$

Remark. The Propositions above give "continuity" with respect to the first argument ε . What about continuity in the second argument?

Theorem

Let $P_n \in \Pi(\rho_1^n, \ldots, \rho_N^n)$ and $P \in \Pi(\rho_1, \ldots, \rho_N)$ such that $P_n \rightarrow P$. Suppose moreover that $\rho_j^n, \rho_j \in \mathcal{P}^{1,p}(\mathbb{R}^d)$, and $\delta^{1,p}(\rho_j^n, \rho_j) \rightarrow 0$. Then, for every $\varepsilon > 0$,

$$\lim_{n\to\infty}\delta^{1,p}(\Theta^{\varepsilon}[P_n],\Theta^{\varepsilon}[P])=0.$$

Applications: the semiclassical limit of the HK functional

Consider the Hohenberg-Kohn functional

$$\mathcal{F}_{\hbar}^{HK}(\rho) = \inf_{\psi \mapsto \rho} \langle \psi | \hbar^2 T + V_{ee} | \psi \rangle.$$

Theorem

As $\hbar \to 0$, the functional \mathcal{F}^{\hbar}_{HK} $\Gamma\text{-converges}$ to the Optimal Transport functional

$$\mathcal{C}(
ho) = \inf \left\{ \int \sum_{i < j} rac{1}{|x_i - x_j|} \mathrm{d} \mathcal{P}(X) \mid \mathcal{P} \in \Pi(
ho, \dots,
ho)
ight\}.$$

Cotar-Friesecke-Klüppelberg (2013), B-De Pascale (2017), Cotar-Friesecke-Klüppelberg (2018), Lewin (2018)

Applications: Lieb's open map question

Consider the map from $H^1_{Svm}((\mathbb{R}^d)^N)$ to \mathcal{R} which sends ψ to its marginal

$$\rho^{\psi}(\mathbf{x}) = \int |\psi(\mathbf{x}, \mathbf{x}_2, \dots, \mathbf{x}_N)|^2 \, d\mathbf{x}_2 \cdots d\mathbf{x}_N.$$

Applications: Lieb's open map question

Consider the map from $H^1_{Svm}(\mathbb{R}^d)^N$ to \mathcal{R} which sends ψ to its marginal

$$\rho^{\psi}(\mathbf{x}) = \int |\psi(\mathbf{x}, \mathbf{x}_2, \dots, \mathbf{x}_N)|^2 \, d\mathbf{x}_2 \cdots d\mathbf{x}_N.$$

Theorem (Lieb-Brezis 1983)

The map is continuous.

Applications: Lieb's open map question

Consider the map from $H^1_{Sym}\left((\mathbb{R}^d)^N\right)$ to \mathcal{R} which sends ψ to its marginal

$$\rho^{\psi}(\mathbf{x}) = \int |\psi(\mathbf{x}, \mathbf{x}_2, \dots, \mathbf{x}_N)|^2 \, d\mathbf{x}_2 \cdots d\mathbf{x}_N.$$

Theorem (Lieb-Brezis 1983)

The map is continuous.

Question 2. Although the map is not invertible (since it is not 1:1), we can ask the following: Given a sequence $\rho_i^{1/2}$ that converges to $\rho^{1/2}$ in the above $H^1(\mathbb{R}^3)$ since, and given some ψ satisfying (1.6) for ρ , does there exist a sequence ψ_i [related to ρ_i by (1.6)] that converges to ψ in the above $H^1(\mathbb{R}^3)$ sense? [This is equivalent to the statement that the map $\psi \mapsto \rho^{1/2}$ is "open," that is, the map takes open sets in $H^1(\mathbb{R}^{3N})$ into open sets in $H^1(\mathbb{R}^3)$.]

Theorem (B-De Pascale 2019, to appear)

Let $\psi \in H^1_{Sym}((\mathbb{R}^d)^N)$ (real-valued), and $\rho_n \in \mathcal{R}$ such that $\rho_n \to \rho^{\psi}$. Then there exist $(\psi_n)_{n \in \mathbb{N}}$ such that:

() ψ_n maps to ρ_n ;

2 $\psi_n \to \psi$ in $H^1_{Sym}((\mathbb{R}^d)^N)$ (complex-valued).

Thanks for your attention!